/src/Python-3.8.3/Objects/listobject.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* List object implementation */ |
2 | | |
3 | | #include "Python.h" |
4 | | #include "pycore_object.h" |
5 | | #include "pycore_pystate.h" |
6 | | #include "pycore_tupleobject.h" |
7 | | #include "pycore_accu.h" |
8 | | |
9 | | #ifdef STDC_HEADERS |
10 | | #include <stddef.h> |
11 | | #else |
12 | | #include <sys/types.h> /* For size_t */ |
13 | | #endif |
14 | | |
15 | | /*[clinic input] |
16 | | class list "PyListObject *" "&PyList_Type" |
17 | | [clinic start generated code]*/ |
18 | | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f9b222678f9f71e0]*/ |
19 | | |
20 | | #include "clinic/listobject.c.h" |
21 | | |
22 | | /* Ensure ob_item has room for at least newsize elements, and set |
23 | | * ob_size to newsize. If newsize > ob_size on entry, the content |
24 | | * of the new slots at exit is undefined heap trash; it's the caller's |
25 | | * responsibility to overwrite them with sane values. |
26 | | * The number of allocated elements may grow, shrink, or stay the same. |
27 | | * Failure is impossible if newsize <= self.allocated on entry, although |
28 | | * that partly relies on an assumption that the system realloc() never |
29 | | * fails when passed a number of bytes <= the number of bytes last |
30 | | * allocated (the C standard doesn't guarantee this, but it's hard to |
31 | | * imagine a realloc implementation where it wouldn't be true). |
32 | | * Note that self->ob_item may change, and even if newsize is less |
33 | | * than ob_size on entry. |
34 | | */ |
35 | | static int |
36 | | list_resize(PyListObject *self, Py_ssize_t newsize) |
37 | 66.5k | { |
38 | 66.5k | PyObject **items; |
39 | 66.5k | size_t new_allocated, num_allocated_bytes; |
40 | 66.5k | Py_ssize_t allocated = self->allocated; |
41 | | |
42 | | /* Bypass realloc() when a previous overallocation is large enough |
43 | | to accommodate the newsize. If the newsize falls lower than half |
44 | | the allocated size, then proceed with the realloc() to shrink the list. |
45 | | */ |
46 | 66.5k | if (allocated >= newsize && newsize >= (allocated >> 1)) { |
47 | 58.1k | assert(self->ob_item != NULL || newsize == 0); |
48 | 58.1k | Py_SIZE(self) = newsize; |
49 | 58.1k | return 0; |
50 | 58.1k | } |
51 | | |
52 | | /* This over-allocates proportional to the list size, making room |
53 | | * for additional growth. The over-allocation is mild, but is |
54 | | * enough to give linear-time amortized behavior over a long |
55 | | * sequence of appends() in the presence of a poorly-performing |
56 | | * system realloc(). |
57 | | * The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ... |
58 | | * Note: new_allocated won't overflow because the largest possible value |
59 | | * is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t. |
60 | | */ |
61 | 8.37k | new_allocated = (size_t)newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6); |
62 | 8.37k | if (new_allocated > (size_t)PY_SSIZE_T_MAX / sizeof(PyObject *)) { |
63 | 0 | PyErr_NoMemory(); |
64 | 0 | return -1; |
65 | 0 | } |
66 | | |
67 | 8.37k | if (newsize == 0) |
68 | 0 | new_allocated = 0; |
69 | 8.37k | num_allocated_bytes = new_allocated * sizeof(PyObject *); |
70 | 8.37k | items = (PyObject **)PyMem_Realloc(self->ob_item, num_allocated_bytes); |
71 | 8.37k | if (items == NULL) { |
72 | 0 | PyErr_NoMemory(); |
73 | 0 | return -1; |
74 | 0 | } |
75 | 8.37k | self->ob_item = items; |
76 | 8.37k | Py_SIZE(self) = newsize; |
77 | 8.37k | self->allocated = new_allocated; |
78 | 8.37k | return 0; |
79 | 8.37k | } |
80 | | |
81 | | static int |
82 | | list_preallocate_exact(PyListObject *self, Py_ssize_t size) |
83 | 19 | { |
84 | 19 | assert(self->ob_item == NULL); |
85 | 19 | assert(size > 0); |
86 | | |
87 | 19 | PyObject **items = PyMem_New(PyObject*, size); |
88 | 19 | if (items == NULL) { |
89 | 0 | PyErr_NoMemory(); |
90 | 0 | return -1; |
91 | 0 | } |
92 | 19 | self->ob_item = items; |
93 | 19 | self->allocated = size; |
94 | 19 | return 0; |
95 | 19 | } |
96 | | |
97 | | /* Debug statistic to compare allocations with reuse through the free list */ |
98 | | #undef SHOW_ALLOC_COUNT |
99 | | #ifdef SHOW_ALLOC_COUNT |
100 | | static size_t count_alloc = 0; |
101 | | static size_t count_reuse = 0; |
102 | | |
103 | | static void |
104 | | show_alloc(void) |
105 | | { |
106 | | PyInterpreterState *interp = _PyInterpreterState_Get(); |
107 | | if (!interp->config.show_alloc_count) { |
108 | | return; |
109 | | } |
110 | | |
111 | | fprintf(stderr, "List allocations: %" PY_FORMAT_SIZE_T "d\n", |
112 | | count_alloc); |
113 | | fprintf(stderr, "List reuse through freelist: %" PY_FORMAT_SIZE_T |
114 | | "d\n", count_reuse); |
115 | | fprintf(stderr, "%.2f%% reuse rate\n\n", |
116 | | (100.0*count_reuse/(count_alloc+count_reuse))); |
117 | | } |
118 | | #endif |
119 | | |
120 | | /* Empty list reuse scheme to save calls to malloc and free */ |
121 | | #ifndef PyList_MAXFREELIST |
122 | 12.5k | #define PyList_MAXFREELIST 80 |
123 | | #endif |
124 | | static PyListObject *free_list[PyList_MAXFREELIST]; |
125 | | static int numfree = 0; |
126 | | |
127 | | int |
128 | | PyList_ClearFreeList(void) |
129 | 0 | { |
130 | 0 | PyListObject *op; |
131 | 0 | int ret = numfree; |
132 | 0 | while (numfree) { |
133 | 0 | op = free_list[--numfree]; |
134 | 0 | assert(PyList_CheckExact(op)); |
135 | 0 | PyObject_GC_Del(op); |
136 | 0 | } |
137 | 0 | return ret; |
138 | 0 | } |
139 | | |
140 | | void |
141 | | PyList_Fini(void) |
142 | 0 | { |
143 | 0 | PyList_ClearFreeList(); |
144 | 0 | } |
145 | | |
146 | | /* Print summary info about the state of the optimized allocator */ |
147 | | void |
148 | | _PyList_DebugMallocStats(FILE *out) |
149 | 0 | { |
150 | 0 | _PyDebugAllocatorStats(out, |
151 | 0 | "free PyListObject", |
152 | 0 | numfree, sizeof(PyListObject)); |
153 | 0 | } |
154 | | |
155 | | PyObject * |
156 | | PyList_New(Py_ssize_t size) |
157 | 6.72k | { |
158 | 6.72k | PyListObject *op; |
159 | | #ifdef SHOW_ALLOC_COUNT |
160 | | static int initialized = 0; |
161 | | if (!initialized) { |
162 | | Py_AtExit(show_alloc); |
163 | | initialized = 1; |
164 | | } |
165 | | #endif |
166 | | |
167 | 6.72k | if (size < 0) { |
168 | 0 | PyErr_BadInternalCall(); |
169 | 0 | return NULL; |
170 | 0 | } |
171 | 6.72k | if (numfree) { |
172 | 6.15k | numfree--; |
173 | 6.15k | op = free_list[numfree]; |
174 | 6.15k | _Py_NewReference((PyObject *)op); |
175 | | #ifdef SHOW_ALLOC_COUNT |
176 | | count_reuse++; |
177 | | #endif |
178 | 6.15k | } else { |
179 | 570 | op = PyObject_GC_New(PyListObject, &PyList_Type); |
180 | 570 | if (op == NULL) |
181 | 0 | return NULL; |
182 | | #ifdef SHOW_ALLOC_COUNT |
183 | | count_alloc++; |
184 | | #endif |
185 | 570 | } |
186 | 6.72k | if (size <= 0) |
187 | 5.26k | op->ob_item = NULL; |
188 | 1.46k | else { |
189 | 1.46k | op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *)); |
190 | 1.46k | if (op->ob_item == NULL) { |
191 | 0 | Py_DECREF(op); |
192 | 0 | return PyErr_NoMemory(); |
193 | 0 | } |
194 | 1.46k | } |
195 | 6.72k | Py_SIZE(op) = size; |
196 | 6.72k | op->allocated = size; |
197 | 6.72k | _PyObject_GC_TRACK(op); |
198 | 6.72k | return (PyObject *) op; |
199 | 6.72k | } |
200 | | |
201 | | static PyObject * |
202 | | list_new_prealloc(Py_ssize_t size) |
203 | 60 | { |
204 | 60 | PyListObject *op = (PyListObject *) PyList_New(0); |
205 | 60 | if (size == 0 || op == NULL) { |
206 | 0 | return (PyObject *) op; |
207 | 0 | } |
208 | 60 | assert(op->ob_item == NULL); |
209 | 60 | op->ob_item = PyMem_New(PyObject *, size); |
210 | 60 | if (op->ob_item == NULL) { |
211 | 0 | Py_DECREF(op); |
212 | 0 | return PyErr_NoMemory(); |
213 | 0 | } |
214 | 60 | op->allocated = size; |
215 | 60 | return (PyObject *) op; |
216 | 60 | } |
217 | | |
218 | | Py_ssize_t |
219 | | PyList_Size(PyObject *op) |
220 | 65 | { |
221 | 65 | if (!PyList_Check(op)) { |
222 | 0 | PyErr_BadInternalCall(); |
223 | 0 | return -1; |
224 | 0 | } |
225 | 65 | else |
226 | 65 | return Py_SIZE(op); |
227 | 65 | } |
228 | | |
229 | | static inline int |
230 | | valid_index(Py_ssize_t i, Py_ssize_t limit) |
231 | 7.69k | { |
232 | | /* The cast to size_t lets us use just a single comparison |
233 | | to check whether i is in the range: 0 <= i < limit. |
234 | | |
235 | | See: Section 14.2 "Bounds Checking" in the Agner Fog |
236 | | optimization manual found at: |
237 | | https://www.agner.org/optimize/optimizing_cpp.pdf |
238 | | */ |
239 | 7.69k | return (size_t) i < (size_t) limit; |
240 | 7.69k | } |
241 | | |
242 | | static PyObject *indexerr = NULL; |
243 | | |
244 | | PyObject * |
245 | | PyList_GetItem(PyObject *op, Py_ssize_t i) |
246 | 29 | { |
247 | 29 | if (!PyList_Check(op)) { |
248 | 0 | PyErr_BadInternalCall(); |
249 | 0 | return NULL; |
250 | 0 | } |
251 | 29 | if (!valid_index(i, Py_SIZE(op))) { |
252 | 0 | if (indexerr == NULL) { |
253 | 0 | indexerr = PyUnicode_FromString( |
254 | 0 | "list index out of range"); |
255 | 0 | if (indexerr == NULL) |
256 | 0 | return NULL; |
257 | 0 | } |
258 | 0 | PyErr_SetObject(PyExc_IndexError, indexerr); |
259 | 0 | return NULL; |
260 | 0 | } |
261 | 29 | return ((PyListObject *)op) -> ob_item[i]; |
262 | 29 | } |
263 | | |
264 | | int |
265 | | PyList_SetItem(PyObject *op, Py_ssize_t i, |
266 | | PyObject *newitem) |
267 | 203 | { |
268 | 203 | PyObject **p; |
269 | 203 | if (!PyList_Check(op)) { |
270 | 0 | Py_XDECREF(newitem); |
271 | 0 | PyErr_BadInternalCall(); |
272 | 0 | return -1; |
273 | 0 | } |
274 | 203 | if (!valid_index(i, Py_SIZE(op))) { |
275 | 0 | Py_XDECREF(newitem); |
276 | 0 | PyErr_SetString(PyExc_IndexError, |
277 | 0 | "list assignment index out of range"); |
278 | 0 | return -1; |
279 | 0 | } |
280 | 203 | p = ((PyListObject *)op) -> ob_item + i; |
281 | 203 | Py_XSETREF(*p, newitem); |
282 | 203 | return 0; |
283 | 203 | } |
284 | | |
285 | | static int |
286 | | ins1(PyListObject *self, Py_ssize_t where, PyObject *v) |
287 | 14 | { |
288 | 14 | Py_ssize_t i, n = Py_SIZE(self); |
289 | 14 | PyObject **items; |
290 | 14 | if (v == NULL) { |
291 | 0 | PyErr_BadInternalCall(); |
292 | 0 | return -1; |
293 | 0 | } |
294 | 14 | if (n == PY_SSIZE_T_MAX) { |
295 | 0 | PyErr_SetString(PyExc_OverflowError, |
296 | 0 | "cannot add more objects to list"); |
297 | 0 | return -1; |
298 | 0 | } |
299 | | |
300 | 14 | if (list_resize(self, n+1) < 0) |
301 | 0 | return -1; |
302 | | |
303 | 14 | if (where < 0) { |
304 | 0 | where += n; |
305 | 0 | if (where < 0) |
306 | 0 | where = 0; |
307 | 0 | } |
308 | 14 | if (where > n) |
309 | 0 | where = n; |
310 | 14 | items = self->ob_item; |
311 | 28 | for (i = n; --i >= where; ) |
312 | 14 | items[i+1] = items[i]; |
313 | 14 | Py_INCREF(v); |
314 | 14 | items[where] = v; |
315 | 14 | return 0; |
316 | 14 | } |
317 | | |
318 | | int |
319 | | PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem) |
320 | 14 | { |
321 | 14 | if (!PyList_Check(op)) { |
322 | 0 | PyErr_BadInternalCall(); |
323 | 0 | return -1; |
324 | 0 | } |
325 | 14 | return ins1((PyListObject *)op, where, newitem); |
326 | 14 | } |
327 | | |
328 | | static int |
329 | | app1(PyListObject *self, PyObject *v) |
330 | 64.4k | { |
331 | 64.4k | Py_ssize_t n = PyList_GET_SIZE(self); |
332 | | |
333 | 64.4k | assert (v != NULL); |
334 | 64.4k | if (n == PY_SSIZE_T_MAX) { |
335 | 0 | PyErr_SetString(PyExc_OverflowError, |
336 | 0 | "cannot add more objects to list"); |
337 | 0 | return -1; |
338 | 0 | } |
339 | | |
340 | 64.4k | if (list_resize(self, n+1) < 0) |
341 | 0 | return -1; |
342 | | |
343 | 64.4k | Py_INCREF(v); |
344 | 64.4k | PyList_SET_ITEM(self, n, v); |
345 | 64.4k | return 0; |
346 | 64.4k | } |
347 | | |
348 | | int |
349 | | PyList_Append(PyObject *op, PyObject *newitem) |
350 | 62.4k | { |
351 | 62.4k | if (PyList_Check(op) && (newitem != NULL)) |
352 | 62.4k | return app1((PyListObject *)op, newitem); |
353 | 0 | PyErr_BadInternalCall(); |
354 | 0 | return -1; |
355 | 62.4k | } |
356 | | |
357 | | /* Methods */ |
358 | | |
359 | | static void |
360 | | list_dealloc(PyListObject *op) |
361 | 6.28k | { |
362 | 6.28k | Py_ssize_t i; |
363 | 6.28k | PyObject_GC_UnTrack(op); |
364 | 6.28k | Py_TRASHCAN_BEGIN(op, list_dealloc) |
365 | 6.28k | if (op->ob_item != NULL) { |
366 | | /* Do it backwards, for Christian Tismer. |
367 | | There's a simple test case where somehow this reduces |
368 | | thrashing when a *very* large list is created and |
369 | | immediately deleted. */ |
370 | 4.90k | i = Py_SIZE(op); |
371 | 92.4k | while (--i >= 0) { |
372 | 87.5k | Py_XDECREF(op->ob_item[i]); |
373 | 87.5k | } |
374 | 4.90k | PyMem_FREE(op->ob_item); |
375 | 4.90k | } |
376 | 6.28k | if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) |
377 | 6.27k | free_list[numfree++] = op; |
378 | 14 | else |
379 | 14 | Py_TYPE(op)->tp_free((PyObject *)op); |
380 | 6.28k | Py_TRASHCAN_END |
381 | 6.28k | } |
382 | | |
383 | | static PyObject * |
384 | | list_repr(PyListObject *v) |
385 | 0 | { |
386 | 0 | Py_ssize_t i; |
387 | 0 | PyObject *s; |
388 | 0 | _PyUnicodeWriter writer; |
389 | |
|
390 | 0 | if (Py_SIZE(v) == 0) { |
391 | 0 | return PyUnicode_FromString("[]"); |
392 | 0 | } |
393 | | |
394 | 0 | i = Py_ReprEnter((PyObject*)v); |
395 | 0 | if (i != 0) { |
396 | 0 | return i > 0 ? PyUnicode_FromString("[...]") : NULL; |
397 | 0 | } |
398 | | |
399 | 0 | _PyUnicodeWriter_Init(&writer); |
400 | 0 | writer.overallocate = 1; |
401 | | /* "[" + "1" + ", 2" * (len - 1) + "]" */ |
402 | 0 | writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1; |
403 | |
|
404 | 0 | if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0) |
405 | 0 | goto error; |
406 | | |
407 | | /* Do repr() on each element. Note that this may mutate the list, |
408 | | so must refetch the list size on each iteration. */ |
409 | 0 | for (i = 0; i < Py_SIZE(v); ++i) { |
410 | 0 | if (i > 0) { |
411 | 0 | if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) |
412 | 0 | goto error; |
413 | 0 | } |
414 | | |
415 | 0 | s = PyObject_Repr(v->ob_item[i]); |
416 | 0 | if (s == NULL) |
417 | 0 | goto error; |
418 | | |
419 | 0 | if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) { |
420 | 0 | Py_DECREF(s); |
421 | 0 | goto error; |
422 | 0 | } |
423 | 0 | Py_DECREF(s); |
424 | 0 | } |
425 | | |
426 | 0 | writer.overallocate = 0; |
427 | 0 | if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0) |
428 | 0 | goto error; |
429 | | |
430 | 0 | Py_ReprLeave((PyObject *)v); |
431 | 0 | return _PyUnicodeWriter_Finish(&writer); |
432 | | |
433 | 0 | error: |
434 | 0 | _PyUnicodeWriter_Dealloc(&writer); |
435 | 0 | Py_ReprLeave((PyObject *)v); |
436 | 0 | return NULL; |
437 | 0 | } |
438 | | |
439 | | static Py_ssize_t |
440 | | list_length(PyListObject *a) |
441 | 1.72k | { |
442 | 1.72k | return Py_SIZE(a); |
443 | 1.72k | } |
444 | | |
445 | | static int |
446 | | list_contains(PyListObject *a, PyObject *el) |
447 | 613 | { |
448 | 613 | PyObject *item; |
449 | 613 | Py_ssize_t i; |
450 | 613 | int cmp; |
451 | | |
452 | 16.5k | for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) { |
453 | 15.9k | item = PyList_GET_ITEM(a, i); |
454 | 15.9k | Py_INCREF(item); |
455 | 15.9k | cmp = PyObject_RichCompareBool(el, item, Py_EQ); |
456 | 15.9k | Py_DECREF(item); |
457 | 15.9k | } |
458 | 613 | return cmp; |
459 | 613 | } |
460 | | |
461 | | static PyObject * |
462 | | list_item(PyListObject *a, Py_ssize_t i) |
463 | 7.31k | { |
464 | 7.31k | if (!valid_index(i, Py_SIZE(a))) { |
465 | 128 | if (indexerr == NULL) { |
466 | 14 | indexerr = PyUnicode_FromString( |
467 | 14 | "list index out of range"); |
468 | 14 | if (indexerr == NULL) |
469 | 0 | return NULL; |
470 | 14 | } |
471 | 128 | PyErr_SetObject(PyExc_IndexError, indexerr); |
472 | 128 | return NULL; |
473 | 128 | } |
474 | 7.18k | Py_INCREF(a->ob_item[i]); |
475 | 7.18k | return a->ob_item[i]; |
476 | 7.31k | } |
477 | | |
478 | | static PyObject * |
479 | | list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) |
480 | 45 | { |
481 | 45 | PyListObject *np; |
482 | 45 | PyObject **src, **dest; |
483 | 45 | Py_ssize_t i, len; |
484 | 45 | len = ihigh - ilow; |
485 | 45 | np = (PyListObject *) list_new_prealloc(len); |
486 | 45 | if (np == NULL) |
487 | 0 | return NULL; |
488 | | |
489 | 45 | src = a->ob_item + ilow; |
490 | 45 | dest = np->ob_item; |
491 | 132 | for (i = 0; i < len; i++) { |
492 | 87 | PyObject *v = src[i]; |
493 | 87 | Py_INCREF(v); |
494 | 87 | dest[i] = v; |
495 | 87 | } |
496 | 45 | Py_SIZE(np) = len; |
497 | 45 | return (PyObject *)np; |
498 | 45 | } |
499 | | |
500 | | PyObject * |
501 | | PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) |
502 | 0 | { |
503 | 0 | if (!PyList_Check(a)) { |
504 | 0 | PyErr_BadInternalCall(); |
505 | 0 | return NULL; |
506 | 0 | } |
507 | 0 | if (ilow < 0) { |
508 | 0 | ilow = 0; |
509 | 0 | } |
510 | 0 | else if (ilow > Py_SIZE(a)) { |
511 | 0 | ilow = Py_SIZE(a); |
512 | 0 | } |
513 | 0 | if (ihigh < ilow) { |
514 | 0 | ihigh = ilow; |
515 | 0 | } |
516 | 0 | else if (ihigh > Py_SIZE(a)) { |
517 | 0 | ihigh = Py_SIZE(a); |
518 | 0 | } |
519 | 0 | return list_slice((PyListObject *)a, ilow, ihigh); |
520 | 0 | } |
521 | | |
522 | | static PyObject * |
523 | | list_concat(PyListObject *a, PyObject *bb) |
524 | 5 | { |
525 | 5 | Py_ssize_t size; |
526 | 5 | Py_ssize_t i; |
527 | 5 | PyObject **src, **dest; |
528 | 5 | PyListObject *np; |
529 | 5 | if (!PyList_Check(bb)) { |
530 | 0 | PyErr_Format(PyExc_TypeError, |
531 | 0 | "can only concatenate list (not \"%.200s\") to list", |
532 | 0 | bb->ob_type->tp_name); |
533 | 0 | return NULL; |
534 | 0 | } |
535 | 5 | #define b ((PyListObject *)bb) |
536 | 5 | if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b)) |
537 | 0 | return PyErr_NoMemory(); |
538 | 5 | size = Py_SIZE(a) + Py_SIZE(b); |
539 | 5 | np = (PyListObject *) list_new_prealloc(size); |
540 | 5 | if (np == NULL) { |
541 | 0 | return NULL; |
542 | 0 | } |
543 | 5 | src = a->ob_item; |
544 | 5 | dest = np->ob_item; |
545 | 78 | for (i = 0; i < Py_SIZE(a); i++) { |
546 | 73 | PyObject *v = src[i]; |
547 | 73 | Py_INCREF(v); |
548 | 73 | dest[i] = v; |
549 | 73 | } |
550 | 5 | src = b->ob_item; |
551 | 5 | dest = np->ob_item + Py_SIZE(a); |
552 | 147 | for (i = 0; i < Py_SIZE(b); i++) { |
553 | 142 | PyObject *v = src[i]; |
554 | 142 | Py_INCREF(v); |
555 | 142 | dest[i] = v; |
556 | 142 | } |
557 | 5 | Py_SIZE(np) = size; |
558 | 5 | return (PyObject *)np; |
559 | 5 | #undef b |
560 | 5 | } |
561 | | |
562 | | static PyObject * |
563 | | list_repeat(PyListObject *a, Py_ssize_t n) |
564 | 10 | { |
565 | 10 | Py_ssize_t i, j; |
566 | 10 | Py_ssize_t size; |
567 | 10 | PyListObject *np; |
568 | 10 | PyObject **p, **items; |
569 | 10 | PyObject *elem; |
570 | 10 | if (n < 0) |
571 | 0 | n = 0; |
572 | 10 | if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n) |
573 | 0 | return PyErr_NoMemory(); |
574 | 10 | size = Py_SIZE(a) * n; |
575 | 10 | if (size == 0) |
576 | 0 | return PyList_New(0); |
577 | 10 | np = (PyListObject *) list_new_prealloc(size); |
578 | 10 | if (np == NULL) |
579 | 0 | return NULL; |
580 | | |
581 | 10 | if (Py_SIZE(a) == 1) { |
582 | 10 | items = np->ob_item; |
583 | 10 | elem = a->ob_item[0]; |
584 | 35 | for (i = 0; i < n; i++) { |
585 | 25 | items[i] = elem; |
586 | 25 | Py_INCREF(elem); |
587 | 25 | } |
588 | 10 | } |
589 | 0 | else { |
590 | 0 | p = np->ob_item; |
591 | 0 | items = a->ob_item; |
592 | 0 | for (i = 0; i < n; i++) { |
593 | 0 | for (j = 0; j < Py_SIZE(a); j++) { |
594 | 0 | *p = items[j]; |
595 | 0 | Py_INCREF(*p); |
596 | 0 | p++; |
597 | 0 | } |
598 | 0 | } |
599 | 0 | } |
600 | 10 | Py_SIZE(np) = size; |
601 | 10 | return (PyObject *) np; |
602 | 10 | } |
603 | | |
604 | | static int |
605 | | _list_clear(PyListObject *a) |
606 | 24 | { |
607 | 24 | Py_ssize_t i; |
608 | 24 | PyObject **item = a->ob_item; |
609 | 24 | if (item != NULL) { |
610 | | /* Because XDECREF can recursively invoke operations on |
611 | | this list, we make it empty first. */ |
612 | 24 | i = Py_SIZE(a); |
613 | 24 | Py_SIZE(a) = 0; |
614 | 24 | a->ob_item = NULL; |
615 | 24 | a->allocated = 0; |
616 | 48 | while (--i >= 0) { |
617 | 24 | Py_XDECREF(item[i]); |
618 | 24 | } |
619 | 24 | PyMem_FREE(item); |
620 | 24 | } |
621 | | /* Never fails; the return value can be ignored. |
622 | | Note that there is no guarantee that the list is actually empty |
623 | | at this point, because XDECREF may have populated it again! */ |
624 | 24 | return 0; |
625 | 24 | } |
626 | | |
627 | | /* a[ilow:ihigh] = v if v != NULL. |
628 | | * del a[ilow:ihigh] if v == NULL. |
629 | | * |
630 | | * Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's |
631 | | * guaranteed the call cannot fail. |
632 | | */ |
633 | | static int |
634 | | list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) |
635 | 49 | { |
636 | | /* Because [X]DECREF can recursively invoke list operations on |
637 | | this list, we must postpone all [X]DECREF activity until |
638 | | after the list is back in its canonical shape. Therefore |
639 | | we must allocate an additional array, 'recycle', into which |
640 | | we temporarily copy the items that are deleted from the |
641 | | list. :-( */ |
642 | 49 | PyObject *recycle_on_stack[8]; |
643 | 49 | PyObject **recycle = recycle_on_stack; /* will allocate more if needed */ |
644 | 49 | PyObject **item; |
645 | 49 | PyObject **vitem = NULL; |
646 | 49 | PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */ |
647 | 49 | Py_ssize_t n; /* # of elements in replacement list */ |
648 | 49 | Py_ssize_t norig; /* # of elements in list getting replaced */ |
649 | 49 | Py_ssize_t d; /* Change in size */ |
650 | 49 | Py_ssize_t k; |
651 | 49 | size_t s; |
652 | 49 | int result = -1; /* guilty until proved innocent */ |
653 | 49 | #define b ((PyListObject *)v) |
654 | 49 | if (v == NULL) |
655 | 31 | n = 0; |
656 | 18 | else { |
657 | 18 | if (a == b) { |
658 | | /* Special case "a[i:j] = a" -- copy b first */ |
659 | 0 | v = list_slice(b, 0, Py_SIZE(b)); |
660 | 0 | if (v == NULL) |
661 | 0 | return result; |
662 | 0 | result = list_ass_slice(a, ilow, ihigh, v); |
663 | 0 | Py_DECREF(v); |
664 | 0 | return result; |
665 | 0 | } |
666 | 18 | v_as_SF = PySequence_Fast(v, "can only assign an iterable"); |
667 | 18 | if(v_as_SF == NULL) |
668 | 0 | goto Error; |
669 | 18 | n = PySequence_Fast_GET_SIZE(v_as_SF); |
670 | 18 | vitem = PySequence_Fast_ITEMS(v_as_SF); |
671 | 18 | } |
672 | 49 | if (ilow < 0) |
673 | 0 | ilow = 0; |
674 | 49 | else if (ilow > Py_SIZE(a)) |
675 | 0 | ilow = Py_SIZE(a); |
676 | | |
677 | 49 | if (ihigh < ilow) |
678 | 0 | ihigh = ilow; |
679 | 49 | else if (ihigh > Py_SIZE(a)) |
680 | 0 | ihigh = Py_SIZE(a); |
681 | | |
682 | 49 | norig = ihigh - ilow; |
683 | 49 | assert(norig >= 0); |
684 | 49 | d = n - norig; |
685 | 49 | if (Py_SIZE(a) + d == 0) { |
686 | 24 | Py_XDECREF(v_as_SF); |
687 | 24 | return _list_clear(a); |
688 | 24 | } |
689 | 25 | item = a->ob_item; |
690 | | /* recycle the items that we are about to remove */ |
691 | 25 | s = norig * sizeof(PyObject *); |
692 | | /* If norig == 0, item might be NULL, in which case we may not memcpy from it. */ |
693 | 25 | if (s) { |
694 | 23 | if (s > sizeof(recycle_on_stack)) { |
695 | 0 | recycle = (PyObject **)PyMem_MALLOC(s); |
696 | 0 | if (recycle == NULL) { |
697 | 0 | PyErr_NoMemory(); |
698 | 0 | goto Error; |
699 | 0 | } |
700 | 0 | } |
701 | 23 | memcpy(recycle, &item[ilow], s); |
702 | 23 | } |
703 | | |
704 | 25 | if (d < 0) { /* Delete -d items */ |
705 | 7 | Py_ssize_t tail; |
706 | 7 | tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *); |
707 | 7 | memmove(&item[ihigh+d], &item[ihigh], tail); |
708 | 7 | if (list_resize(a, Py_SIZE(a) + d) < 0) { |
709 | 0 | memmove(&item[ihigh], &item[ihigh+d], tail); |
710 | 0 | memcpy(&item[ilow], recycle, s); |
711 | 0 | goto Error; |
712 | 0 | } |
713 | 7 | item = a->ob_item; |
714 | 7 | } |
715 | 18 | else if (d > 0) { /* Insert d items */ |
716 | 2 | k = Py_SIZE(a); |
717 | 2 | if (list_resize(a, k+d) < 0) |
718 | 0 | goto Error; |
719 | 2 | item = a->ob_item; |
720 | 2 | memmove(&item[ihigh+d], &item[ihigh], |
721 | 2 | (k - ihigh)*sizeof(PyObject *)); |
722 | 2 | } |
723 | 213 | for (k = 0; k < n; k++, ilow++) { |
724 | 188 | PyObject *w = vitem[k]; |
725 | 188 | Py_XINCREF(w); |
726 | 188 | item[ilow] = w; |
727 | 188 | } |
728 | 91 | for (k = norig - 1; k >= 0; --k) |
729 | 66 | Py_XDECREF(recycle[k]); |
730 | 25 | result = 0; |
731 | 25 | Error: |
732 | 25 | if (recycle != recycle_on_stack) |
733 | 0 | PyMem_FREE(recycle); |
734 | 25 | Py_XDECREF(v_as_SF); |
735 | 25 | return result; |
736 | 25 | #undef b |
737 | 25 | } |
738 | | |
739 | | int |
740 | | PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) |
741 | 24 | { |
742 | 24 | if (!PyList_Check(a)) { |
743 | 0 | PyErr_BadInternalCall(); |
744 | 0 | return -1; |
745 | 0 | } |
746 | 24 | return list_ass_slice((PyListObject *)a, ilow, ihigh, v); |
747 | 24 | } |
748 | | |
749 | | static PyObject * |
750 | | list_inplace_repeat(PyListObject *self, Py_ssize_t n) |
751 | 0 | { |
752 | 0 | PyObject **items; |
753 | 0 | Py_ssize_t size, i, j, p; |
754 | | |
755 | |
|
756 | 0 | size = PyList_GET_SIZE(self); |
757 | 0 | if (size == 0 || n == 1) { |
758 | 0 | Py_INCREF(self); |
759 | 0 | return (PyObject *)self; |
760 | 0 | } |
761 | | |
762 | 0 | if (n < 1) { |
763 | 0 | (void)_list_clear(self); |
764 | 0 | Py_INCREF(self); |
765 | 0 | return (PyObject *)self; |
766 | 0 | } |
767 | | |
768 | 0 | if (size > PY_SSIZE_T_MAX / n) { |
769 | 0 | return PyErr_NoMemory(); |
770 | 0 | } |
771 | | |
772 | 0 | if (list_resize(self, size*n) < 0) |
773 | 0 | return NULL; |
774 | | |
775 | 0 | p = size; |
776 | 0 | items = self->ob_item; |
777 | 0 | for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */ |
778 | 0 | for (j = 0; j < size; j++) { |
779 | 0 | PyObject *o = items[j]; |
780 | 0 | Py_INCREF(o); |
781 | 0 | items[p++] = o; |
782 | 0 | } |
783 | 0 | } |
784 | 0 | Py_INCREF(self); |
785 | 0 | return (PyObject *)self; |
786 | 0 | } |
787 | | |
788 | | static int |
789 | | list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v) |
790 | 153 | { |
791 | 153 | if (!valid_index(i, Py_SIZE(a))) { |
792 | 0 | PyErr_SetString(PyExc_IndexError, |
793 | 0 | "list assignment index out of range"); |
794 | 0 | return -1; |
795 | 0 | } |
796 | 153 | if (v == NULL) |
797 | 6 | return list_ass_slice(a, i, i+1, v); |
798 | 147 | Py_INCREF(v); |
799 | 147 | Py_SETREF(a->ob_item[i], v); |
800 | 147 | return 0; |
801 | 153 | } |
802 | | |
803 | | /*[clinic input] |
804 | | list.insert |
805 | | |
806 | | index: Py_ssize_t |
807 | | object: object |
808 | | / |
809 | | |
810 | | Insert object before index. |
811 | | [clinic start generated code]*/ |
812 | | |
813 | | static PyObject * |
814 | | list_insert_impl(PyListObject *self, Py_ssize_t index, PyObject *object) |
815 | | /*[clinic end generated code: output=7f35e32f60c8cb78 input=858514cf894c7eab]*/ |
816 | 0 | { |
817 | 0 | if (ins1(self, index, object) == 0) |
818 | 0 | Py_RETURN_NONE; |
819 | 0 | return NULL; |
820 | 0 | } |
821 | | |
822 | | /*[clinic input] |
823 | | list.clear |
824 | | |
825 | | Remove all items from list. |
826 | | [clinic start generated code]*/ |
827 | | |
828 | | static PyObject * |
829 | | list_clear_impl(PyListObject *self) |
830 | | /*[clinic end generated code: output=67a1896c01f74362 input=ca3c1646856742f6]*/ |
831 | 0 | { |
832 | 0 | _list_clear(self); |
833 | 0 | Py_RETURN_NONE; |
834 | 0 | } |
835 | | |
836 | | /*[clinic input] |
837 | | list.copy |
838 | | |
839 | | Return a shallow copy of the list. |
840 | | [clinic start generated code]*/ |
841 | | |
842 | | static PyObject * |
843 | | list_copy_impl(PyListObject *self) |
844 | | /*[clinic end generated code: output=ec6b72d6209d418e input=6453ab159e84771f]*/ |
845 | 0 | { |
846 | 0 | return list_slice(self, 0, Py_SIZE(self)); |
847 | 0 | } |
848 | | |
849 | | /*[clinic input] |
850 | | list.append |
851 | | |
852 | | object: object |
853 | | / |
854 | | |
855 | | Append object to the end of the list. |
856 | | [clinic start generated code]*/ |
857 | | |
858 | | static PyObject * |
859 | | list_append(PyListObject *self, PyObject *object) |
860 | | /*[clinic end generated code: output=7c096003a29c0eae input=43a3fe48a7066e91]*/ |
861 | 1.99k | { |
862 | 1.99k | if (app1(self, object) == 0) |
863 | 1.99k | Py_RETURN_NONE; |
864 | 0 | return NULL; |
865 | 1.99k | } |
866 | | |
867 | | /*[clinic input] |
868 | | list.extend |
869 | | |
870 | | iterable: object |
871 | | / |
872 | | |
873 | | Extend list by appending elements from the iterable. |
874 | | [clinic start generated code]*/ |
875 | | |
876 | | static PyObject * |
877 | | list_extend(PyListObject *self, PyObject *iterable) |
878 | | /*[clinic end generated code: output=630fb3bca0c8e789 input=9ec5ba3a81be3a4d]*/ |
879 | 1.78k | { |
880 | 1.78k | PyObject *it; /* iter(v) */ |
881 | 1.78k | Py_ssize_t m; /* size of self */ |
882 | 1.78k | Py_ssize_t n; /* guess for size of iterable */ |
883 | 1.78k | Py_ssize_t mn; /* m + n */ |
884 | 1.78k | Py_ssize_t i; |
885 | 1.78k | PyObject *(*iternext)(PyObject *); |
886 | | |
887 | | /* Special cases: |
888 | | 1) lists and tuples which can use PySequence_Fast ops |
889 | | 2) extending self to self requires making a copy first |
890 | | */ |
891 | 1.78k | if (PyList_CheckExact(iterable) || PyTuple_CheckExact(iterable) || |
892 | 1.78k | (PyObject *)self == iterable) { |
893 | 1.21k | PyObject **src, **dest; |
894 | 1.21k | iterable = PySequence_Fast(iterable, "argument must be iterable"); |
895 | 1.21k | if (!iterable) |
896 | 0 | return NULL; |
897 | 1.21k | n = PySequence_Fast_GET_SIZE(iterable); |
898 | 1.21k | if (n == 0) { |
899 | | /* short circuit when iterable is empty */ |
900 | 250 | Py_DECREF(iterable); |
901 | 250 | Py_RETURN_NONE; |
902 | 250 | } |
903 | 960 | m = Py_SIZE(self); |
904 | | /* It should not be possible to allocate a list large enough to cause |
905 | | an overflow on any relevant platform */ |
906 | 960 | assert(m < PY_SSIZE_T_MAX - n); |
907 | 960 | if (list_resize(self, m + n) < 0) { |
908 | 0 | Py_DECREF(iterable); |
909 | 0 | return NULL; |
910 | 0 | } |
911 | | /* note that we may still have self == iterable here for the |
912 | | * situation a.extend(a), but the following code works |
913 | | * in that case too. Just make sure to resize self |
914 | | * before calling PySequence_Fast_ITEMS. |
915 | | */ |
916 | | /* populate the end of self with iterable's items */ |
917 | 960 | src = PySequence_Fast_ITEMS(iterable); |
918 | 960 | dest = self->ob_item + m; |
919 | 12.1k | for (i = 0; i < n; i++) { |
920 | 11.1k | PyObject *o = src[i]; |
921 | 11.1k | Py_INCREF(o); |
922 | 11.1k | dest[i] = o; |
923 | 11.1k | } |
924 | 960 | Py_DECREF(iterable); |
925 | 960 | Py_RETURN_NONE; |
926 | 960 | } |
927 | | |
928 | 573 | it = PyObject_GetIter(iterable); |
929 | 573 | if (it == NULL) |
930 | 0 | return NULL; |
931 | 573 | iternext = *it->ob_type->tp_iternext; |
932 | | |
933 | | /* Guess a result list size. */ |
934 | 573 | n = PyObject_LengthHint(iterable, 8); |
935 | 573 | if (n < 0) { |
936 | 0 | Py_DECREF(it); |
937 | 0 | return NULL; |
938 | 0 | } |
939 | 573 | m = Py_SIZE(self); |
940 | 573 | if (m > PY_SSIZE_T_MAX - n) { |
941 | | /* m + n overflowed; on the chance that n lied, and there really |
942 | | * is enough room, ignore it. If n was telling the truth, we'll |
943 | | * eventually run out of memory during the loop. |
944 | | */ |
945 | 0 | } |
946 | 573 | else { |
947 | 573 | mn = m + n; |
948 | | /* Make room. */ |
949 | 573 | if (list_resize(self, mn) < 0) |
950 | 0 | goto error; |
951 | | /* Make the list sane again. */ |
952 | 573 | Py_SIZE(self) = m; |
953 | 573 | } |
954 | | |
955 | | /* Run iterator to exhaustion. */ |
956 | 4.40k | for (;;) { |
957 | 4.40k | PyObject *item = iternext(it); |
958 | 4.40k | if (item == NULL) { |
959 | 573 | if (PyErr_Occurred()) { |
960 | 89 | if (PyErr_ExceptionMatches(PyExc_StopIteration)) |
961 | 89 | PyErr_Clear(); |
962 | 0 | else |
963 | 0 | goto error; |
964 | 89 | } |
965 | 573 | break; |
966 | 573 | } |
967 | 3.83k | if (Py_SIZE(self) < self->allocated) { |
968 | | /* steals ref */ |
969 | 3.81k | PyList_SET_ITEM(self, Py_SIZE(self), item); |
970 | 3.81k | ++Py_SIZE(self); |
971 | 3.81k | } |
972 | 14 | else { |
973 | 14 | int status = app1(self, item); |
974 | 14 | Py_DECREF(item); /* append creates a new ref */ |
975 | 14 | if (status < 0) |
976 | 0 | goto error; |
977 | 14 | } |
978 | 3.83k | } |
979 | | |
980 | | /* Cut back result list if initial guess was too large. */ |
981 | 573 | if (Py_SIZE(self) < self->allocated) { |
982 | 554 | if (list_resize(self, Py_SIZE(self)) < 0) |
983 | 0 | goto error; |
984 | 554 | } |
985 | | |
986 | 573 | Py_DECREF(it); |
987 | 573 | Py_RETURN_NONE; |
988 | | |
989 | 0 | error: |
990 | 0 | Py_DECREF(it); |
991 | 0 | return NULL; |
992 | 573 | } |
993 | | |
994 | | PyObject * |
995 | | _PyList_Extend(PyListObject *self, PyObject *iterable) |
996 | 1.44k | { |
997 | 1.44k | return list_extend(self, iterable); |
998 | 1.44k | } |
999 | | |
1000 | | static PyObject * |
1001 | | list_inplace_concat(PyListObject *self, PyObject *other) |
1002 | 26 | { |
1003 | 26 | PyObject *result; |
1004 | | |
1005 | 26 | result = list_extend(self, other); |
1006 | 26 | if (result == NULL) |
1007 | 0 | return result; |
1008 | 26 | Py_DECREF(result); |
1009 | 26 | Py_INCREF(self); |
1010 | 26 | return (PyObject *)self; |
1011 | 26 | } |
1012 | | |
1013 | | /*[clinic input] |
1014 | | list.pop |
1015 | | |
1016 | | index: Py_ssize_t = -1 |
1017 | | / |
1018 | | |
1019 | | Remove and return item at index (default last). |
1020 | | |
1021 | | Raises IndexError if list is empty or index is out of range. |
1022 | | [clinic start generated code]*/ |
1023 | | |
1024 | | static PyObject * |
1025 | | list_pop_impl(PyListObject *self, Py_ssize_t index) |
1026 | | /*[clinic end generated code: output=6bd69dcb3f17eca8 input=b83675976f329e6f]*/ |
1027 | 0 | { |
1028 | 0 | PyObject *v; |
1029 | 0 | int status; |
1030 | |
|
1031 | 0 | if (Py_SIZE(self) == 0) { |
1032 | | /* Special-case most common failure cause */ |
1033 | 0 | PyErr_SetString(PyExc_IndexError, "pop from empty list"); |
1034 | 0 | return NULL; |
1035 | 0 | } |
1036 | 0 | if (index < 0) |
1037 | 0 | index += Py_SIZE(self); |
1038 | 0 | if (!valid_index(index, Py_SIZE(self))) { |
1039 | 0 | PyErr_SetString(PyExc_IndexError, "pop index out of range"); |
1040 | 0 | return NULL; |
1041 | 0 | } |
1042 | 0 | v = self->ob_item[index]; |
1043 | 0 | if (index == Py_SIZE(self) - 1) { |
1044 | 0 | status = list_resize(self, Py_SIZE(self) - 1); |
1045 | 0 | if (status >= 0) |
1046 | 0 | return v; /* and v now owns the reference the list had */ |
1047 | 0 | else |
1048 | 0 | return NULL; |
1049 | 0 | } |
1050 | 0 | Py_INCREF(v); |
1051 | 0 | status = list_ass_slice(self, index, index+1, (PyObject *)NULL); |
1052 | 0 | if (status < 0) { |
1053 | 0 | Py_DECREF(v); |
1054 | 0 | return NULL; |
1055 | 0 | } |
1056 | 0 | return v; |
1057 | 0 | } |
1058 | | |
1059 | | /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */ |
1060 | | static void |
1061 | | reverse_slice(PyObject **lo, PyObject **hi) |
1062 | 127 | { |
1063 | 127 | assert(lo && hi); |
1064 | | |
1065 | 127 | --hi; |
1066 | 320 | while (lo < hi) { |
1067 | 193 | PyObject *t = *lo; |
1068 | 193 | *lo = *hi; |
1069 | 193 | *hi = t; |
1070 | 193 | ++lo; |
1071 | 193 | --hi; |
1072 | 193 | } |
1073 | 127 | } |
1074 | | |
1075 | | /* Lots of code for an adaptive, stable, natural mergesort. There are many |
1076 | | * pieces to this algorithm; read listsort.txt for overviews and details. |
1077 | | */ |
1078 | | |
1079 | | /* A sortslice contains a pointer to an array of keys and a pointer to |
1080 | | * an array of corresponding values. In other words, keys[i] |
1081 | | * corresponds with values[i]. If values == NULL, then the keys are |
1082 | | * also the values. |
1083 | | * |
1084 | | * Several convenience routines are provided here, so that keys and |
1085 | | * values are always moved in sync. |
1086 | | */ |
1087 | | |
1088 | | typedef struct { |
1089 | | PyObject **keys; |
1090 | | PyObject **values; |
1091 | | } sortslice; |
1092 | | |
1093 | | Py_LOCAL_INLINE(void) |
1094 | | sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j) |
1095 | 14 | { |
1096 | 14 | s1->keys[i] = s2->keys[j]; |
1097 | 14 | if (s1->values != NULL) |
1098 | 0 | s1->values[i] = s2->values[j]; |
1099 | 14 | } |
1100 | | |
1101 | | Py_LOCAL_INLINE(void) |
1102 | | sortslice_copy_incr(sortslice *dst, sortslice *src) |
1103 | 2.61k | { |
1104 | 2.61k | *dst->keys++ = *src->keys++; |
1105 | 2.61k | if (dst->values != NULL) |
1106 | 0 | *dst->values++ = *src->values++; |
1107 | 2.61k | } |
1108 | | |
1109 | | Py_LOCAL_INLINE(void) |
1110 | | sortslice_copy_decr(sortslice *dst, sortslice *src) |
1111 | 6.27k | { |
1112 | 6.27k | *dst->keys-- = *src->keys--; |
1113 | 6.27k | if (dst->values != NULL) |
1114 | 0 | *dst->values-- = *src->values--; |
1115 | 6.27k | } |
1116 | | |
1117 | | |
1118 | | Py_LOCAL_INLINE(void) |
1119 | | sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, |
1120 | | Py_ssize_t n) |
1121 | 266 | { |
1122 | 266 | memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); |
1123 | 266 | if (s1->values != NULL) |
1124 | 0 | memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); |
1125 | 266 | } |
1126 | | |
1127 | | Py_LOCAL_INLINE(void) |
1128 | | sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, |
1129 | | Py_ssize_t n) |
1130 | 154 | { |
1131 | 154 | memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); |
1132 | 154 | if (s1->values != NULL) |
1133 | 0 | memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); |
1134 | 154 | } |
1135 | | |
1136 | | Py_LOCAL_INLINE(void) |
1137 | | sortslice_advance(sortslice *slice, Py_ssize_t n) |
1138 | 858 | { |
1139 | 858 | slice->keys += n; |
1140 | 858 | if (slice->values != NULL) |
1141 | 1 | slice->values += n; |
1142 | 858 | } |
1143 | | |
1144 | | /* Comparison function: ms->key_compare, which is set at run-time in |
1145 | | * listsort_impl to optimize for various special cases. |
1146 | | * Returns -1 on error, 1 if x < y, 0 if x >= y. |
1147 | | */ |
1148 | | |
1149 | 29.0k | #define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms) |
1150 | | |
1151 | | /* Compare X to Y via "<". Goto "fail" if the comparison raises an |
1152 | | error. Else "k" is set to true iff X<Y, and an "if (k)" block is |
1153 | | started. It makes more sense in context <wink>. X and Y are PyObject*s. |
1154 | | */ |
1155 | 20.6k | #define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \ |
1156 | 20.6k | if (k) |
1157 | | |
1158 | | /* The maximum number of entries in a MergeState's pending-runs stack. |
1159 | | * This is enough to sort arrays of size up to about |
1160 | | * 32 * phi ** MAX_MERGE_PENDING |
1161 | | * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array |
1162 | | * with 2**64 elements. |
1163 | | */ |
1164 | | #define MAX_MERGE_PENDING 85 |
1165 | | |
1166 | | /* When we get into galloping mode, we stay there until both runs win less |
1167 | | * often than MIN_GALLOP consecutive times. See listsort.txt for more info. |
1168 | | */ |
1169 | 984 | #define MIN_GALLOP 7 |
1170 | | |
1171 | | /* Avoid malloc for small temp arrays. */ |
1172 | 456 | #define MERGESTATE_TEMP_SIZE 256 |
1173 | | |
1174 | | /* One MergeState exists on the stack per invocation of mergesort. It's just |
1175 | | * a convenient way to pass state around among the helper functions. |
1176 | | */ |
1177 | | struct s_slice { |
1178 | | sortslice base; |
1179 | | Py_ssize_t len; |
1180 | | }; |
1181 | | |
1182 | | typedef struct s_MergeState MergeState; |
1183 | | struct s_MergeState { |
1184 | | /* This controls when we get *into* galloping mode. It's initialized |
1185 | | * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for |
1186 | | * random data, and lower for highly structured data. |
1187 | | */ |
1188 | | Py_ssize_t min_gallop; |
1189 | | |
1190 | | /* 'a' is temp storage to help with merges. It contains room for |
1191 | | * alloced entries. |
1192 | | */ |
1193 | | sortslice a; /* may point to temparray below */ |
1194 | | Py_ssize_t alloced; |
1195 | | |
1196 | | /* A stack of n pending runs yet to be merged. Run #i starts at |
1197 | | * address base[i] and extends for len[i] elements. It's always |
1198 | | * true (so long as the indices are in bounds) that |
1199 | | * |
1200 | | * pending[i].base + pending[i].len == pending[i+1].base |
1201 | | * |
1202 | | * so we could cut the storage for this, but it's a minor amount, |
1203 | | * and keeping all the info explicit simplifies the code. |
1204 | | */ |
1205 | | int n; |
1206 | | struct s_slice pending[MAX_MERGE_PENDING]; |
1207 | | |
1208 | | /* 'a' points to this when possible, rather than muck with malloc. */ |
1209 | | PyObject *temparray[MERGESTATE_TEMP_SIZE]; |
1210 | | |
1211 | | /* This is the function we will use to compare two keys, |
1212 | | * even when none of our special cases apply and we have to use |
1213 | | * safe_object_compare. */ |
1214 | | int (*key_compare)(PyObject *, PyObject *, MergeState *); |
1215 | | |
1216 | | /* This function is used by unsafe_object_compare to optimize comparisons |
1217 | | * when we know our list is type-homogeneous but we can't assume anything else. |
1218 | | * In the pre-sort check it is set equal to key->ob_type->tp_richcompare */ |
1219 | | PyObject *(*key_richcompare)(PyObject *, PyObject *, int); |
1220 | | |
1221 | | /* This function is used by unsafe_tuple_compare to compare the first elements |
1222 | | * of tuples. It may be set to safe_object_compare, but the idea is that hopefully |
1223 | | * we can assume more, and use one of the special-case compares. */ |
1224 | | int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *); |
1225 | | }; |
1226 | | |
1227 | | /* binarysort is the best method for sorting small arrays: it does |
1228 | | few compares, but can do data movement quadratic in the number of |
1229 | | elements. |
1230 | | [lo, hi) is a contiguous slice of a list, and is sorted via |
1231 | | binary insertion. This sort is stable. |
1232 | | On entry, must have lo <= start <= hi, and that [lo, start) is already |
1233 | | sorted (pass start == lo if you don't know!). |
1234 | | If islt() complains return -1, else 0. |
1235 | | Even in case of error, the output slice will be some permutation of |
1236 | | the input (nothing is lost or duplicated). |
1237 | | */ |
1238 | | static int |
1239 | | binarysort(MergeState *ms, sortslice lo, PyObject **hi, PyObject **start) |
1240 | 167 | { |
1241 | 167 | Py_ssize_t k; |
1242 | 167 | PyObject **l, **p, **r; |
1243 | 167 | PyObject *pivot; |
1244 | | |
1245 | 167 | assert(lo.keys <= start && start <= hi); |
1246 | | /* assert [lo, start) is sorted */ |
1247 | 167 | if (lo.keys == start) |
1248 | 0 | ++start; |
1249 | 4.72k | for (; start < hi; ++start) { |
1250 | | /* set l to where *start belongs */ |
1251 | 4.55k | l = lo.keys; |
1252 | 4.55k | r = start; |
1253 | 4.55k | pivot = *r; |
1254 | | /* Invariants: |
1255 | | * pivot >= all in [lo, l). |
1256 | | * pivot < all in [r, start). |
1257 | | * The second is vacuously true at the start. |
1258 | | */ |
1259 | 4.55k | assert(l < r); |
1260 | 18.3k | do { |
1261 | 18.3k | p = l + ((r - l) >> 1); |
1262 | 18.3k | IFLT(pivot, *p) |
1263 | 9.33k | r = p; |
1264 | 9.05k | else |
1265 | 9.05k | l = p+1; |
1266 | 18.3k | } while (l < r); |
1267 | 4.55k | assert(l == r); |
1268 | | /* The invariants still hold, so pivot >= all in [lo, l) and |
1269 | | pivot < all in [l, start), so pivot belongs at l. Note |
1270 | | that if there are elements equal to pivot, l points to the |
1271 | | first slot after them -- that's why this sort is stable. |
1272 | | Slide over to make room. |
1273 | | Caution: using memmove is much slower under MSVC 5; |
1274 | | we're not usually moving many slots. */ |
1275 | 40.1k | for (p = start; p > l; --p) |
1276 | 35.5k | *p = *(p-1); |
1277 | 4.55k | *l = pivot; |
1278 | 4.55k | if (lo.values != NULL) { |
1279 | 0 | Py_ssize_t offset = lo.values - lo.keys; |
1280 | 0 | p = start + offset; |
1281 | 0 | pivot = *p; |
1282 | 0 | l += offset; |
1283 | 0 | for (p = start + offset; p > l; --p) |
1284 | 0 | *p = *(p-1); |
1285 | 0 | *l = pivot; |
1286 | 0 | } |
1287 | 4.55k | } |
1288 | 167 | return 0; |
1289 | | |
1290 | 0 | fail: |
1291 | 0 | return -1; |
1292 | 167 | } |
1293 | | |
1294 | | /* |
1295 | | Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi |
1296 | | is required on entry. "A run" is the longest ascending sequence, with |
1297 | | |
1298 | | lo[0] <= lo[1] <= lo[2] <= ... |
1299 | | |
1300 | | or the longest descending sequence, with |
1301 | | |
1302 | | lo[0] > lo[1] > lo[2] > ... |
1303 | | |
1304 | | Boolean *descending is set to 0 in the former case, or to 1 in the latter. |
1305 | | For its intended use in a stable mergesort, the strictness of the defn of |
1306 | | "descending" is needed so that the caller can safely reverse a descending |
1307 | | sequence without violating stability (strict > ensures there are no equal |
1308 | | elements to get out of order). |
1309 | | |
1310 | | Returns -1 in case of error. |
1311 | | */ |
1312 | | static Py_ssize_t |
1313 | | count_run(MergeState *ms, PyObject **lo, PyObject **hi, int *descending) |
1314 | 172 | { |
1315 | 172 | Py_ssize_t k; |
1316 | 172 | Py_ssize_t n; |
1317 | | |
1318 | 172 | assert(lo < hi); |
1319 | 172 | *descending = 0; |
1320 | 172 | ++lo; |
1321 | 172 | if (lo == hi) |
1322 | 0 | return 1; |
1323 | | |
1324 | 172 | n = 2; |
1325 | 172 | IFLT(*lo, *(lo-1)) { |
1326 | 121 | *descending = 1; |
1327 | 186 | for (lo = lo+1; lo < hi; ++lo, ++n) { |
1328 | 182 | IFLT(*lo, *(lo-1)) |
1329 | 65 | ; |
1330 | 117 | else |
1331 | 117 | break; |
1332 | 182 | } |
1333 | 121 | } |
1334 | 51 | else { |
1335 | 68 | for (lo = lo+1; lo < hi; ++lo, ++n) { |
1336 | 67 | IFLT(*lo, *(lo-1)) |
1337 | 50 | break; |
1338 | 67 | } |
1339 | 51 | } |
1340 | | |
1341 | 172 | return n; |
1342 | 0 | fail: |
1343 | 0 | return -1; |
1344 | 172 | } |
1345 | | |
1346 | | /* |
1347 | | Locate the proper position of key in a sorted vector; if the vector contains |
1348 | | an element equal to key, return the position immediately to the left of |
1349 | | the leftmost equal element. [gallop_right() does the same except returns |
1350 | | the position to the right of the rightmost equal element (if any).] |
1351 | | |
1352 | | "a" is a sorted vector with n elements, starting at a[0]. n must be > 0. |
1353 | | |
1354 | | "hint" is an index at which to begin the search, 0 <= hint < n. The closer |
1355 | | hint is to the final result, the faster this runs. |
1356 | | |
1357 | | The return value is the int k in 0..n such that |
1358 | | |
1359 | | a[k-1] < key <= a[k] |
1360 | | |
1361 | | pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW, |
1362 | | key belongs at index k; or, IOW, the first k elements of a should precede |
1363 | | key, and the last n-k should follow key. |
1364 | | |
1365 | | Returns -1 on error. See listsort.txt for info on the method. |
1366 | | */ |
1367 | | static Py_ssize_t |
1368 | | gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) |
1369 | 294 | { |
1370 | 294 | Py_ssize_t ofs; |
1371 | 294 | Py_ssize_t lastofs; |
1372 | 294 | Py_ssize_t k; |
1373 | | |
1374 | 294 | assert(key && a && n > 0 && hint >= 0 && hint < n); |
1375 | | |
1376 | 294 | a += hint; |
1377 | 294 | lastofs = 0; |
1378 | 294 | ofs = 1; |
1379 | 294 | IFLT(*a, key) { |
1380 | | /* a[hint] < key -- gallop right, until |
1381 | | * a[hint + lastofs] < key <= a[hint + ofs] |
1382 | | */ |
1383 | 140 | const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ |
1384 | 182 | while (ofs < maxofs) { |
1385 | 84 | IFLT(a[ofs], key) { |
1386 | 42 | lastofs = ofs; |
1387 | 42 | assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); |
1388 | 42 | ofs = (ofs << 1) + 1; |
1389 | 42 | } |
1390 | 42 | else /* key <= a[hint + ofs] */ |
1391 | 42 | break; |
1392 | 84 | } |
1393 | 140 | if (ofs > maxofs) |
1394 | 0 | ofs = maxofs; |
1395 | | /* Translate back to offsets relative to &a[0]. */ |
1396 | 140 | lastofs += hint; |
1397 | 140 | ofs += hint; |
1398 | 140 | } |
1399 | 154 | else { |
1400 | | /* key <= a[hint] -- gallop left, until |
1401 | | * a[hint - ofs] < key <= a[hint - lastofs] |
1402 | | */ |
1403 | 154 | const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ |
1404 | 378 | while (ofs < maxofs) { |
1405 | 336 | IFLT(*(a-ofs), key) |
1406 | 112 | break; |
1407 | | /* key <= a[hint - ofs] */ |
1408 | 224 | lastofs = ofs; |
1409 | 224 | assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); |
1410 | 224 | ofs = (ofs << 1) + 1; |
1411 | 224 | } |
1412 | 154 | if (ofs > maxofs) |
1413 | 28 | ofs = maxofs; |
1414 | | /* Translate back to positive offsets relative to &a[0]. */ |
1415 | 154 | k = lastofs; |
1416 | 154 | lastofs = hint - ofs; |
1417 | 154 | ofs = hint - k; |
1418 | 154 | } |
1419 | 294 | a -= hint; |
1420 | | |
1421 | 294 | assert(-1 <= lastofs && lastofs < ofs && ofs <= n); |
1422 | | /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the |
1423 | | * right of lastofs but no farther right than ofs. Do a binary |
1424 | | * search, with invariant a[lastofs-1] < key <= a[ofs]. |
1425 | | */ |
1426 | 294 | ++lastofs; |
1427 | 560 | while (lastofs < ofs) { |
1428 | 266 | Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); |
1429 | | |
1430 | 266 | IFLT(a[m], key) |
1431 | 84 | lastofs = m+1; /* a[m] < key */ |
1432 | 182 | else |
1433 | 182 | ofs = m; /* key <= a[m] */ |
1434 | 266 | } |
1435 | 294 | assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */ |
1436 | 294 | return ofs; |
1437 | | |
1438 | 0 | fail: |
1439 | 0 | return -1; |
1440 | 294 | } |
1441 | | |
1442 | | /* |
1443 | | Exactly like gallop_left(), except that if key already exists in a[0:n], |
1444 | | finds the position immediately to the right of the rightmost equal value. |
1445 | | |
1446 | | The return value is the int k in 0..n such that |
1447 | | |
1448 | | a[k-1] <= key < a[k] |
1449 | | |
1450 | | or -1 if error. |
1451 | | |
1452 | | The code duplication is massive, but this is enough different given that |
1453 | | we're sticking to "<" comparisons that it's much harder to follow if |
1454 | | written as one routine with yet another "left or right?" flag. |
1455 | | */ |
1456 | | static Py_ssize_t |
1457 | | gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) |
1458 | 308 | { |
1459 | 308 | Py_ssize_t ofs; |
1460 | 308 | Py_ssize_t lastofs; |
1461 | 308 | Py_ssize_t k; |
1462 | | |
1463 | 308 | assert(key && a && n > 0 && hint >= 0 && hint < n); |
1464 | | |
1465 | 308 | a += hint; |
1466 | 308 | lastofs = 0; |
1467 | 308 | ofs = 1; |
1468 | 308 | IFLT(key, *a) { |
1469 | | /* key < a[hint] -- gallop left, until |
1470 | | * a[hint - ofs] <= key < a[hint - lastofs] |
1471 | | */ |
1472 | 238 | const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ |
1473 | 378 | while (ofs < maxofs) { |
1474 | 238 | IFLT(key, *(a-ofs)) { |
1475 | 140 | lastofs = ofs; |
1476 | 140 | assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); |
1477 | 140 | ofs = (ofs << 1) + 1; |
1478 | 140 | } |
1479 | 98 | else /* a[hint - ofs] <= key */ |
1480 | 98 | break; |
1481 | 238 | } |
1482 | 238 | if (ofs > maxofs) |
1483 | 0 | ofs = maxofs; |
1484 | | /* Translate back to positive offsets relative to &a[0]. */ |
1485 | 238 | k = lastofs; |
1486 | 238 | lastofs = hint - ofs; |
1487 | 238 | ofs = hint - k; |
1488 | 238 | } |
1489 | 70 | else { |
1490 | | /* a[hint] <= key -- gallop right, until |
1491 | | * a[hint + lastofs] <= key < a[hint + ofs] |
1492 | | */ |
1493 | 70 | const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ |
1494 | 126 | while (ofs < maxofs) { |
1495 | 84 | IFLT(key, a[ofs]) |
1496 | 28 | break; |
1497 | | /* a[hint + ofs] <= key */ |
1498 | 56 | lastofs = ofs; |
1499 | 56 | assert(ofs <= (PY_SSIZE_T_MAX - 1) / 2); |
1500 | 56 | ofs = (ofs << 1) + 1; |
1501 | 56 | } |
1502 | 70 | if (ofs > maxofs) |
1503 | 0 | ofs = maxofs; |
1504 | | /* Translate back to offsets relative to &a[0]. */ |
1505 | 70 | lastofs += hint; |
1506 | 70 | ofs += hint; |
1507 | 70 | } |
1508 | 308 | a -= hint; |
1509 | | |
1510 | 308 | assert(-1 <= lastofs && lastofs < ofs && ofs <= n); |
1511 | | /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the |
1512 | | * right of lastofs but no farther right than ofs. Do a binary |
1513 | | * search, with invariant a[lastofs-1] <= key < a[ofs]. |
1514 | | */ |
1515 | 308 | ++lastofs; |
1516 | 504 | while (lastofs < ofs) { |
1517 | 196 | Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); |
1518 | | |
1519 | 196 | IFLT(key, a[m]) |
1520 | 84 | ofs = m; /* key < a[m] */ |
1521 | 112 | else |
1522 | 112 | lastofs = m+1; /* a[m] <= key */ |
1523 | 196 | } |
1524 | 308 | assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */ |
1525 | 308 | return ofs; |
1526 | | |
1527 | 0 | fail: |
1528 | 0 | return -1; |
1529 | 308 | } |
1530 | | |
1531 | | /* Conceptually a MergeState's constructor. */ |
1532 | | static void |
1533 | | merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc) |
1534 | 452 | { |
1535 | 452 | assert(ms != NULL); |
1536 | 452 | if (has_keyfunc) { |
1537 | | /* The temporary space for merging will need at most half the list |
1538 | | * size rounded up. Use the minimum possible space so we can use the |
1539 | | * rest of temparray for other things. In particular, if there is |
1540 | | * enough extra space, listsort() will use it to store the keys. |
1541 | | */ |
1542 | 2 | ms->alloced = (list_size + 1) / 2; |
1543 | | |
1544 | | /* ms->alloced describes how many keys will be stored at |
1545 | | ms->temparray, but we also need to store the values. Hence, |
1546 | | ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */ |
1547 | 2 | if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced) |
1548 | 0 | ms->alloced = MERGESTATE_TEMP_SIZE / 2; |
1549 | 2 | ms->a.values = &ms->temparray[ms->alloced]; |
1550 | 2 | } |
1551 | 450 | else { |
1552 | 450 | ms->alloced = MERGESTATE_TEMP_SIZE; |
1553 | 450 | ms->a.values = NULL; |
1554 | 450 | } |
1555 | 452 | ms->a.keys = ms->temparray; |
1556 | 452 | ms->n = 0; |
1557 | 452 | ms->min_gallop = MIN_GALLOP; |
1558 | 452 | } |
1559 | | |
1560 | | /* Free all the temp memory owned by the MergeState. This must be called |
1561 | | * when you're done with a MergeState, and may be called before then if |
1562 | | * you want to free the temp memory early. |
1563 | | */ |
1564 | | static void |
1565 | | merge_freemem(MergeState *ms) |
1566 | 452 | { |
1567 | 452 | assert(ms != NULL); |
1568 | 452 | if (ms->a.keys != ms->temparray) |
1569 | 0 | PyMem_Free(ms->a.keys); |
1570 | 452 | } |
1571 | | |
1572 | | /* Ensure enough temp memory for 'need' array slots is available. |
1573 | | * Returns 0 on success and -1 if the memory can't be gotten. |
1574 | | */ |
1575 | | static int |
1576 | | merge_getmem(MergeState *ms, Py_ssize_t need) |
1577 | 0 | { |
1578 | 0 | int multiplier; |
1579 | |
|
1580 | 0 | assert(ms != NULL); |
1581 | 0 | if (need <= ms->alloced) |
1582 | 0 | return 0; |
1583 | | |
1584 | 0 | multiplier = ms->a.values != NULL ? 2 : 1; |
1585 | | |
1586 | | /* Don't realloc! That can cost cycles to copy the old data, but |
1587 | | * we don't care what's in the block. |
1588 | | */ |
1589 | 0 | merge_freemem(ms); |
1590 | 0 | if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) { |
1591 | 0 | PyErr_NoMemory(); |
1592 | 0 | return -1; |
1593 | 0 | } |
1594 | 0 | ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need |
1595 | 0 | * sizeof(PyObject *)); |
1596 | 0 | if (ms->a.keys != NULL) { |
1597 | 0 | ms->alloced = need; |
1598 | 0 | if (ms->a.values != NULL) |
1599 | 0 | ms->a.values = &ms->a.keys[need]; |
1600 | 0 | return 0; |
1601 | 0 | } |
1602 | 0 | PyErr_NoMemory(); |
1603 | 0 | return -1; |
1604 | 0 | } |
1605 | 98 | #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \ |
1606 | 98 | merge_getmem(MS, NEED)) |
1607 | | |
1608 | | /* Merge the na elements starting at ssa with the nb elements starting at |
1609 | | * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. |
1610 | | * Must also have that ssa.keys[na-1] belongs at the end of the merge, and |
1611 | | * should have na <= nb. See listsort.txt for more info. Return 0 if |
1612 | | * successful, -1 if error. |
1613 | | */ |
1614 | | static Py_ssize_t |
1615 | | merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na, |
1616 | | sortslice ssb, Py_ssize_t nb) |
1617 | 42 | { |
1618 | 42 | Py_ssize_t k; |
1619 | 42 | sortslice dest; |
1620 | 42 | int result = -1; /* guilty until proved innocent */ |
1621 | 42 | Py_ssize_t min_gallop; |
1622 | | |
1623 | 42 | assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); |
1624 | 42 | assert(ssa.keys + na == ssb.keys); |
1625 | 42 | if (MERGE_GETMEM(ms, na) < 0) |
1626 | 0 | return -1; |
1627 | 42 | sortslice_memcpy(&ms->a, 0, &ssa, 0, na); |
1628 | 42 | dest = ssa; |
1629 | 42 | ssa = ms->a; |
1630 | | |
1631 | 42 | sortslice_copy_incr(&dest, &ssb); |
1632 | 42 | --nb; |
1633 | 42 | if (nb == 0) |
1634 | 0 | goto Succeed; |
1635 | 42 | if (na == 1) |
1636 | 0 | goto CopyB; |
1637 | | |
1638 | 42 | min_gallop = ms->min_gallop; |
1639 | 98 | for (;;) { |
1640 | 98 | Py_ssize_t acount = 0; /* # of times A won in a row */ |
1641 | 98 | Py_ssize_t bcount = 0; /* # of times B won in a row */ |
1642 | | |
1643 | | /* Do the straightforward thing until (if ever) one run |
1644 | | * appears to win consistently. |
1645 | | */ |
1646 | 2.45k | for (;;) { |
1647 | 2.45k | assert(na > 1 && nb > 0); |
1648 | 2.45k | k = ISLT(ssb.keys[0], ssa.keys[0]); |
1649 | 2.45k | if (k) { |
1650 | 1.35k | if (k < 0) |
1651 | 0 | goto Fail; |
1652 | 1.35k | sortslice_copy_incr(&dest, &ssb); |
1653 | 1.35k | ++bcount; |
1654 | 1.35k | acount = 0; |
1655 | 1.35k | --nb; |
1656 | 1.35k | if (nb == 0) |
1657 | 28 | goto Succeed; |
1658 | 1.33k | if (bcount >= min_gallop) |
1659 | 56 | break; |
1660 | 1.33k | } |
1661 | 1.09k | else { |
1662 | 1.09k | sortslice_copy_incr(&dest, &ssa); |
1663 | 1.09k | ++acount; |
1664 | 1.09k | bcount = 0; |
1665 | 1.09k | --na; |
1666 | 1.09k | if (na == 1) |
1667 | 0 | goto CopyB; |
1668 | 1.09k | if (acount >= min_gallop) |
1669 | 14 | break; |
1670 | 1.09k | } |
1671 | 2.45k | } |
1672 | | |
1673 | | /* One run is winning so consistently that galloping may |
1674 | | * be a huge win. So try that, and continue galloping until |
1675 | | * (if ever) neither run appears to be winning consistently |
1676 | | * anymore. |
1677 | | */ |
1678 | 70 | ++min_gallop; |
1679 | 70 | do { |
1680 | 70 | assert(na > 1 && nb > 0); |
1681 | 70 | min_gallop -= min_gallop > 1; |
1682 | 70 | ms->min_gallop = min_gallop; |
1683 | 70 | k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0); |
1684 | 70 | acount = k; |
1685 | 70 | if (k) { |
1686 | 0 | if (k < 0) |
1687 | 0 | goto Fail; |
1688 | 0 | sortslice_memcpy(&dest, 0, &ssa, 0, k); |
1689 | 0 | sortslice_advance(&dest, k); |
1690 | 0 | sortslice_advance(&ssa, k); |
1691 | 0 | na -= k; |
1692 | 0 | if (na == 1) |
1693 | 0 | goto CopyB; |
1694 | | /* na==0 is impossible now if the comparison |
1695 | | * function is consistent, but we can't assume |
1696 | | * that it is. |
1697 | | */ |
1698 | 0 | if (na == 0) |
1699 | 0 | goto Succeed; |
1700 | 0 | } |
1701 | 70 | sortslice_copy_incr(&dest, &ssb); |
1702 | 70 | --nb; |
1703 | 70 | if (nb == 0) |
1704 | 14 | goto Succeed; |
1705 | | |
1706 | 56 | k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0); |
1707 | 56 | bcount = k; |
1708 | 56 | if (k) { |
1709 | 42 | if (k < 0) |
1710 | 0 | goto Fail; |
1711 | 42 | sortslice_memmove(&dest, 0, &ssb, 0, k); |
1712 | 42 | sortslice_advance(&dest, k); |
1713 | 42 | sortslice_advance(&ssb, k); |
1714 | 42 | nb -= k; |
1715 | 42 | if (nb == 0) |
1716 | 0 | goto Succeed; |
1717 | 42 | } |
1718 | 56 | sortslice_copy_incr(&dest, &ssa); |
1719 | 56 | --na; |
1720 | 56 | if (na == 1) |
1721 | 0 | goto CopyB; |
1722 | 56 | } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); |
1723 | 56 | ++min_gallop; /* penalize it for leaving galloping mode */ |
1724 | 56 | ms->min_gallop = min_gallop; |
1725 | 56 | } |
1726 | 42 | Succeed: |
1727 | 42 | result = 0; |
1728 | 42 | Fail: |
1729 | 42 | if (na) |
1730 | 42 | sortslice_memcpy(&dest, 0, &ssa, 0, na); |
1731 | 42 | return result; |
1732 | 0 | CopyB: |
1733 | 0 | assert(na == 1 && nb > 0); |
1734 | | /* The last element of ssa belongs at the end of the merge. */ |
1735 | 0 | sortslice_memmove(&dest, 0, &ssb, 0, nb); |
1736 | 0 | sortslice_copy(&dest, nb, &ssa, 0); |
1737 | 0 | return 0; |
1738 | 42 | } |
1739 | | |
1740 | | /* Merge the na elements starting at pa with the nb elements starting at |
1741 | | * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. |
1742 | | * Must also have that ssa.keys[na-1] belongs at the end of the merge, and |
1743 | | * should have na >= nb. See listsort.txt for more info. Return 0 if |
1744 | | * successful, -1 if error. |
1745 | | */ |
1746 | | static Py_ssize_t |
1747 | | merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na, |
1748 | | sortslice ssb, Py_ssize_t nb) |
1749 | 56 | { |
1750 | 56 | Py_ssize_t k; |
1751 | 56 | sortslice dest, basea, baseb; |
1752 | 56 | int result = -1; /* guilty until proved innocent */ |
1753 | 56 | Py_ssize_t min_gallop; |
1754 | | |
1755 | 56 | assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); |
1756 | 56 | assert(ssa.keys + na == ssb.keys); |
1757 | 56 | if (MERGE_GETMEM(ms, nb) < 0) |
1758 | 0 | return -1; |
1759 | 56 | dest = ssb; |
1760 | 56 | sortslice_advance(&dest, nb-1); |
1761 | 56 | sortslice_memcpy(&ms->a, 0, &ssb, 0, nb); |
1762 | 56 | basea = ssa; |
1763 | 56 | baseb = ms->a; |
1764 | 56 | ssb.keys = ms->a.keys + nb - 1; |
1765 | 56 | if (ssb.values != NULL) |
1766 | 0 | ssb.values = ms->a.values + nb - 1; |
1767 | 56 | sortslice_advance(&ssa, na - 1); |
1768 | | |
1769 | 56 | sortslice_copy_decr(&dest, &ssa); |
1770 | 56 | --na; |
1771 | 56 | if (na == 0) |
1772 | 0 | goto Succeed; |
1773 | 56 | if (nb == 1) |
1774 | 0 | goto CopyA; |
1775 | | |
1776 | 56 | min_gallop = ms->min_gallop; |
1777 | 168 | for (;;) { |
1778 | 168 | Py_ssize_t acount = 0; /* # of times A won in a row */ |
1779 | 168 | Py_ssize_t bcount = 0; /* # of times B won in a row */ |
1780 | | |
1781 | | /* Do the straightforward thing until (if ever) one run |
1782 | | * appears to win consistently. |
1783 | | */ |
1784 | 5.95k | for (;;) { |
1785 | 5.95k | assert(na > 0 && nb > 1); |
1786 | 5.95k | k = ISLT(ssb.keys[0], ssa.keys[0]); |
1787 | 5.95k | if (k) { |
1788 | 4.13k | if (k < 0) |
1789 | 0 | goto Fail; |
1790 | 4.13k | sortslice_copy_decr(&dest, &ssa); |
1791 | 4.13k | ++acount; |
1792 | 4.13k | bcount = 0; |
1793 | 4.13k | --na; |
1794 | 4.13k | if (na == 0) |
1795 | 42 | goto Succeed; |
1796 | 4.08k | if (acount >= min_gallop) |
1797 | 98 | break; |
1798 | 4.08k | } |
1799 | 1.82k | else { |
1800 | 1.82k | sortslice_copy_decr(&dest, &ssb); |
1801 | 1.82k | ++bcount; |
1802 | 1.82k | acount = 0; |
1803 | 1.82k | --nb; |
1804 | 1.82k | if (nb == 1) |
1805 | 0 | goto CopyA; |
1806 | 1.82k | if (bcount >= min_gallop) |
1807 | 28 | break; |
1808 | 1.82k | } |
1809 | 5.95k | } |
1810 | | |
1811 | | /* One run is winning so consistently that galloping may |
1812 | | * be a huge win. So try that, and continue galloping until |
1813 | | * (if ever) neither run appears to be winning consistently |
1814 | | * anymore. |
1815 | | */ |
1816 | 126 | ++min_gallop; |
1817 | 140 | do { |
1818 | 140 | assert(na > 0 && nb > 1); |
1819 | 140 | min_gallop -= min_gallop > 1; |
1820 | 140 | ms->min_gallop = min_gallop; |
1821 | 140 | k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1); |
1822 | 140 | if (k < 0) |
1823 | 0 | goto Fail; |
1824 | 140 | k = na - k; |
1825 | 140 | acount = k; |
1826 | 140 | if (k) { |
1827 | 98 | sortslice_advance(&dest, -k); |
1828 | 98 | sortslice_advance(&ssa, -k); |
1829 | 98 | sortslice_memmove(&dest, 1, &ssa, 1, k); |
1830 | 98 | na -= k; |
1831 | 98 | if (na == 0) |
1832 | 0 | goto Succeed; |
1833 | 98 | } |
1834 | 140 | sortslice_copy_decr(&dest, &ssb); |
1835 | 140 | --nb; |
1836 | 140 | if (nb == 1) |
1837 | 0 | goto CopyA; |
1838 | | |
1839 | 140 | k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1); |
1840 | 140 | if (k < 0) |
1841 | 0 | goto Fail; |
1842 | 140 | k = nb - k; |
1843 | 140 | bcount = k; |
1844 | 140 | if (k) { |
1845 | 84 | sortslice_advance(&dest, -k); |
1846 | 84 | sortslice_advance(&ssb, -k); |
1847 | 84 | sortslice_memcpy(&dest, 1, &ssb, 1, k); |
1848 | 84 | nb -= k; |
1849 | 84 | if (nb == 1) |
1850 | 14 | goto CopyA; |
1851 | | /* nb==0 is impossible now if the comparison |
1852 | | * function is consistent, but we can't assume |
1853 | | * that it is. |
1854 | | */ |
1855 | 70 | if (nb == 0) |
1856 | 0 | goto Succeed; |
1857 | 70 | } |
1858 | 126 | sortslice_copy_decr(&dest, &ssa); |
1859 | 126 | --na; |
1860 | 126 | if (na == 0) |
1861 | 0 | goto Succeed; |
1862 | 126 | } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); |
1863 | 112 | ++min_gallop; /* penalize it for leaving galloping mode */ |
1864 | 112 | ms->min_gallop = min_gallop; |
1865 | 112 | } |
1866 | 42 | Succeed: |
1867 | 42 | result = 0; |
1868 | 42 | Fail: |
1869 | 42 | if (nb) |
1870 | 42 | sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb); |
1871 | 42 | return result; |
1872 | 14 | CopyA: |
1873 | 14 | assert(nb == 1 && na > 0); |
1874 | | /* The first element of ssb belongs at the front of the merge. */ |
1875 | 14 | sortslice_memmove(&dest, 1-na, &ssa, 1-na, na); |
1876 | 14 | sortslice_advance(&dest, -na); |
1877 | 14 | sortslice_advance(&ssa, -na); |
1878 | 14 | sortslice_copy(&dest, 0, &ssb, 0); |
1879 | 14 | return 0; |
1880 | 42 | } |
1881 | | |
1882 | | /* Merge the two runs at stack indices i and i+1. |
1883 | | * Returns 0 on success, -1 on error. |
1884 | | */ |
1885 | | static Py_ssize_t |
1886 | | merge_at(MergeState *ms, Py_ssize_t i) |
1887 | 98 | { |
1888 | 98 | sortslice ssa, ssb; |
1889 | 98 | Py_ssize_t na, nb; |
1890 | 98 | Py_ssize_t k; |
1891 | | |
1892 | 98 | assert(ms != NULL); |
1893 | 98 | assert(ms->n >= 2); |
1894 | 98 | assert(i >= 0); |
1895 | 98 | assert(i == ms->n - 2 || i == ms->n - 3); |
1896 | | |
1897 | 98 | ssa = ms->pending[i].base; |
1898 | 98 | na = ms->pending[i].len; |
1899 | 98 | ssb = ms->pending[i+1].base; |
1900 | 98 | nb = ms->pending[i+1].len; |
1901 | 98 | assert(na > 0 && nb > 0); |
1902 | 98 | assert(ssa.keys + na == ssb.keys); |
1903 | | |
1904 | | /* Record the length of the combined runs; if i is the 3rd-last |
1905 | | * run now, also slide over the last run (which isn't involved |
1906 | | * in this merge). The current run i+1 goes away in any case. |
1907 | | */ |
1908 | 98 | ms->pending[i].len = na + nb; |
1909 | 98 | if (i == ms->n - 3) |
1910 | 0 | ms->pending[i+1] = ms->pending[i+2]; |
1911 | 98 | --ms->n; |
1912 | | |
1913 | | /* Where does b start in a? Elements in a before that can be |
1914 | | * ignored (already in place). |
1915 | | */ |
1916 | 98 | k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0); |
1917 | 98 | if (k < 0) |
1918 | 0 | return -1; |
1919 | 98 | sortslice_advance(&ssa, k); |
1920 | 98 | na -= k; |
1921 | 98 | if (na == 0) |
1922 | 0 | return 0; |
1923 | | |
1924 | | /* Where does a end in b? Elements in b after that can be |
1925 | | * ignored (already in place). |
1926 | | */ |
1927 | 98 | nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1); |
1928 | 98 | if (nb <= 0) |
1929 | 0 | return nb; |
1930 | | |
1931 | | /* Merge what remains of the runs, using a temp array with |
1932 | | * min(na, nb) elements. |
1933 | | */ |
1934 | 98 | if (na <= nb) |
1935 | 42 | return merge_lo(ms, ssa, na, ssb, nb); |
1936 | 56 | else |
1937 | 56 | return merge_hi(ms, ssa, na, ssb, nb); |
1938 | 98 | } |
1939 | | |
1940 | | /* Examine the stack of runs waiting to be merged, merging adjacent runs |
1941 | | * until the stack invariants are re-established: |
1942 | | * |
1943 | | * 1. len[-3] > len[-2] + len[-1] |
1944 | | * 2. len[-2] > len[-1] |
1945 | | * |
1946 | | * See listsort.txt for more info. |
1947 | | * |
1948 | | * Returns 0 on success, -1 on error. |
1949 | | */ |
1950 | | static int |
1951 | | merge_collapse(MergeState *ms) |
1952 | 172 | { |
1953 | 172 | struct s_slice *p = ms->pending; |
1954 | | |
1955 | 172 | assert(ms); |
1956 | 228 | while (ms->n > 1) { |
1957 | 126 | Py_ssize_t n = ms->n - 2; |
1958 | 126 | if ((n > 0 && p[n-1].len <= p[n].len + p[n+1].len) || |
1959 | 126 | (n > 1 && p[n-2].len <= p[n-1].len + p[n].len)) { |
1960 | 14 | if (p[n-1].len < p[n+1].len) |
1961 | 0 | --n; |
1962 | 14 | if (merge_at(ms, n) < 0) |
1963 | 0 | return -1; |
1964 | 14 | } |
1965 | 112 | else if (p[n].len <= p[n+1].len) { |
1966 | 42 | if (merge_at(ms, n) < 0) |
1967 | 0 | return -1; |
1968 | 42 | } |
1969 | 70 | else |
1970 | 70 | break; |
1971 | 126 | } |
1972 | 172 | return 0; |
1973 | 172 | } |
1974 | | |
1975 | | /* Regardless of invariants, merge all runs on the stack until only one |
1976 | | * remains. This is used at the end of the mergesort. |
1977 | | * |
1978 | | * Returns 0 on success, -1 on error. |
1979 | | */ |
1980 | | static int |
1981 | | merge_force_collapse(MergeState *ms) |
1982 | 74 | { |
1983 | 74 | struct s_slice *p = ms->pending; |
1984 | | |
1985 | 74 | assert(ms); |
1986 | 116 | while (ms->n > 1) { |
1987 | 42 | Py_ssize_t n = ms->n - 2; |
1988 | 42 | if (n > 0 && p[n-1].len < p[n+1].len) |
1989 | 0 | --n; |
1990 | 42 | if (merge_at(ms, n) < 0) |
1991 | 0 | return -1; |
1992 | 42 | } |
1993 | 74 | return 0; |
1994 | 74 | } |
1995 | | |
1996 | | /* Compute a good value for the minimum run length; natural runs shorter |
1997 | | * than this are boosted artificially via binary insertion. |
1998 | | * |
1999 | | * If n < 64, return n (it's too small to bother with fancy stuff). |
2000 | | * Else if n is an exact power of 2, return 32. |
2001 | | * Else return an int k, 32 <= k <= 64, such that n/k is close to, but |
2002 | | * strictly less than, an exact power of 2. |
2003 | | * |
2004 | | * See listsort.txt for more info. |
2005 | | */ |
2006 | | static Py_ssize_t |
2007 | | merge_compute_minrun(Py_ssize_t n) |
2008 | 74 | { |
2009 | 74 | Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */ |
2010 | | |
2011 | 74 | assert(n >= 0); |
2012 | 116 | while (n >= 64) { |
2013 | 42 | r |= n & 1; |
2014 | 42 | n >>= 1; |
2015 | 42 | } |
2016 | 74 | return n + r; |
2017 | 74 | } |
2018 | | |
2019 | | static void |
2020 | | reverse_sortslice(sortslice *s, Py_ssize_t n) |
2021 | 121 | { |
2022 | 121 | reverse_slice(s->keys, &s->keys[n]); |
2023 | 121 | if (s->values != NULL) |
2024 | 1 | reverse_slice(s->values, &s->values[n]); |
2025 | 121 | } |
2026 | | |
2027 | | /* Here we define custom comparison functions to optimize for the cases one commonly |
2028 | | * encounters in practice: homogeneous lists, often of one of the basic types. */ |
2029 | | |
2030 | | /* This struct holds the comparison function and helper functions |
2031 | | * selected in the pre-sort check. */ |
2032 | | |
2033 | | /* These are the special case compare functions. |
2034 | | * ms->key_compare will always point to one of these: */ |
2035 | | |
2036 | | /* Heterogeneous compare: default, always safe to fall back on. */ |
2037 | | static int |
2038 | | safe_object_compare(PyObject *v, PyObject *w, MergeState *ms) |
2039 | 0 | { |
2040 | | /* No assumptions necessary! */ |
2041 | 0 | return PyObject_RichCompareBool(v, w, Py_LT); |
2042 | 0 | } |
2043 | | |
2044 | | /* Homogeneous compare: safe for any two compareable objects of the same type. |
2045 | | * (ms->key_richcompare is set to ob_type->tp_richcompare in the |
2046 | | * pre-sort check.) |
2047 | | */ |
2048 | | static int |
2049 | | unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms) |
2050 | 0 | { |
2051 | 0 | PyObject *res_obj; int res; |
2052 | | |
2053 | | /* No assumptions, because we check first: */ |
2054 | 0 | if (v->ob_type->tp_richcompare != ms->key_richcompare) |
2055 | 0 | return PyObject_RichCompareBool(v, w, Py_LT); |
2056 | | |
2057 | 0 | assert(ms->key_richcompare != NULL); |
2058 | 0 | res_obj = (*(ms->key_richcompare))(v, w, Py_LT); |
2059 | |
|
2060 | 0 | if (res_obj == Py_NotImplemented) { |
2061 | 0 | Py_DECREF(res_obj); |
2062 | 0 | return PyObject_RichCompareBool(v, w, Py_LT); |
2063 | 0 | } |
2064 | 0 | if (res_obj == NULL) |
2065 | 0 | return -1; |
2066 | | |
2067 | 0 | if (PyBool_Check(res_obj)) { |
2068 | 0 | res = (res_obj == Py_True); |
2069 | 0 | } |
2070 | 0 | else { |
2071 | 0 | res = PyObject_IsTrue(res_obj); |
2072 | 0 | } |
2073 | 0 | Py_DECREF(res_obj); |
2074 | | |
2075 | | /* Note that we can't assert |
2076 | | * res == PyObject_RichCompareBool(v, w, Py_LT); |
2077 | | * because of evil compare functions like this: |
2078 | | * lambda a, b: int(random.random() * 3) - 1) |
2079 | | * (which is actually in test_sort.py) */ |
2080 | 0 | return res; |
2081 | 0 | } |
2082 | | |
2083 | | /* Latin string compare: safe for any two latin (one byte per char) strings. */ |
2084 | | static int |
2085 | | unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms) |
2086 | 29.0k | { |
2087 | 29.0k | Py_ssize_t len; |
2088 | 29.0k | int res; |
2089 | | |
2090 | | /* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */ |
2091 | 29.0k | assert(v->ob_type == w->ob_type); |
2092 | 29.0k | assert(v->ob_type == &PyUnicode_Type); |
2093 | 29.0k | assert(PyUnicode_KIND(v) == PyUnicode_KIND(w)); |
2094 | 29.0k | assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND); |
2095 | | |
2096 | 29.0k | len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w)); |
2097 | 29.0k | res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len); |
2098 | | |
2099 | 29.0k | res = (res != 0 ? |
2100 | 28.5k | res < 0 : |
2101 | 29.0k | PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w)); |
2102 | | |
2103 | 29.0k | assert(res == PyObject_RichCompareBool(v, w, Py_LT));; |
2104 | 29.0k | return res; |
2105 | 29.0k | } |
2106 | | |
2107 | | /* Bounded int compare: compare any two longs that fit in a single machine word. */ |
2108 | | static int |
2109 | | unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms) |
2110 | 1 | { |
2111 | 1 | PyLongObject *vl, *wl; sdigit v0, w0; int res; |
2112 | | |
2113 | | /* Modified from Objects/longobject.c:long_compare, assuming: */ |
2114 | 1 | assert(v->ob_type == w->ob_type); |
2115 | 1 | assert(v->ob_type == &PyLong_Type); |
2116 | 1 | assert(Py_ABS(Py_SIZE(v)) <= 1); |
2117 | 1 | assert(Py_ABS(Py_SIZE(w)) <= 1); |
2118 | | |
2119 | 1 | vl = (PyLongObject*)v; |
2120 | 1 | wl = (PyLongObject*)w; |
2121 | | |
2122 | 1 | v0 = Py_SIZE(vl) == 0 ? 0 : (sdigit)vl->ob_digit[0]; |
2123 | 1 | w0 = Py_SIZE(wl) == 0 ? 0 : (sdigit)wl->ob_digit[0]; |
2124 | | |
2125 | 1 | if (Py_SIZE(vl) < 0) |
2126 | 0 | v0 = -v0; |
2127 | 1 | if (Py_SIZE(wl) < 0) |
2128 | 0 | w0 = -w0; |
2129 | | |
2130 | 1 | res = v0 < w0; |
2131 | 1 | assert(res == PyObject_RichCompareBool(v, w, Py_LT)); |
2132 | 1 | return res; |
2133 | 1 | } |
2134 | | |
2135 | | /* Float compare: compare any two floats. */ |
2136 | | static int |
2137 | | unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms) |
2138 | 0 | { |
2139 | 0 | int res; |
2140 | | |
2141 | | /* Modified from Objects/floatobject.c:float_richcompare, assuming: */ |
2142 | 0 | assert(v->ob_type == w->ob_type); |
2143 | 0 | assert(v->ob_type == &PyFloat_Type); |
2144 | |
|
2145 | 0 | res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w); |
2146 | 0 | assert(res == PyObject_RichCompareBool(v, w, Py_LT)); |
2147 | 0 | return res; |
2148 | 0 | } |
2149 | | |
2150 | | /* Tuple compare: compare *any* two tuples, using |
2151 | | * ms->tuple_elem_compare to compare the first elements, which is set |
2152 | | * using the same pre-sort check as we use for ms->key_compare, |
2153 | | * but run on the list [x[0] for x in L]. This allows us to optimize compares |
2154 | | * on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is |
2155 | | * that most tuple compares don't involve x[1:]. */ |
2156 | | static int |
2157 | | unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms) |
2158 | 0 | { |
2159 | 0 | PyTupleObject *vt, *wt; |
2160 | 0 | Py_ssize_t i, vlen, wlen; |
2161 | 0 | int k; |
2162 | | |
2163 | | /* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */ |
2164 | 0 | assert(v->ob_type == w->ob_type); |
2165 | 0 | assert(v->ob_type == &PyTuple_Type); |
2166 | 0 | assert(Py_SIZE(v) > 0); |
2167 | 0 | assert(Py_SIZE(w) > 0); |
2168 | |
|
2169 | 0 | vt = (PyTupleObject *)v; |
2170 | 0 | wt = (PyTupleObject *)w; |
2171 | |
|
2172 | 0 | vlen = Py_SIZE(vt); |
2173 | 0 | wlen = Py_SIZE(wt); |
2174 | |
|
2175 | 0 | for (i = 0; i < vlen && i < wlen; i++) { |
2176 | 0 | k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ); |
2177 | 0 | if (k < 0) |
2178 | 0 | return -1; |
2179 | 0 | if (!k) |
2180 | 0 | break; |
2181 | 0 | } |
2182 | | |
2183 | 0 | if (i >= vlen || i >= wlen) |
2184 | 0 | return vlen < wlen; |
2185 | | |
2186 | 0 | if (i == 0) |
2187 | 0 | return ms->tuple_elem_compare(vt->ob_item[i], wt->ob_item[i], ms); |
2188 | 0 | else |
2189 | 0 | return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_LT); |
2190 | 0 | } |
2191 | | |
2192 | | /* An adaptive, stable, natural mergesort. See listsort.txt. |
2193 | | * Returns Py_None on success, NULL on error. Even in case of error, the |
2194 | | * list will be some permutation of its input state (nothing is lost or |
2195 | | * duplicated). |
2196 | | */ |
2197 | | /*[clinic input] |
2198 | | list.sort |
2199 | | |
2200 | | * |
2201 | | key as keyfunc: object = None |
2202 | | reverse: bool(accept={int}) = False |
2203 | | |
2204 | | Sort the list in ascending order and return None. |
2205 | | |
2206 | | The sort is in-place (i.e. the list itself is modified) and stable (i.e. the |
2207 | | order of two equal elements is maintained). |
2208 | | |
2209 | | If a key function is given, apply it once to each list item and sort them, |
2210 | | ascending or descending, according to their function values. |
2211 | | |
2212 | | The reverse flag can be set to sort in descending order. |
2213 | | [clinic start generated code]*/ |
2214 | | |
2215 | | static PyObject * |
2216 | | list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse) |
2217 | | /*[clinic end generated code: output=57b9f9c5e23fbe42 input=cb56cd179a713060]*/ |
2218 | 452 | { |
2219 | 452 | MergeState ms; |
2220 | 452 | Py_ssize_t nremaining; |
2221 | 452 | Py_ssize_t minrun; |
2222 | 452 | sortslice lo; |
2223 | 452 | Py_ssize_t saved_ob_size, saved_allocated; |
2224 | 452 | PyObject **saved_ob_item; |
2225 | 452 | PyObject **final_ob_item; |
2226 | 452 | PyObject *result = NULL; /* guilty until proved innocent */ |
2227 | 452 | Py_ssize_t i; |
2228 | 452 | PyObject **keys; |
2229 | | |
2230 | 452 | assert(self != NULL); |
2231 | 452 | assert(PyList_Check(self)); |
2232 | 452 | if (keyfunc == Py_None) |
2233 | 1 | keyfunc = NULL; |
2234 | | |
2235 | | /* The list is temporarily made empty, so that mutations performed |
2236 | | * by comparison functions can't affect the slice of memory we're |
2237 | | * sorting (allowing mutations during sorting is a core-dump |
2238 | | * factory, since ob_item may change). |
2239 | | */ |
2240 | 452 | saved_ob_size = Py_SIZE(self); |
2241 | 452 | saved_ob_item = self->ob_item; |
2242 | 452 | saved_allocated = self->allocated; |
2243 | 452 | Py_SIZE(self) = 0; |
2244 | 452 | self->ob_item = NULL; |
2245 | 452 | self->allocated = -1; /* any operation will reset it to >= 0 */ |
2246 | | |
2247 | 452 | if (keyfunc == NULL) { |
2248 | 450 | keys = NULL; |
2249 | 450 | lo.keys = saved_ob_item; |
2250 | 450 | lo.values = NULL; |
2251 | 450 | } |
2252 | 2 | else { |
2253 | 2 | if (saved_ob_size < MERGESTATE_TEMP_SIZE/2) |
2254 | | /* Leverage stack space we allocated but won't otherwise use */ |
2255 | 2 | keys = &ms.temparray[saved_ob_size+1]; |
2256 | 0 | else { |
2257 | 0 | keys = PyMem_MALLOC(sizeof(PyObject *) * saved_ob_size); |
2258 | 0 | if (keys == NULL) { |
2259 | 0 | PyErr_NoMemory(); |
2260 | 0 | goto keyfunc_fail; |
2261 | 0 | } |
2262 | 0 | } |
2263 | | |
2264 | 4 | for (i = 0; i < saved_ob_size ; i++) { |
2265 | 2 | keys[i] = PyObject_CallFunctionObjArgs(keyfunc, saved_ob_item[i], |
2266 | 2 | NULL); |
2267 | 2 | if (keys[i] == NULL) { |
2268 | 0 | for (i=i-1 ; i>=0 ; i--) |
2269 | 0 | Py_DECREF(keys[i]); |
2270 | 0 | if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2) |
2271 | 0 | PyMem_FREE(keys); |
2272 | 0 | goto keyfunc_fail; |
2273 | 0 | } |
2274 | 2 | } |
2275 | | |
2276 | 2 | lo.keys = keys; |
2277 | 2 | lo.values = saved_ob_item; |
2278 | 2 | } |
2279 | | |
2280 | | |
2281 | | /* The pre-sort check: here's where we decide which compare function to use. |
2282 | | * How much optimization is safe? We test for homogeneity with respect to |
2283 | | * several properties that are expensive to check at compare-time, and |
2284 | | * set ms appropriately. */ |
2285 | 452 | if (saved_ob_size > 1) { |
2286 | | /* Assume the first element is representative of the whole list. */ |
2287 | 74 | int keys_are_in_tuples = (lo.keys[0]->ob_type == &PyTuple_Type && |
2288 | 74 | Py_SIZE(lo.keys[0]) > 0); |
2289 | | |
2290 | 74 | PyTypeObject* key_type = (keys_are_in_tuples ? |
2291 | 0 | PyTuple_GET_ITEM(lo.keys[0], 0)->ob_type : |
2292 | 74 | lo.keys[0]->ob_type); |
2293 | | |
2294 | 74 | int keys_are_all_same_type = 1; |
2295 | 74 | int strings_are_latin = 1; |
2296 | 74 | int ints_are_bounded = 1; |
2297 | | |
2298 | | /* Prove that assumption by checking every key. */ |
2299 | 5.05k | for (i=0; i < saved_ob_size; i++) { |
2300 | | |
2301 | 4.98k | if (keys_are_in_tuples && |
2302 | 4.98k | !(lo.keys[i]->ob_type == &PyTuple_Type && Py_SIZE(lo.keys[i]) != 0)) { |
2303 | 0 | keys_are_in_tuples = 0; |
2304 | 0 | keys_are_all_same_type = 0; |
2305 | 0 | break; |
2306 | 0 | } |
2307 | | |
2308 | | /* Note: for lists of tuples, key is the first element of the tuple |
2309 | | * lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity |
2310 | | * for lists of tuples in the if-statement directly above. */ |
2311 | 4.98k | PyObject *key = (keys_are_in_tuples ? |
2312 | 0 | PyTuple_GET_ITEM(lo.keys[i], 0) : |
2313 | 4.98k | lo.keys[i]); |
2314 | | |
2315 | 4.98k | if (key->ob_type != key_type) { |
2316 | 0 | keys_are_all_same_type = 0; |
2317 | | /* If keys are in tuple we must loop over the whole list to make |
2318 | | sure all items are tuples */ |
2319 | 0 | if (!keys_are_in_tuples) { |
2320 | 0 | break; |
2321 | 0 | } |
2322 | 0 | } |
2323 | | |
2324 | 4.98k | if (keys_are_all_same_type) { |
2325 | 4.98k | if (key_type == &PyLong_Type && |
2326 | 4.98k | ints_are_bounded && |
2327 | 4.98k | Py_ABS(Py_SIZE(key)) > 1) { |
2328 | |
|
2329 | 0 | ints_are_bounded = 0; |
2330 | 0 | } |
2331 | 4.98k | else if (key_type == &PyUnicode_Type && |
2332 | 4.98k | strings_are_latin && |
2333 | 4.98k | PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND) { |
2334 | |
|
2335 | 0 | strings_are_latin = 0; |
2336 | 0 | } |
2337 | 4.98k | } |
2338 | 4.98k | } |
2339 | | |
2340 | | /* Choose the best compare, given what we now know about the keys. */ |
2341 | 74 | if (keys_are_all_same_type) { |
2342 | | |
2343 | 74 | if (key_type == &PyUnicode_Type && strings_are_latin) { |
2344 | 73 | ms.key_compare = unsafe_latin_compare; |
2345 | 73 | } |
2346 | 1 | else if (key_type == &PyLong_Type && ints_are_bounded) { |
2347 | 1 | ms.key_compare = unsafe_long_compare; |
2348 | 1 | } |
2349 | 0 | else if (key_type == &PyFloat_Type) { |
2350 | 0 | ms.key_compare = unsafe_float_compare; |
2351 | 0 | } |
2352 | 0 | else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) { |
2353 | 0 | ms.key_compare = unsafe_object_compare; |
2354 | 0 | } |
2355 | 0 | else { |
2356 | 0 | ms.key_compare = safe_object_compare; |
2357 | 0 | } |
2358 | 74 | } |
2359 | 0 | else { |
2360 | 0 | ms.key_compare = safe_object_compare; |
2361 | 0 | } |
2362 | | |
2363 | 74 | if (keys_are_in_tuples) { |
2364 | | /* Make sure we're not dealing with tuples of tuples |
2365 | | * (remember: here, key_type refers list [key[0] for key in keys]) */ |
2366 | 0 | if (key_type == &PyTuple_Type) { |
2367 | 0 | ms.tuple_elem_compare = safe_object_compare; |
2368 | 0 | } |
2369 | 0 | else { |
2370 | 0 | ms.tuple_elem_compare = ms.key_compare; |
2371 | 0 | } |
2372 | |
|
2373 | 0 | ms.key_compare = unsafe_tuple_compare; |
2374 | 0 | } |
2375 | 74 | } |
2376 | | /* End of pre-sort check: ms is now set properly! */ |
2377 | | |
2378 | 452 | merge_init(&ms, saved_ob_size, keys != NULL); |
2379 | | |
2380 | 452 | nremaining = saved_ob_size; |
2381 | 452 | if (nremaining < 2) |
2382 | 378 | goto succeed; |
2383 | | |
2384 | | /* Reverse sort stability achieved by initially reversing the list, |
2385 | | applying a stable forward sort, then reversing the final result. */ |
2386 | 74 | if (reverse) { |
2387 | 2 | if (keys != NULL) |
2388 | 1 | reverse_slice(&keys[0], &keys[saved_ob_size]); |
2389 | 2 | reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]); |
2390 | 2 | } |
2391 | | |
2392 | | /* March over the array once, left to right, finding natural runs, |
2393 | | * and extending short natural runs to minrun elements. |
2394 | | */ |
2395 | 74 | minrun = merge_compute_minrun(nremaining); |
2396 | 172 | do { |
2397 | 172 | int descending; |
2398 | 172 | Py_ssize_t n; |
2399 | | |
2400 | | /* Identify next run. */ |
2401 | 172 | n = count_run(&ms, lo.keys, lo.keys + nremaining, &descending); |
2402 | 172 | if (n < 0) |
2403 | 0 | goto fail; |
2404 | 172 | if (descending) |
2405 | 121 | reverse_sortslice(&lo, n); |
2406 | | /* If short, extend to min(minrun, nremaining). */ |
2407 | 172 | if (n < minrun) { |
2408 | 167 | const Py_ssize_t force = nremaining <= minrun ? |
2409 | 98 | nremaining : minrun; |
2410 | 167 | if (binarysort(&ms, lo, lo.keys + force, lo.keys + n) < 0) |
2411 | 0 | goto fail; |
2412 | 167 | n = force; |
2413 | 167 | } |
2414 | | /* Push run onto pending-runs stack, and maybe merge. */ |
2415 | 172 | assert(ms.n < MAX_MERGE_PENDING); |
2416 | 172 | ms.pending[ms.n].base = lo; |
2417 | 172 | ms.pending[ms.n].len = n; |
2418 | 172 | ++ms.n; |
2419 | 172 | if (merge_collapse(&ms) < 0) |
2420 | 0 | goto fail; |
2421 | | /* Advance to find next run. */ |
2422 | 172 | sortslice_advance(&lo, n); |
2423 | 172 | nremaining -= n; |
2424 | 172 | } while (nremaining); |
2425 | | |
2426 | 74 | if (merge_force_collapse(&ms) < 0) |
2427 | 0 | goto fail; |
2428 | 74 | assert(ms.n == 1); |
2429 | 74 | assert(keys == NULL |
2430 | 74 | ? ms.pending[0].base.keys == saved_ob_item |
2431 | 74 | : ms.pending[0].base.keys == &keys[0]); |
2432 | 74 | assert(ms.pending[0].len == saved_ob_size); |
2433 | 74 | lo = ms.pending[0].base; |
2434 | | |
2435 | 452 | succeed: |
2436 | 452 | result = Py_None; |
2437 | 452 | fail: |
2438 | 452 | if (keys != NULL) { |
2439 | 4 | for (i = 0; i < saved_ob_size; i++) |
2440 | 2 | Py_DECREF(keys[i]); |
2441 | 2 | if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2) |
2442 | 0 | PyMem_FREE(keys); |
2443 | 2 | } |
2444 | | |
2445 | 452 | if (self->allocated != -1 && result != NULL) { |
2446 | | /* The user mucked with the list during the sort, |
2447 | | * and we don't already have another error to report. |
2448 | | */ |
2449 | 0 | PyErr_SetString(PyExc_ValueError, "list modified during sort"); |
2450 | 0 | result = NULL; |
2451 | 0 | } |
2452 | | |
2453 | 452 | if (reverse && saved_ob_size > 1) |
2454 | 2 | reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size); |
2455 | | |
2456 | 452 | merge_freemem(&ms); |
2457 | | |
2458 | 452 | keyfunc_fail: |
2459 | 452 | final_ob_item = self->ob_item; |
2460 | 452 | i = Py_SIZE(self); |
2461 | 452 | Py_SIZE(self) = saved_ob_size; |
2462 | 452 | self->ob_item = saved_ob_item; |
2463 | 452 | self->allocated = saved_allocated; |
2464 | 452 | if (final_ob_item != NULL) { |
2465 | | /* we cannot use _list_clear() for this because it does not |
2466 | | guarantee that the list is really empty when it returns */ |
2467 | 0 | while (--i >= 0) { |
2468 | 0 | Py_XDECREF(final_ob_item[i]); |
2469 | 0 | } |
2470 | 0 | PyMem_FREE(final_ob_item); |
2471 | 0 | } |
2472 | 452 | Py_XINCREF(result); |
2473 | 452 | return result; |
2474 | 452 | } |
2475 | | #undef IFLT |
2476 | | #undef ISLT |
2477 | | |
2478 | | int |
2479 | | PyList_Sort(PyObject *v) |
2480 | 449 | { |
2481 | 449 | if (v == NULL || !PyList_Check(v)) { |
2482 | 0 | PyErr_BadInternalCall(); |
2483 | 0 | return -1; |
2484 | 0 | } |
2485 | 449 | v = list_sort_impl((PyListObject *)v, NULL, 0); |
2486 | 449 | if (v == NULL) |
2487 | 0 | return -1; |
2488 | 449 | Py_DECREF(v); |
2489 | 449 | return 0; |
2490 | 449 | } |
2491 | | |
2492 | | /*[clinic input] |
2493 | | list.reverse |
2494 | | |
2495 | | Reverse *IN PLACE*. |
2496 | | [clinic start generated code]*/ |
2497 | | |
2498 | | static PyObject * |
2499 | | list_reverse_impl(PyListObject *self) |
2500 | | /*[clinic end generated code: output=482544fc451abea9 input=eefd4c3ae1bc9887]*/ |
2501 | 0 | { |
2502 | 0 | if (Py_SIZE(self) > 1) |
2503 | 0 | reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); |
2504 | 0 | Py_RETURN_NONE; |
2505 | 0 | } |
2506 | | |
2507 | | int |
2508 | | PyList_Reverse(PyObject *v) |
2509 | 0 | { |
2510 | 0 | PyListObject *self = (PyListObject *)v; |
2511 | |
|
2512 | 0 | if (v == NULL || !PyList_Check(v)) { |
2513 | 0 | PyErr_BadInternalCall(); |
2514 | 0 | return -1; |
2515 | 0 | } |
2516 | 0 | if (Py_SIZE(self) > 1) |
2517 | 0 | reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); |
2518 | 0 | return 0; |
2519 | 0 | } |
2520 | | |
2521 | | PyObject * |
2522 | | PyList_AsTuple(PyObject *v) |
2523 | 1.63k | { |
2524 | 1.63k | if (v == NULL || !PyList_Check(v)) { |
2525 | 0 | PyErr_BadInternalCall(); |
2526 | 0 | return NULL; |
2527 | 0 | } |
2528 | 1.63k | return _PyTuple_FromArray(((PyListObject *)v)->ob_item, Py_SIZE(v)); |
2529 | 1.63k | } |
2530 | | |
2531 | | /*[clinic input] |
2532 | | list.index |
2533 | | |
2534 | | value: object |
2535 | | start: slice_index(accept={int}) = 0 |
2536 | | stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize |
2537 | | / |
2538 | | |
2539 | | Return first index of value. |
2540 | | |
2541 | | Raises ValueError if the value is not present. |
2542 | | [clinic start generated code]*/ |
2543 | | |
2544 | | static PyObject * |
2545 | | list_index_impl(PyListObject *self, PyObject *value, Py_ssize_t start, |
2546 | | Py_ssize_t stop) |
2547 | | /*[clinic end generated code: output=ec51b88787e4e481 input=40ec5826303a0eb1]*/ |
2548 | 0 | { |
2549 | 0 | Py_ssize_t i; |
2550 | |
|
2551 | 0 | if (start < 0) { |
2552 | 0 | start += Py_SIZE(self); |
2553 | 0 | if (start < 0) |
2554 | 0 | start = 0; |
2555 | 0 | } |
2556 | 0 | if (stop < 0) { |
2557 | 0 | stop += Py_SIZE(self); |
2558 | 0 | if (stop < 0) |
2559 | 0 | stop = 0; |
2560 | 0 | } |
2561 | 0 | for (i = start; i < stop && i < Py_SIZE(self); i++) { |
2562 | 0 | PyObject *obj = self->ob_item[i]; |
2563 | 0 | Py_INCREF(obj); |
2564 | 0 | int cmp = PyObject_RichCompareBool(obj, value, Py_EQ); |
2565 | 0 | Py_DECREF(obj); |
2566 | 0 | if (cmp > 0) |
2567 | 0 | return PyLong_FromSsize_t(i); |
2568 | 0 | else if (cmp < 0) |
2569 | 0 | return NULL; |
2570 | 0 | } |
2571 | 0 | PyErr_Format(PyExc_ValueError, "%R is not in list", value); |
2572 | 0 | return NULL; |
2573 | 0 | } |
2574 | | |
2575 | | /*[clinic input] |
2576 | | list.count |
2577 | | |
2578 | | value: object |
2579 | | / |
2580 | | |
2581 | | Return number of occurrences of value. |
2582 | | [clinic start generated code]*/ |
2583 | | |
2584 | | static PyObject * |
2585 | | list_count(PyListObject *self, PyObject *value) |
2586 | | /*[clinic end generated code: output=b1f5d284205ae714 input=3bdc3a5e6f749565]*/ |
2587 | 0 | { |
2588 | 0 | Py_ssize_t count = 0; |
2589 | 0 | Py_ssize_t i; |
2590 | |
|
2591 | 0 | for (i = 0; i < Py_SIZE(self); i++) { |
2592 | 0 | PyObject *obj = self->ob_item[i]; |
2593 | 0 | if (obj == value) { |
2594 | 0 | count++; |
2595 | 0 | continue; |
2596 | 0 | } |
2597 | 0 | Py_INCREF(obj); |
2598 | 0 | int cmp = PyObject_RichCompareBool(obj, value, Py_EQ); |
2599 | 0 | Py_DECREF(obj); |
2600 | 0 | if (cmp > 0) |
2601 | 0 | count++; |
2602 | 0 | else if (cmp < 0) |
2603 | 0 | return NULL; |
2604 | 0 | } |
2605 | 0 | return PyLong_FromSsize_t(count); |
2606 | 0 | } |
2607 | | |
2608 | | /*[clinic input] |
2609 | | list.remove |
2610 | | |
2611 | | value: object |
2612 | | / |
2613 | | |
2614 | | Remove first occurrence of value. |
2615 | | |
2616 | | Raises ValueError if the value is not present. |
2617 | | [clinic start generated code]*/ |
2618 | | |
2619 | | static PyObject * |
2620 | | list_remove(PyListObject *self, PyObject *value) |
2621 | | /*[clinic end generated code: output=f087e1951a5e30d1 input=2dc2ba5bb2fb1f82]*/ |
2622 | 0 | { |
2623 | 0 | Py_ssize_t i; |
2624 | |
|
2625 | 0 | for (i = 0; i < Py_SIZE(self); i++) { |
2626 | 0 | PyObject *obj = self->ob_item[i]; |
2627 | 0 | Py_INCREF(obj); |
2628 | 0 | int cmp = PyObject_RichCompareBool(obj, value, Py_EQ); |
2629 | 0 | Py_DECREF(obj); |
2630 | 0 | if (cmp > 0) { |
2631 | 0 | if (list_ass_slice(self, i, i+1, |
2632 | 0 | (PyObject *)NULL) == 0) |
2633 | 0 | Py_RETURN_NONE; |
2634 | 0 | return NULL; |
2635 | 0 | } |
2636 | 0 | else if (cmp < 0) |
2637 | 0 | return NULL; |
2638 | 0 | } |
2639 | 0 | PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); |
2640 | 0 | return NULL; |
2641 | 0 | } |
2642 | | |
2643 | | static int |
2644 | | list_traverse(PyListObject *o, visitproc visit, void *arg) |
2645 | 926 | { |
2646 | 926 | Py_ssize_t i; |
2647 | | |
2648 | 16.7k | for (i = Py_SIZE(o); --i >= 0; ) |
2649 | 15.7k | Py_VISIT(o->ob_item[i]); |
2650 | 926 | return 0; |
2651 | 926 | } |
2652 | | |
2653 | | static PyObject * |
2654 | | list_richcompare(PyObject *v, PyObject *w, int op) |
2655 | 249 | { |
2656 | 249 | PyListObject *vl, *wl; |
2657 | 249 | Py_ssize_t i; |
2658 | | |
2659 | 249 | if (!PyList_Check(v) || !PyList_Check(w)) |
2660 | 219 | Py_RETURN_NOTIMPLEMENTED; |
2661 | | |
2662 | 30 | vl = (PyListObject *)v; |
2663 | 30 | wl = (PyListObject *)w; |
2664 | | |
2665 | 30 | if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) { |
2666 | | /* Shortcut: if the lengths differ, the lists differ */ |
2667 | 16 | if (op == Py_EQ) |
2668 | 16 | Py_RETURN_FALSE; |
2669 | 0 | else |
2670 | 0 | Py_RETURN_TRUE; |
2671 | 16 | } |
2672 | | |
2673 | | /* Search for the first index where items are different */ |
2674 | 70 | for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) { |
2675 | 56 | PyObject *vitem = vl->ob_item[i]; |
2676 | 56 | PyObject *witem = wl->ob_item[i]; |
2677 | 56 | if (vitem == witem) { |
2678 | 0 | continue; |
2679 | 0 | } |
2680 | | |
2681 | 56 | Py_INCREF(vitem); |
2682 | 56 | Py_INCREF(witem); |
2683 | 56 | int k = PyObject_RichCompareBool(vl->ob_item[i], |
2684 | 56 | wl->ob_item[i], Py_EQ); |
2685 | 56 | Py_DECREF(vitem); |
2686 | 56 | Py_DECREF(witem); |
2687 | 56 | if (k < 0) |
2688 | 0 | return NULL; |
2689 | 56 | if (!k) |
2690 | 0 | break; |
2691 | 56 | } |
2692 | | |
2693 | 14 | if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) { |
2694 | | /* No more items to compare -- compare sizes */ |
2695 | 14 | Py_RETURN_RICHCOMPARE(Py_SIZE(vl), Py_SIZE(wl), op); |
2696 | 14 | } |
2697 | | |
2698 | | /* We have an item that differs -- shortcuts for EQ/NE */ |
2699 | 0 | if (op == Py_EQ) { |
2700 | 0 | Py_RETURN_FALSE; |
2701 | 0 | } |
2702 | 0 | if (op == Py_NE) { |
2703 | 0 | Py_RETURN_TRUE; |
2704 | 0 | } |
2705 | | |
2706 | | /* Compare the final item again using the proper operator */ |
2707 | 0 | return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op); |
2708 | 0 | } |
2709 | | |
2710 | | /*[clinic input] |
2711 | | list.__init__ |
2712 | | |
2713 | | iterable: object(c_default="NULL") = () |
2714 | | / |
2715 | | |
2716 | | Built-in mutable sequence. |
2717 | | |
2718 | | If no argument is given, the constructor creates a new empty list. |
2719 | | The argument must be an iterable if specified. |
2720 | | [clinic start generated code]*/ |
2721 | | |
2722 | | static int |
2723 | | list___init___impl(PyListObject *self, PyObject *iterable) |
2724 | | /*[clinic end generated code: output=0f3c21379d01de48 input=b3f3fe7206af8f6b]*/ |
2725 | 35 | { |
2726 | | /* Verify list invariants established by PyType_GenericAlloc() */ |
2727 | 35 | assert(0 <= Py_SIZE(self)); |
2728 | 35 | assert(Py_SIZE(self) <= self->allocated || self->allocated == -1); |
2729 | 35 | assert(self->ob_item != NULL || |
2730 | 35 | self->allocated == 0 || self->allocated == -1); |
2731 | | |
2732 | | /* Empty previous contents */ |
2733 | 35 | if (self->ob_item != NULL) { |
2734 | 0 | (void)_list_clear(self); |
2735 | 0 | } |
2736 | 35 | if (iterable != NULL) { |
2737 | 21 | if (_PyObject_HasLen(iterable)) { |
2738 | 19 | Py_ssize_t iter_len = PyObject_Size(iterable); |
2739 | 19 | if (iter_len == -1) { |
2740 | 0 | if (!PyErr_ExceptionMatches(PyExc_TypeError)) { |
2741 | 0 | return -1; |
2742 | 0 | } |
2743 | 0 | PyErr_Clear(); |
2744 | 0 | } |
2745 | 19 | if (iter_len > 0 && self->ob_item == NULL |
2746 | 19 | && list_preallocate_exact(self, iter_len)) { |
2747 | 0 | return -1; |
2748 | 0 | } |
2749 | 19 | } |
2750 | 21 | PyObject *rv = list_extend(self, iterable); |
2751 | 21 | if (rv == NULL) |
2752 | 0 | return -1; |
2753 | 21 | Py_DECREF(rv); |
2754 | 21 | } |
2755 | 35 | return 0; |
2756 | 35 | } |
2757 | | |
2758 | | /*[clinic input] |
2759 | | list.__sizeof__ |
2760 | | |
2761 | | Return the size of the list in memory, in bytes. |
2762 | | [clinic start generated code]*/ |
2763 | | |
2764 | | static PyObject * |
2765 | | list___sizeof___impl(PyListObject *self) |
2766 | | /*[clinic end generated code: output=3417541f95f9a53e input=b8030a5d5ce8a187]*/ |
2767 | 0 | { |
2768 | 0 | Py_ssize_t res; |
2769 | |
|
2770 | 0 | res = _PyObject_SIZE(Py_TYPE(self)) + self->allocated * sizeof(void*); |
2771 | 0 | return PyLong_FromSsize_t(res); |
2772 | 0 | } |
2773 | | |
2774 | | static PyObject *list_iter(PyObject *seq); |
2775 | | static PyObject *list_subscript(PyListObject*, PyObject*); |
2776 | | |
2777 | | static PyMethodDef list_methods[] = { |
2778 | | {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, "x.__getitem__(y) <==> x[y]"}, |
2779 | | LIST___REVERSED___METHODDEF |
2780 | | LIST___SIZEOF___METHODDEF |
2781 | | LIST_CLEAR_METHODDEF |
2782 | | LIST_COPY_METHODDEF |
2783 | | LIST_APPEND_METHODDEF |
2784 | | LIST_INSERT_METHODDEF |
2785 | | LIST_EXTEND_METHODDEF |
2786 | | LIST_POP_METHODDEF |
2787 | | LIST_REMOVE_METHODDEF |
2788 | | LIST_INDEX_METHODDEF |
2789 | | LIST_COUNT_METHODDEF |
2790 | | LIST_REVERSE_METHODDEF |
2791 | | LIST_SORT_METHODDEF |
2792 | | {NULL, NULL} /* sentinel */ |
2793 | | }; |
2794 | | |
2795 | | static PySequenceMethods list_as_sequence = { |
2796 | | (lenfunc)list_length, /* sq_length */ |
2797 | | (binaryfunc)list_concat, /* sq_concat */ |
2798 | | (ssizeargfunc)list_repeat, /* sq_repeat */ |
2799 | | (ssizeargfunc)list_item, /* sq_item */ |
2800 | | 0, /* sq_slice */ |
2801 | | (ssizeobjargproc)list_ass_item, /* sq_ass_item */ |
2802 | | 0, /* sq_ass_slice */ |
2803 | | (objobjproc)list_contains, /* sq_contains */ |
2804 | | (binaryfunc)list_inplace_concat, /* sq_inplace_concat */ |
2805 | | (ssizeargfunc)list_inplace_repeat, /* sq_inplace_repeat */ |
2806 | | }; |
2807 | | |
2808 | | static PyObject * |
2809 | | list_subscript(PyListObject* self, PyObject* item) |
2810 | 970 | { |
2811 | 970 | if (PyIndex_Check(item)) { |
2812 | 925 | Py_ssize_t i; |
2813 | 925 | i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
2814 | 925 | if (i == -1 && PyErr_Occurred()) |
2815 | 0 | return NULL; |
2816 | 925 | if (i < 0) |
2817 | 1 | i += PyList_GET_SIZE(self); |
2818 | 925 | return list_item(self, i); |
2819 | 925 | } |
2820 | 45 | else if (PySlice_Check(item)) { |
2821 | 45 | Py_ssize_t start, stop, step, slicelength, cur, i; |
2822 | 45 | PyObject* result; |
2823 | 45 | PyObject* it; |
2824 | 45 | PyObject **src, **dest; |
2825 | | |
2826 | 45 | if (PySlice_Unpack(item, &start, &stop, &step) < 0) { |
2827 | 0 | return NULL; |
2828 | 0 | } |
2829 | 45 | slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, |
2830 | 45 | step); |
2831 | | |
2832 | 45 | if (slicelength <= 0) { |
2833 | 0 | return PyList_New(0); |
2834 | 0 | } |
2835 | 45 | else if (step == 1) { |
2836 | 45 | return list_slice(self, start, stop); |
2837 | 45 | } |
2838 | 0 | else { |
2839 | 0 | result = list_new_prealloc(slicelength); |
2840 | 0 | if (!result) return NULL; |
2841 | | |
2842 | 0 | src = self->ob_item; |
2843 | 0 | dest = ((PyListObject *)result)->ob_item; |
2844 | 0 | for (cur = start, i = 0; i < slicelength; |
2845 | 0 | cur += (size_t)step, i++) { |
2846 | 0 | it = src[cur]; |
2847 | 0 | Py_INCREF(it); |
2848 | 0 | dest[i] = it; |
2849 | 0 | } |
2850 | 0 | Py_SIZE(result) = slicelength; |
2851 | 0 | return result; |
2852 | 0 | } |
2853 | 45 | } |
2854 | 0 | else { |
2855 | 0 | PyErr_Format(PyExc_TypeError, |
2856 | 0 | "list indices must be integers or slices, not %.200s", |
2857 | 0 | item->ob_type->tp_name); |
2858 | 0 | return NULL; |
2859 | 0 | } |
2860 | 970 | } |
2861 | | |
2862 | | static int |
2863 | | list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value) |
2864 | 166 | { |
2865 | 166 | if (PyIndex_Check(item)) { |
2866 | 147 | Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
2867 | 147 | if (i == -1 && PyErr_Occurred()) |
2868 | 0 | return -1; |
2869 | 147 | if (i < 0) |
2870 | 31 | i += PyList_GET_SIZE(self); |
2871 | 147 | return list_ass_item(self, i, value); |
2872 | 147 | } |
2873 | 19 | else if (PySlice_Check(item)) { |
2874 | 19 | Py_ssize_t start, stop, step, slicelength; |
2875 | | |
2876 | 19 | if (PySlice_Unpack(item, &start, &stop, &step) < 0) { |
2877 | 0 | return -1; |
2878 | 0 | } |
2879 | 19 | slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, |
2880 | 19 | step); |
2881 | | |
2882 | 19 | if (step == 1) |
2883 | 19 | return list_ass_slice(self, start, stop, value); |
2884 | | |
2885 | | /* Make sure s[5:2] = [..] inserts at the right place: |
2886 | | before 5, not before 2. */ |
2887 | 0 | if ((step < 0 && start < stop) || |
2888 | 0 | (step > 0 && start > stop)) |
2889 | 0 | stop = start; |
2890 | |
|
2891 | 0 | if (value == NULL) { |
2892 | | /* delete slice */ |
2893 | 0 | PyObject **garbage; |
2894 | 0 | size_t cur; |
2895 | 0 | Py_ssize_t i; |
2896 | 0 | int res; |
2897 | |
|
2898 | 0 | if (slicelength <= 0) |
2899 | 0 | return 0; |
2900 | | |
2901 | 0 | if (step < 0) { |
2902 | 0 | stop = start + 1; |
2903 | 0 | start = stop + step*(slicelength - 1) - 1; |
2904 | 0 | step = -step; |
2905 | 0 | } |
2906 | |
|
2907 | 0 | garbage = (PyObject**) |
2908 | 0 | PyMem_MALLOC(slicelength*sizeof(PyObject*)); |
2909 | 0 | if (!garbage) { |
2910 | 0 | PyErr_NoMemory(); |
2911 | 0 | return -1; |
2912 | 0 | } |
2913 | | |
2914 | | /* drawing pictures might help understand these for |
2915 | | loops. Basically, we memmove the parts of the |
2916 | | list that are *not* part of the slice: step-1 |
2917 | | items for each item that is part of the slice, |
2918 | | and then tail end of the list that was not |
2919 | | covered by the slice */ |
2920 | 0 | for (cur = start, i = 0; |
2921 | 0 | cur < (size_t)stop; |
2922 | 0 | cur += step, i++) { |
2923 | 0 | Py_ssize_t lim = step - 1; |
2924 | |
|
2925 | 0 | garbage[i] = PyList_GET_ITEM(self, cur); |
2926 | |
|
2927 | 0 | if (cur + step >= (size_t)Py_SIZE(self)) { |
2928 | 0 | lim = Py_SIZE(self) - cur - 1; |
2929 | 0 | } |
2930 | |
|
2931 | 0 | memmove(self->ob_item + cur - i, |
2932 | 0 | self->ob_item + cur + 1, |
2933 | 0 | lim * sizeof(PyObject *)); |
2934 | 0 | } |
2935 | 0 | cur = start + (size_t)slicelength * step; |
2936 | 0 | if (cur < (size_t)Py_SIZE(self)) { |
2937 | 0 | memmove(self->ob_item + cur - slicelength, |
2938 | 0 | self->ob_item + cur, |
2939 | 0 | (Py_SIZE(self) - cur) * |
2940 | 0 | sizeof(PyObject *)); |
2941 | 0 | } |
2942 | |
|
2943 | 0 | Py_SIZE(self) -= slicelength; |
2944 | 0 | res = list_resize(self, Py_SIZE(self)); |
2945 | |
|
2946 | 0 | for (i = 0; i < slicelength; i++) { |
2947 | 0 | Py_DECREF(garbage[i]); |
2948 | 0 | } |
2949 | 0 | PyMem_FREE(garbage); |
2950 | |
|
2951 | 0 | return res; |
2952 | 0 | } |
2953 | 0 | else { |
2954 | | /* assign slice */ |
2955 | 0 | PyObject *ins, *seq; |
2956 | 0 | PyObject **garbage, **seqitems, **selfitems; |
2957 | 0 | Py_ssize_t cur, i; |
2958 | | |
2959 | | /* protect against a[::-1] = a */ |
2960 | 0 | if (self == (PyListObject*)value) { |
2961 | 0 | seq = list_slice((PyListObject*)value, 0, |
2962 | 0 | PyList_GET_SIZE(value)); |
2963 | 0 | } |
2964 | 0 | else { |
2965 | 0 | seq = PySequence_Fast(value, |
2966 | 0 | "must assign iterable " |
2967 | 0 | "to extended slice"); |
2968 | 0 | } |
2969 | 0 | if (!seq) |
2970 | 0 | return -1; |
2971 | | |
2972 | 0 | if (PySequence_Fast_GET_SIZE(seq) != slicelength) { |
2973 | 0 | PyErr_Format(PyExc_ValueError, |
2974 | 0 | "attempt to assign sequence of " |
2975 | 0 | "size %zd to extended slice of " |
2976 | 0 | "size %zd", |
2977 | 0 | PySequence_Fast_GET_SIZE(seq), |
2978 | 0 | slicelength); |
2979 | 0 | Py_DECREF(seq); |
2980 | 0 | return -1; |
2981 | 0 | } |
2982 | | |
2983 | 0 | if (!slicelength) { |
2984 | 0 | Py_DECREF(seq); |
2985 | 0 | return 0; |
2986 | 0 | } |
2987 | | |
2988 | 0 | garbage = (PyObject**) |
2989 | 0 | PyMem_MALLOC(slicelength*sizeof(PyObject*)); |
2990 | 0 | if (!garbage) { |
2991 | 0 | Py_DECREF(seq); |
2992 | 0 | PyErr_NoMemory(); |
2993 | 0 | return -1; |
2994 | 0 | } |
2995 | | |
2996 | 0 | selfitems = self->ob_item; |
2997 | 0 | seqitems = PySequence_Fast_ITEMS(seq); |
2998 | 0 | for (cur = start, i = 0; i < slicelength; |
2999 | 0 | cur += (size_t)step, i++) { |
3000 | 0 | garbage[i] = selfitems[cur]; |
3001 | 0 | ins = seqitems[i]; |
3002 | 0 | Py_INCREF(ins); |
3003 | 0 | selfitems[cur] = ins; |
3004 | 0 | } |
3005 | |
|
3006 | 0 | for (i = 0; i < slicelength; i++) { |
3007 | 0 | Py_DECREF(garbage[i]); |
3008 | 0 | } |
3009 | |
|
3010 | 0 | PyMem_FREE(garbage); |
3011 | 0 | Py_DECREF(seq); |
3012 | |
|
3013 | 0 | return 0; |
3014 | 0 | } |
3015 | 0 | } |
3016 | 0 | else { |
3017 | 0 | PyErr_Format(PyExc_TypeError, |
3018 | 0 | "list indices must be integers or slices, not %.200s", |
3019 | 0 | item->ob_type->tp_name); |
3020 | 0 | return -1; |
3021 | 0 | } |
3022 | 166 | } |
3023 | | |
3024 | | static PyMappingMethods list_as_mapping = { |
3025 | | (lenfunc)list_length, |
3026 | | (binaryfunc)list_subscript, |
3027 | | (objobjargproc)list_ass_subscript |
3028 | | }; |
3029 | | |
3030 | | PyTypeObject PyList_Type = { |
3031 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
3032 | | "list", |
3033 | | sizeof(PyListObject), |
3034 | | 0, |
3035 | | (destructor)list_dealloc, /* tp_dealloc */ |
3036 | | 0, /* tp_vectorcall_offset */ |
3037 | | 0, /* tp_getattr */ |
3038 | | 0, /* tp_setattr */ |
3039 | | 0, /* tp_as_async */ |
3040 | | (reprfunc)list_repr, /* tp_repr */ |
3041 | | 0, /* tp_as_number */ |
3042 | | &list_as_sequence, /* tp_as_sequence */ |
3043 | | &list_as_mapping, /* tp_as_mapping */ |
3044 | | PyObject_HashNotImplemented, /* tp_hash */ |
3045 | | 0, /* tp_call */ |
3046 | | 0, /* tp_str */ |
3047 | | PyObject_GenericGetAttr, /* tp_getattro */ |
3048 | | 0, /* tp_setattro */ |
3049 | | 0, /* tp_as_buffer */ |
3050 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
3051 | | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */ |
3052 | | list___init____doc__, /* tp_doc */ |
3053 | | (traverseproc)list_traverse, /* tp_traverse */ |
3054 | | (inquiry)_list_clear, /* tp_clear */ |
3055 | | list_richcompare, /* tp_richcompare */ |
3056 | | 0, /* tp_weaklistoffset */ |
3057 | | list_iter, /* tp_iter */ |
3058 | | 0, /* tp_iternext */ |
3059 | | list_methods, /* tp_methods */ |
3060 | | 0, /* tp_members */ |
3061 | | 0, /* tp_getset */ |
3062 | | 0, /* tp_base */ |
3063 | | 0, /* tp_dict */ |
3064 | | 0, /* tp_descr_get */ |
3065 | | 0, /* tp_descr_set */ |
3066 | | 0, /* tp_dictoffset */ |
3067 | | (initproc)list___init__, /* tp_init */ |
3068 | | PyType_GenericAlloc, /* tp_alloc */ |
3069 | | PyType_GenericNew, /* tp_new */ |
3070 | | PyObject_GC_Del, /* tp_free */ |
3071 | | }; |
3072 | | |
3073 | | /*********************** List Iterator **************************/ |
3074 | | |
3075 | | typedef struct { |
3076 | | PyObject_HEAD |
3077 | | Py_ssize_t it_index; |
3078 | | PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ |
3079 | | } listiterobject; |
3080 | | |
3081 | | static void listiter_dealloc(listiterobject *); |
3082 | | static int listiter_traverse(listiterobject *, visitproc, void *); |
3083 | | static PyObject *listiter_next(listiterobject *); |
3084 | | static PyObject *listiter_len(listiterobject *, PyObject *); |
3085 | | static PyObject *listiter_reduce_general(void *_it, int forward); |
3086 | | static PyObject *listiter_reduce(listiterobject *, PyObject *); |
3087 | | static PyObject *listiter_setstate(listiterobject *, PyObject *state); |
3088 | | |
3089 | | PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); |
3090 | | PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); |
3091 | | PyDoc_STRVAR(setstate_doc, "Set state information for unpickling."); |
3092 | | |
3093 | | static PyMethodDef listiter_methods[] = { |
3094 | | {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc}, |
3095 | | {"__reduce__", (PyCFunction)listiter_reduce, METH_NOARGS, reduce_doc}, |
3096 | | {"__setstate__", (PyCFunction)listiter_setstate, METH_O, setstate_doc}, |
3097 | | {NULL, NULL} /* sentinel */ |
3098 | | }; |
3099 | | |
3100 | | PyTypeObject PyListIter_Type = { |
3101 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
3102 | | "list_iterator", /* tp_name */ |
3103 | | sizeof(listiterobject), /* tp_basicsize */ |
3104 | | 0, /* tp_itemsize */ |
3105 | | /* methods */ |
3106 | | (destructor)listiter_dealloc, /* tp_dealloc */ |
3107 | | 0, /* tp_vectorcall_offset */ |
3108 | | 0, /* tp_getattr */ |
3109 | | 0, /* tp_setattr */ |
3110 | | 0, /* tp_as_async */ |
3111 | | 0, /* tp_repr */ |
3112 | | 0, /* tp_as_number */ |
3113 | | 0, /* tp_as_sequence */ |
3114 | | 0, /* tp_as_mapping */ |
3115 | | 0, /* tp_hash */ |
3116 | | 0, /* tp_call */ |
3117 | | 0, /* tp_str */ |
3118 | | PyObject_GenericGetAttr, /* tp_getattro */ |
3119 | | 0, /* tp_setattro */ |
3120 | | 0, /* tp_as_buffer */ |
3121 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
3122 | | 0, /* tp_doc */ |
3123 | | (traverseproc)listiter_traverse, /* tp_traverse */ |
3124 | | 0, /* tp_clear */ |
3125 | | 0, /* tp_richcompare */ |
3126 | | 0, /* tp_weaklistoffset */ |
3127 | | PyObject_SelfIter, /* tp_iter */ |
3128 | | (iternextfunc)listiter_next, /* tp_iternext */ |
3129 | | listiter_methods, /* tp_methods */ |
3130 | | 0, /* tp_members */ |
3131 | | }; |
3132 | | |
3133 | | |
3134 | | static PyObject * |
3135 | | list_iter(PyObject *seq) |
3136 | 1.71k | { |
3137 | 1.71k | listiterobject *it; |
3138 | | |
3139 | 1.71k | if (!PyList_Check(seq)) { |
3140 | 0 | PyErr_BadInternalCall(); |
3141 | 0 | return NULL; |
3142 | 0 | } |
3143 | 1.71k | it = PyObject_GC_New(listiterobject, &PyListIter_Type); |
3144 | 1.71k | if (it == NULL) |
3145 | 0 | return NULL; |
3146 | 1.71k | it->it_index = 0; |
3147 | 1.71k | Py_INCREF(seq); |
3148 | 1.71k | it->it_seq = (PyListObject *)seq; |
3149 | 1.71k | _PyObject_GC_TRACK(it); |
3150 | 1.71k | return (PyObject *)it; |
3151 | 1.71k | } |
3152 | | |
3153 | | static void |
3154 | | listiter_dealloc(listiterobject *it) |
3155 | 1.71k | { |
3156 | 1.71k | _PyObject_GC_UNTRACK(it); |
3157 | 1.71k | Py_XDECREF(it->it_seq); |
3158 | 1.71k | PyObject_GC_Del(it); |
3159 | 1.71k | } |
3160 | | |
3161 | | static int |
3162 | | listiter_traverse(listiterobject *it, visitproc visit, void *arg) |
3163 | 0 | { |
3164 | 0 | Py_VISIT(it->it_seq); |
3165 | 0 | return 0; |
3166 | 0 | } |
3167 | | |
3168 | | static PyObject * |
3169 | | listiter_next(listiterobject *it) |
3170 | 14.1k | { |
3171 | 14.1k | PyListObject *seq; |
3172 | 14.1k | PyObject *item; |
3173 | | |
3174 | 14.1k | assert(it != NULL); |
3175 | 14.1k | seq = it->it_seq; |
3176 | 14.1k | if (seq == NULL) |
3177 | 0 | return NULL; |
3178 | 14.1k | assert(PyList_Check(seq)); |
3179 | | |
3180 | 14.1k | if (it->it_index < PyList_GET_SIZE(seq)) { |
3181 | 13.3k | item = PyList_GET_ITEM(seq, it->it_index); |
3182 | 13.3k | ++it->it_index; |
3183 | 13.3k | Py_INCREF(item); |
3184 | 13.3k | return item; |
3185 | 13.3k | } |
3186 | | |
3187 | 827 | it->it_seq = NULL; |
3188 | 827 | Py_DECREF(seq); |
3189 | 827 | return NULL; |
3190 | 14.1k | } |
3191 | | |
3192 | | static PyObject * |
3193 | | listiter_len(listiterobject *it, PyObject *Py_UNUSED(ignored)) |
3194 | 0 | { |
3195 | 0 | Py_ssize_t len; |
3196 | 0 | if (it->it_seq) { |
3197 | 0 | len = PyList_GET_SIZE(it->it_seq) - it->it_index; |
3198 | 0 | if (len >= 0) |
3199 | 0 | return PyLong_FromSsize_t(len); |
3200 | 0 | } |
3201 | 0 | return PyLong_FromLong(0); |
3202 | 0 | } |
3203 | | |
3204 | | static PyObject * |
3205 | | listiter_reduce(listiterobject *it, PyObject *Py_UNUSED(ignored)) |
3206 | 0 | { |
3207 | 0 | return listiter_reduce_general(it, 1); |
3208 | 0 | } |
3209 | | |
3210 | | static PyObject * |
3211 | | listiter_setstate(listiterobject *it, PyObject *state) |
3212 | 0 | { |
3213 | 0 | Py_ssize_t index = PyLong_AsSsize_t(state); |
3214 | 0 | if (index == -1 && PyErr_Occurred()) |
3215 | 0 | return NULL; |
3216 | 0 | if (it->it_seq != NULL) { |
3217 | 0 | if (index < 0) |
3218 | 0 | index = 0; |
3219 | 0 | else if (index > PyList_GET_SIZE(it->it_seq)) |
3220 | 0 | index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */ |
3221 | 0 | it->it_index = index; |
3222 | 0 | } |
3223 | 0 | Py_RETURN_NONE; |
3224 | 0 | } |
3225 | | |
3226 | | /*********************** List Reverse Iterator **************************/ |
3227 | | |
3228 | | typedef struct { |
3229 | | PyObject_HEAD |
3230 | | Py_ssize_t it_index; |
3231 | | PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ |
3232 | | } listreviterobject; |
3233 | | |
3234 | | static void listreviter_dealloc(listreviterobject *); |
3235 | | static int listreviter_traverse(listreviterobject *, visitproc, void *); |
3236 | | static PyObject *listreviter_next(listreviterobject *); |
3237 | | static PyObject *listreviter_len(listreviterobject *, PyObject *); |
3238 | | static PyObject *listreviter_reduce(listreviterobject *, PyObject *); |
3239 | | static PyObject *listreviter_setstate(listreviterobject *, PyObject *); |
3240 | | |
3241 | | static PyMethodDef listreviter_methods[] = { |
3242 | | {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc}, |
3243 | | {"__reduce__", (PyCFunction)listreviter_reduce, METH_NOARGS, reduce_doc}, |
3244 | | {"__setstate__", (PyCFunction)listreviter_setstate, METH_O, setstate_doc}, |
3245 | | {NULL, NULL} /* sentinel */ |
3246 | | }; |
3247 | | |
3248 | | PyTypeObject PyListRevIter_Type = { |
3249 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
3250 | | "list_reverseiterator", /* tp_name */ |
3251 | | sizeof(listreviterobject), /* tp_basicsize */ |
3252 | | 0, /* tp_itemsize */ |
3253 | | /* methods */ |
3254 | | (destructor)listreviter_dealloc, /* tp_dealloc */ |
3255 | | 0, /* tp_vectorcall_offset */ |
3256 | | 0, /* tp_getattr */ |
3257 | | 0, /* tp_setattr */ |
3258 | | 0, /* tp_as_async */ |
3259 | | 0, /* tp_repr */ |
3260 | | 0, /* tp_as_number */ |
3261 | | 0, /* tp_as_sequence */ |
3262 | | 0, /* tp_as_mapping */ |
3263 | | 0, /* tp_hash */ |
3264 | | 0, /* tp_call */ |
3265 | | 0, /* tp_str */ |
3266 | | PyObject_GenericGetAttr, /* tp_getattro */ |
3267 | | 0, /* tp_setattro */ |
3268 | | 0, /* tp_as_buffer */ |
3269 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
3270 | | 0, /* tp_doc */ |
3271 | | (traverseproc)listreviter_traverse, /* tp_traverse */ |
3272 | | 0, /* tp_clear */ |
3273 | | 0, /* tp_richcompare */ |
3274 | | 0, /* tp_weaklistoffset */ |
3275 | | PyObject_SelfIter, /* tp_iter */ |
3276 | | (iternextfunc)listreviter_next, /* tp_iternext */ |
3277 | | listreviter_methods, /* tp_methods */ |
3278 | | 0, |
3279 | | }; |
3280 | | |
3281 | | /*[clinic input] |
3282 | | list.__reversed__ |
3283 | | |
3284 | | Return a reverse iterator over the list. |
3285 | | [clinic start generated code]*/ |
3286 | | |
3287 | | static PyObject * |
3288 | | list___reversed___impl(PyListObject *self) |
3289 | | /*[clinic end generated code: output=b166f073208c888c input=eadb6e17f8a6a280]*/ |
3290 | 16 | { |
3291 | 16 | listreviterobject *it; |
3292 | | |
3293 | 16 | it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type); |
3294 | 16 | if (it == NULL) |
3295 | 0 | return NULL; |
3296 | 16 | assert(PyList_Check(self)); |
3297 | 16 | it->it_index = PyList_GET_SIZE(self) - 1; |
3298 | 16 | Py_INCREF(self); |
3299 | 16 | it->it_seq = self; |
3300 | 16 | PyObject_GC_Track(it); |
3301 | 16 | return (PyObject *)it; |
3302 | 16 | } |
3303 | | |
3304 | | static void |
3305 | | listreviter_dealloc(listreviterobject *it) |
3306 | 16 | { |
3307 | 16 | PyObject_GC_UnTrack(it); |
3308 | 16 | Py_XDECREF(it->it_seq); |
3309 | 16 | PyObject_GC_Del(it); |
3310 | 16 | } |
3311 | | |
3312 | | static int |
3313 | | listreviter_traverse(listreviterobject *it, visitproc visit, void *arg) |
3314 | 0 | { |
3315 | 0 | Py_VISIT(it->it_seq); |
3316 | 0 | return 0; |
3317 | 0 | } |
3318 | | |
3319 | | static PyObject * |
3320 | | listreviter_next(listreviterobject *it) |
3321 | 4 | { |
3322 | 4 | PyObject *item; |
3323 | 4 | Py_ssize_t index; |
3324 | 4 | PyListObject *seq; |
3325 | | |
3326 | 4 | assert(it != NULL); |
3327 | 4 | seq = it->it_seq; |
3328 | 4 | if (seq == NULL) { |
3329 | 0 | return NULL; |
3330 | 0 | } |
3331 | 4 | assert(PyList_Check(seq)); |
3332 | | |
3333 | 4 | index = it->it_index; |
3334 | 4 | if (index>=0 && index < PyList_GET_SIZE(seq)) { |
3335 | 2 | item = PyList_GET_ITEM(seq, index); |
3336 | 2 | it->it_index--; |
3337 | 2 | Py_INCREF(item); |
3338 | 2 | return item; |
3339 | 2 | } |
3340 | 2 | it->it_index = -1; |
3341 | 2 | it->it_seq = NULL; |
3342 | 2 | Py_DECREF(seq); |
3343 | 2 | return NULL; |
3344 | 4 | } |
3345 | | |
3346 | | static PyObject * |
3347 | | listreviter_len(listreviterobject *it, PyObject *Py_UNUSED(ignored)) |
3348 | 0 | { |
3349 | 0 | Py_ssize_t len = it->it_index + 1; |
3350 | 0 | if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len) |
3351 | 0 | len = 0; |
3352 | 0 | return PyLong_FromSsize_t(len); |
3353 | 0 | } |
3354 | | |
3355 | | static PyObject * |
3356 | | listreviter_reduce(listreviterobject *it, PyObject *Py_UNUSED(ignored)) |
3357 | 0 | { |
3358 | 0 | return listiter_reduce_general(it, 0); |
3359 | 0 | } |
3360 | | |
3361 | | static PyObject * |
3362 | | listreviter_setstate(listreviterobject *it, PyObject *state) |
3363 | 0 | { |
3364 | 0 | Py_ssize_t index = PyLong_AsSsize_t(state); |
3365 | 0 | if (index == -1 && PyErr_Occurred()) |
3366 | 0 | return NULL; |
3367 | 0 | if (it->it_seq != NULL) { |
3368 | 0 | if (index < -1) |
3369 | 0 | index = -1; |
3370 | 0 | else if (index > PyList_GET_SIZE(it->it_seq) - 1) |
3371 | 0 | index = PyList_GET_SIZE(it->it_seq) - 1; |
3372 | 0 | it->it_index = index; |
3373 | 0 | } |
3374 | 0 | Py_RETURN_NONE; |
3375 | 0 | } |
3376 | | |
3377 | | /* common pickling support */ |
3378 | | |
3379 | | static PyObject * |
3380 | | listiter_reduce_general(void *_it, int forward) |
3381 | 0 | { |
3382 | 0 | _Py_IDENTIFIER(iter); |
3383 | 0 | _Py_IDENTIFIER(reversed); |
3384 | 0 | PyObject *list; |
3385 | | |
3386 | | /* the objects are not the same, index is of different types! */ |
3387 | 0 | if (forward) { |
3388 | 0 | listiterobject *it = (listiterobject *)_it; |
3389 | 0 | if (it->it_seq) |
3390 | 0 | return Py_BuildValue("N(O)n", _PyEval_GetBuiltinId(&PyId_iter), |
3391 | 0 | it->it_seq, it->it_index); |
3392 | 0 | } else { |
3393 | 0 | listreviterobject *it = (listreviterobject *)_it; |
3394 | 0 | if (it->it_seq) |
3395 | 0 | return Py_BuildValue("N(O)n", _PyEval_GetBuiltinId(&PyId_reversed), |
3396 | 0 | it->it_seq, it->it_index); |
3397 | 0 | } |
3398 | | /* empty iterator, create an empty list */ |
3399 | 0 | list = PyList_New(0); |
3400 | 0 | if (list == NULL) |
3401 | 0 | return NULL; |
3402 | 0 | return Py_BuildValue("N(N)", _PyEval_GetBuiltinId(&PyId_iter), list); |
3403 | 0 | } |