/src/Python-3.8.3/Objects/longobject.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* Long (arbitrary precision) integer object implementation */ |
2 | | |
3 | | /* XXX The functional organization of this file is terrible */ |
4 | | |
5 | | #include "Python.h" |
6 | | #include "longintrepr.h" |
7 | | |
8 | | #include <float.h> |
9 | | #include <ctype.h> |
10 | | #include <stddef.h> |
11 | | |
12 | | #include "clinic/longobject.c.h" |
13 | | /*[clinic input] |
14 | | class int "PyObject *" "&PyLong_Type" |
15 | | [clinic start generated code]*/ |
16 | | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/ |
17 | | |
18 | | #ifndef NSMALLPOSINTS |
19 | 43.8k | #define NSMALLPOSINTS 257 |
20 | | #endif |
21 | | #ifndef NSMALLNEGINTS |
22 | 65.6k | #define NSMALLNEGINTS 5 |
23 | | #endif |
24 | | |
25 | | _Py_IDENTIFIER(little); |
26 | | _Py_IDENTIFIER(big); |
27 | | |
28 | | /* convert a PyLong of size 1, 0 or -1 to an sdigit */ |
29 | 8.73k | #define MEDIUM_VALUE(x) (assert(-1 <= Py_SIZE(x) && Py_SIZE(x) <= 1), \ |
30 | 8.73k | Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \ |
31 | 8.73k | (Py_SIZE(x) == 0 ? (sdigit)0 : \ |
32 | 8.49k | (sdigit)(x)->ob_digit[0])) |
33 | | |
34 | | PyObject *_PyLong_Zero = NULL; |
35 | | PyObject *_PyLong_One = NULL; |
36 | | |
37 | | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
38 | | /* Small integers are preallocated in this array so that they |
39 | | can be shared. |
40 | | The integers that are preallocated are those in the range |
41 | | -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive). |
42 | | */ |
43 | | static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS]; |
44 | | #ifdef COUNT_ALLOCS |
45 | | Py_ssize_t _Py_quick_int_allocs, _Py_quick_neg_int_allocs; |
46 | | #endif |
47 | | |
48 | | static PyObject * |
49 | | get_small_int(sdigit ival) |
50 | 25.4k | { |
51 | 25.4k | PyObject *v; |
52 | 25.4k | assert(-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS); |
53 | 25.4k | v = (PyObject *)&small_ints[ival + NSMALLNEGINTS]; |
54 | 25.4k | Py_INCREF(v); |
55 | | #ifdef COUNT_ALLOCS |
56 | | if (ival >= 0) |
57 | | _Py_quick_int_allocs++; |
58 | | else |
59 | | _Py_quick_neg_int_allocs++; |
60 | | #endif |
61 | 25.4k | return v; |
62 | 25.4k | } |
63 | | #define CHECK_SMALL_INT(ival) \ |
64 | 37.9k | do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \ |
65 | 23.9k | return get_small_int((sdigit)ival); \ |
66 | 23.9k | } while(0) |
67 | | |
68 | | static PyLongObject * |
69 | | maybe_small_long(PyLongObject *v) |
70 | 2.48k | { |
71 | 2.48k | if (v && Py_ABS(Py_SIZE(v)) <= 1) { |
72 | 2.21k | sdigit ival = MEDIUM_VALUE(v); |
73 | 2.21k | if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { |
74 | 1.58k | Py_DECREF(v); |
75 | 1.58k | return (PyLongObject *)get_small_int(ival); |
76 | 1.58k | } |
77 | 2.21k | } |
78 | 897 | return v; |
79 | 2.48k | } |
80 | | #else |
81 | | #define CHECK_SMALL_INT(ival) |
82 | | #define maybe_small_long(val) (val) |
83 | | #endif |
84 | | |
85 | | /* If a freshly-allocated int is already shared, it must |
86 | | be a small integer, so negating it must go to PyLong_FromLong */ |
87 | | Py_LOCAL_INLINE(void) |
88 | | _PyLong_Negate(PyLongObject **x_p) |
89 | 0 | { |
90 | 0 | PyLongObject *x; |
91 | |
|
92 | 0 | x = (PyLongObject *)*x_p; |
93 | 0 | if (Py_REFCNT(x) == 1) { |
94 | 0 | Py_SIZE(x) = -Py_SIZE(x); |
95 | 0 | return; |
96 | 0 | } |
97 | | |
98 | 0 | *x_p = (PyLongObject *)PyLong_FromLong(-MEDIUM_VALUE(x)); |
99 | 0 | Py_DECREF(x); |
100 | 0 | } |
101 | | |
102 | | /* For int multiplication, use the O(N**2) school algorithm unless |
103 | | * both operands contain more than KARATSUBA_CUTOFF digits (this |
104 | | * being an internal Python int digit, in base BASE). |
105 | | */ |
106 | 5.17k | #define KARATSUBA_CUTOFF 70 |
107 | 0 | #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF) |
108 | | |
109 | | /* For exponentiation, use the binary left-to-right algorithm |
110 | | * unless the exponent contains more than FIVEARY_CUTOFF digits. |
111 | | * In that case, do 5 bits at a time. The potential drawback is that |
112 | | * a table of 2**5 intermediate results is computed. |
113 | | */ |
114 | 0 | #define FIVEARY_CUTOFF 8 |
115 | | |
116 | | #define SIGCHECK(PyTryBlock) \ |
117 | 2.67k | do { \ |
118 | 2.67k | if (PyErr_CheckSignals()) PyTryBlock \ |
119 | 2.67k | } while(0) |
120 | | |
121 | | /* Normalize (remove leading zeros from) an int object. |
122 | | Doesn't attempt to free the storage--in most cases, due to the nature |
123 | | of the algorithms used, this could save at most be one word anyway. */ |
124 | | |
125 | | static PyLongObject * |
126 | | long_normalize(PyLongObject *v) |
127 | 8.64k | { |
128 | 8.64k | Py_ssize_t j = Py_ABS(Py_SIZE(v)); |
129 | 8.64k | Py_ssize_t i = j; |
130 | | |
131 | 11.7k | while (i > 0 && v->ob_digit[i-1] == 0) |
132 | 3.11k | --i; |
133 | 8.64k | if (i != j) |
134 | 3.03k | Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i; |
135 | 8.64k | return v; |
136 | 8.64k | } |
137 | | |
138 | | /* _PyLong_FromNbInt: Convert the given object to a PyLongObject |
139 | | using the nb_int slot, if available. Raise TypeError if either the |
140 | | nb_int slot is not available or the result of the call to nb_int |
141 | | returns something not of type int. |
142 | | */ |
143 | | PyObject * |
144 | | _PyLong_FromNbInt(PyObject *integral) |
145 | 249 | { |
146 | 249 | PyNumberMethods *nb; |
147 | 249 | PyObject *result; |
148 | | |
149 | | /* Fast path for the case that we already have an int. */ |
150 | 249 | if (PyLong_CheckExact(integral)) { |
151 | 0 | Py_INCREF(integral); |
152 | 0 | return integral; |
153 | 0 | } |
154 | | |
155 | 249 | nb = Py_TYPE(integral)->tp_as_number; |
156 | 249 | if (nb == NULL || nb->nb_int == NULL) { |
157 | 0 | PyErr_Format(PyExc_TypeError, |
158 | 0 | "an integer is required (got type %.200s)", |
159 | 0 | Py_TYPE(integral)->tp_name); |
160 | 0 | return NULL; |
161 | 0 | } |
162 | | |
163 | | /* Convert using the nb_int slot, which should return something |
164 | | of exact type int. */ |
165 | 249 | result = nb->nb_int(integral); |
166 | 249 | if (!result || PyLong_CheckExact(result)) |
167 | 249 | return result; |
168 | 0 | if (!PyLong_Check(result)) { |
169 | 0 | PyErr_Format(PyExc_TypeError, |
170 | 0 | "__int__ returned non-int (type %.200s)", |
171 | 0 | result->ob_type->tp_name); |
172 | 0 | Py_DECREF(result); |
173 | 0 | return NULL; |
174 | 0 | } |
175 | | /* Issue #17576: warn if 'result' not of exact type int. */ |
176 | 0 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
177 | 0 | "__int__ returned non-int (type %.200s). " |
178 | 0 | "The ability to return an instance of a strict subclass of int " |
179 | 0 | "is deprecated, and may be removed in a future version of Python.", |
180 | 0 | result->ob_type->tp_name)) { |
181 | 0 | Py_DECREF(result); |
182 | 0 | return NULL; |
183 | 0 | } |
184 | 0 | return result; |
185 | 0 | } |
186 | | |
187 | | /* Convert the given object to a PyLongObject using the nb_index or |
188 | | nb_int slots, if available (the latter is deprecated). |
189 | | Raise TypeError if either nb_index and nb_int slots are not |
190 | | available or the result of the call to nb_index or nb_int |
191 | | returns something not of type int. |
192 | | Should be replaced with PyNumber_Index after the end of the |
193 | | deprecation period. |
194 | | */ |
195 | | PyObject * |
196 | | _PyLong_FromNbIndexOrNbInt(PyObject *integral) |
197 | 236 | { |
198 | 236 | PyNumberMethods *nb; |
199 | 236 | PyObject *result; |
200 | | |
201 | | /* Fast path for the case that we already have an int. */ |
202 | 236 | if (PyLong_CheckExact(integral)) { |
203 | 0 | Py_INCREF(integral); |
204 | 0 | return integral; |
205 | 0 | } |
206 | | |
207 | 236 | nb = Py_TYPE(integral)->tp_as_number; |
208 | 236 | if (nb == NULL || (nb->nb_index == NULL && nb->nb_int == NULL)) { |
209 | 236 | PyErr_Format(PyExc_TypeError, |
210 | 236 | "an integer is required (got type %.200s)", |
211 | 236 | Py_TYPE(integral)->tp_name); |
212 | 236 | return NULL; |
213 | 236 | } |
214 | | |
215 | 0 | if (nb->nb_index) { |
216 | | /* Convert using the nb_index slot, which should return something |
217 | | of exact type int. */ |
218 | 0 | result = nb->nb_index(integral); |
219 | 0 | if (!result || PyLong_CheckExact(result)) |
220 | 0 | return result; |
221 | 0 | if (!PyLong_Check(result)) { |
222 | 0 | PyErr_Format(PyExc_TypeError, |
223 | 0 | "__index__ returned non-int (type %.200s)", |
224 | 0 | result->ob_type->tp_name); |
225 | 0 | Py_DECREF(result); |
226 | 0 | return NULL; |
227 | 0 | } |
228 | | /* Issue #17576: warn if 'result' not of exact type int. */ |
229 | 0 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
230 | 0 | "__index__ returned non-int (type %.200s). " |
231 | 0 | "The ability to return an instance of a strict subclass of int " |
232 | 0 | "is deprecated, and may be removed in a future version of Python.", |
233 | 0 | result->ob_type->tp_name)) |
234 | 0 | { |
235 | 0 | Py_DECREF(result); |
236 | 0 | return NULL; |
237 | 0 | } |
238 | 0 | return result; |
239 | 0 | } |
240 | | |
241 | 0 | result = _PyLong_FromNbInt(integral); |
242 | 0 | if (result && PyErr_WarnFormat(PyExc_DeprecationWarning, 1, |
243 | 0 | "an integer is required (got type %.200s). " |
244 | 0 | "Implicit conversion to integers using __int__ is deprecated, " |
245 | 0 | "and may be removed in a future version of Python.", |
246 | 0 | Py_TYPE(integral)->tp_name)) |
247 | 0 | { |
248 | 0 | Py_DECREF(result); |
249 | 0 | return NULL; |
250 | 0 | } |
251 | 0 | return result; |
252 | 0 | } |
253 | | |
254 | | |
255 | | /* Allocate a new int object with size digits. |
256 | | Return NULL and set exception if we run out of memory. */ |
257 | | |
258 | | #define MAX_LONG_DIGITS \ |
259 | 28.4k | ((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit)) |
260 | | |
261 | | PyLongObject * |
262 | | _PyLong_New(Py_ssize_t size) |
263 | 28.4k | { |
264 | 28.4k | PyLongObject *result; |
265 | | /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) + |
266 | | sizeof(digit)*size. Previous incarnations of this code used |
267 | | sizeof(PyVarObject) instead of the offsetof, but this risks being |
268 | | incorrect in the presence of padding between the PyVarObject header |
269 | | and the digits. */ |
270 | 28.4k | if (size > (Py_ssize_t)MAX_LONG_DIGITS) { |
271 | 0 | PyErr_SetString(PyExc_OverflowError, |
272 | 0 | "too many digits in integer"); |
273 | 0 | return NULL; |
274 | 0 | } |
275 | 28.4k | result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) + |
276 | 28.4k | size*sizeof(digit)); |
277 | 28.4k | if (!result) { |
278 | 0 | PyErr_NoMemory(); |
279 | 0 | return NULL; |
280 | 0 | } |
281 | 28.4k | return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size); |
282 | 28.4k | } |
283 | | |
284 | | PyObject * |
285 | | _PyLong_Copy(PyLongObject *src) |
286 | 0 | { |
287 | 0 | PyLongObject *result; |
288 | 0 | Py_ssize_t i; |
289 | |
|
290 | 0 | assert(src != NULL); |
291 | 0 | i = Py_SIZE(src); |
292 | 0 | if (i < 0) |
293 | 0 | i = -(i); |
294 | 0 | if (i < 2) { |
295 | 0 | sdigit ival = MEDIUM_VALUE(src); |
296 | 0 | CHECK_SMALL_INT(ival); |
297 | 0 | } |
298 | 0 | result = _PyLong_New(i); |
299 | 0 | if (result != NULL) { |
300 | 0 | Py_SIZE(result) = Py_SIZE(src); |
301 | 0 | while (--i >= 0) |
302 | 0 | result->ob_digit[i] = src->ob_digit[i]; |
303 | 0 | } |
304 | 0 | return (PyObject *)result; |
305 | 0 | } |
306 | | |
307 | | /* Create a new int object from a C long int */ |
308 | | |
309 | | PyObject * |
310 | | PyLong_FromLong(long ival) |
311 | 29.2k | { |
312 | 29.2k | PyLongObject *v; |
313 | 29.2k | unsigned long abs_ival; |
314 | 29.2k | unsigned long t; /* unsigned so >> doesn't propagate sign bit */ |
315 | 29.2k | int ndigits = 0; |
316 | 29.2k | int sign; |
317 | | |
318 | 29.2k | CHECK_SMALL_INT(ival); |
319 | | |
320 | 9.44k | if (ival < 0) { |
321 | | /* negate: can't write this as abs_ival = -ival since that |
322 | | invokes undefined behaviour when ival is LONG_MIN */ |
323 | 54 | abs_ival = 0U-(unsigned long)ival; |
324 | 54 | sign = -1; |
325 | 54 | } |
326 | 9.39k | else { |
327 | 9.39k | abs_ival = (unsigned long)ival; |
328 | 9.39k | sign = ival == 0 ? 0 : 1; |
329 | 9.39k | } |
330 | | |
331 | | /* Fast path for single-digit ints */ |
332 | 9.44k | if (!(abs_ival >> PyLong_SHIFT)) { |
333 | 8.99k | v = _PyLong_New(1); |
334 | 8.99k | if (v) { |
335 | 8.99k | Py_SIZE(v) = sign; |
336 | 8.99k | v->ob_digit[0] = Py_SAFE_DOWNCAST( |
337 | 8.99k | abs_ival, unsigned long, digit); |
338 | 8.99k | } |
339 | 8.99k | return (PyObject*)v; |
340 | 8.99k | } |
341 | | |
342 | | #if PyLong_SHIFT==15 |
343 | | /* 2 digits */ |
344 | | if (!(abs_ival >> 2*PyLong_SHIFT)) { |
345 | | v = _PyLong_New(2); |
346 | | if (v) { |
347 | | Py_SIZE(v) = 2*sign; |
348 | | v->ob_digit[0] = Py_SAFE_DOWNCAST( |
349 | | abs_ival & PyLong_MASK, unsigned long, digit); |
350 | | v->ob_digit[1] = Py_SAFE_DOWNCAST( |
351 | | abs_ival >> PyLong_SHIFT, unsigned long, digit); |
352 | | } |
353 | | return (PyObject*)v; |
354 | | } |
355 | | #endif |
356 | | |
357 | | /* Larger numbers: loop to determine number of digits */ |
358 | 446 | t = abs_ival; |
359 | 1.33k | while (t) { |
360 | 892 | ++ndigits; |
361 | 892 | t >>= PyLong_SHIFT; |
362 | 892 | } |
363 | 446 | v = _PyLong_New(ndigits); |
364 | 446 | if (v != NULL) { |
365 | 446 | digit *p = v->ob_digit; |
366 | 446 | Py_SIZE(v) = ndigits*sign; |
367 | 446 | t = abs_ival; |
368 | 1.33k | while (t) { |
369 | 892 | *p++ = Py_SAFE_DOWNCAST( |
370 | 892 | t & PyLong_MASK, unsigned long, digit); |
371 | 892 | t >>= PyLong_SHIFT; |
372 | 892 | } |
373 | 446 | } |
374 | 446 | return (PyObject *)v; |
375 | 9.44k | } |
376 | | |
377 | | /* Create a new int object from a C unsigned long int */ |
378 | | |
379 | | PyObject * |
380 | | PyLong_FromUnsignedLong(unsigned long ival) |
381 | 10.1k | { |
382 | 10.1k | PyLongObject *v; |
383 | 10.1k | unsigned long t; |
384 | 10.1k | int ndigits = 0; |
385 | | |
386 | 10.1k | if (ival < PyLong_BASE) |
387 | 4.67k | return PyLong_FromLong(ival); |
388 | | /* Count the number of Python digits. */ |
389 | 5.45k | t = ival; |
390 | 16.3k | while (t) { |
391 | 10.9k | ++ndigits; |
392 | 10.9k | t >>= PyLong_SHIFT; |
393 | 10.9k | } |
394 | 5.45k | v = _PyLong_New(ndigits); |
395 | 5.45k | if (v != NULL) { |
396 | 5.45k | digit *p = v->ob_digit; |
397 | 16.3k | while (ival) { |
398 | 10.9k | *p++ = (digit)(ival & PyLong_MASK); |
399 | 10.9k | ival >>= PyLong_SHIFT; |
400 | 10.9k | } |
401 | 5.45k | } |
402 | 5.45k | return (PyObject *)v; |
403 | 10.1k | } |
404 | | |
405 | | /* Create a new int object from a C double */ |
406 | | |
407 | | PyObject * |
408 | | PyLong_FromDouble(double dval) |
409 | 0 | { |
410 | 0 | PyLongObject *v; |
411 | 0 | double frac; |
412 | 0 | int i, ndig, expo, neg; |
413 | 0 | neg = 0; |
414 | 0 | if (Py_IS_INFINITY(dval)) { |
415 | 0 | PyErr_SetString(PyExc_OverflowError, |
416 | 0 | "cannot convert float infinity to integer"); |
417 | 0 | return NULL; |
418 | 0 | } |
419 | 0 | if (Py_IS_NAN(dval)) { |
420 | 0 | PyErr_SetString(PyExc_ValueError, |
421 | 0 | "cannot convert float NaN to integer"); |
422 | 0 | return NULL; |
423 | 0 | } |
424 | 0 | if (dval < 0.0) { |
425 | 0 | neg = 1; |
426 | 0 | dval = -dval; |
427 | 0 | } |
428 | 0 | frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */ |
429 | 0 | if (expo <= 0) |
430 | 0 | return PyLong_FromLong(0L); |
431 | 0 | ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */ |
432 | 0 | v = _PyLong_New(ndig); |
433 | 0 | if (v == NULL) |
434 | 0 | return NULL; |
435 | 0 | frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1); |
436 | 0 | for (i = ndig; --i >= 0; ) { |
437 | 0 | digit bits = (digit)frac; |
438 | 0 | v->ob_digit[i] = bits; |
439 | 0 | frac = frac - (double)bits; |
440 | 0 | frac = ldexp(frac, PyLong_SHIFT); |
441 | 0 | } |
442 | 0 | if (neg) |
443 | 0 | Py_SIZE(v) = -(Py_SIZE(v)); |
444 | 0 | return (PyObject *)v; |
445 | 0 | } |
446 | | |
447 | | /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define |
448 | | * anything about what happens when a signed integer operation overflows, |
449 | | * and some compilers think they're doing you a favor by being "clever" |
450 | | * then. The bit pattern for the largest positive signed long is |
451 | | * (unsigned long)LONG_MAX, and for the smallest negative signed long |
452 | | * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN. |
453 | | * However, some other compilers warn about applying unary minus to an |
454 | | * unsigned operand. Hence the weird "0-". |
455 | | */ |
456 | 0 | #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN) |
457 | 0 | #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN) |
458 | | |
459 | | /* Get a C long int from an int object or any object that has an __int__ |
460 | | method. |
461 | | |
462 | | On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of |
463 | | the result. Otherwise *overflow is 0. |
464 | | |
465 | | For other errors (e.g., TypeError), return -1 and set an error condition. |
466 | | In this case *overflow will be 0. |
467 | | */ |
468 | | |
469 | | long |
470 | | PyLong_AsLongAndOverflow(PyObject *vv, int *overflow) |
471 | 6.46k | { |
472 | | /* This version by Tim Peters */ |
473 | 6.46k | PyLongObject *v; |
474 | 6.46k | unsigned long x, prev; |
475 | 6.46k | long res; |
476 | 6.46k | Py_ssize_t i; |
477 | 6.46k | int sign; |
478 | 6.46k | int do_decref = 0; /* if nb_int was called */ |
479 | | |
480 | 6.46k | *overflow = 0; |
481 | 6.46k | if (vv == NULL) { |
482 | 0 | PyErr_BadInternalCall(); |
483 | 0 | return -1; |
484 | 0 | } |
485 | | |
486 | 6.46k | if (PyLong_Check(vv)) { |
487 | 6.22k | v = (PyLongObject *)vv; |
488 | 6.22k | } |
489 | 236 | else { |
490 | 236 | v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv); |
491 | 236 | if (v == NULL) |
492 | 236 | return -1; |
493 | 0 | do_decref = 1; |
494 | 0 | } |
495 | | |
496 | 6.22k | res = -1; |
497 | 6.22k | i = Py_SIZE(v); |
498 | | |
499 | 6.22k | switch (i) { |
500 | 126 | case -1: |
501 | 126 | res = -(sdigit)v->ob_digit[0]; |
502 | 126 | break; |
503 | 2.24k | case 0: |
504 | 2.24k | res = 0; |
505 | 2.24k | break; |
506 | 3.84k | case 1: |
507 | 3.84k | res = v->ob_digit[0]; |
508 | 3.84k | break; |
509 | 14 | default: |
510 | 14 | sign = 1; |
511 | 14 | x = 0; |
512 | 14 | if (i < 0) { |
513 | 0 | sign = -1; |
514 | 0 | i = -(i); |
515 | 0 | } |
516 | 42 | while (--i >= 0) { |
517 | 42 | prev = x; |
518 | 42 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
519 | 42 | if ((x >> PyLong_SHIFT) != prev) { |
520 | 14 | *overflow = sign; |
521 | 14 | goto exit; |
522 | 14 | } |
523 | 42 | } |
524 | | /* Haven't lost any bits, but casting to long requires extra |
525 | | * care (see comment above). |
526 | | */ |
527 | 0 | if (x <= (unsigned long)LONG_MAX) { |
528 | 0 | res = (long)x * sign; |
529 | 0 | } |
530 | 0 | else if (sign < 0 && x == PY_ABS_LONG_MIN) { |
531 | 0 | res = LONG_MIN; |
532 | 0 | } |
533 | 0 | else { |
534 | 0 | *overflow = sign; |
535 | | /* res is already set to -1 */ |
536 | 0 | } |
537 | 6.22k | } |
538 | 6.22k | exit: |
539 | 6.22k | if (do_decref) { |
540 | 0 | Py_DECREF(v); |
541 | 0 | } |
542 | 6.22k | return res; |
543 | 6.22k | } |
544 | | |
545 | | /* Get a C long int from an int object or any object that has an __int__ |
546 | | method. Return -1 and set an error if overflow occurs. */ |
547 | | |
548 | | long |
549 | | PyLong_AsLong(PyObject *obj) |
550 | 4.16k | { |
551 | 4.16k | int overflow; |
552 | 4.16k | long result = PyLong_AsLongAndOverflow(obj, &overflow); |
553 | 4.16k | if (overflow) { |
554 | | /* XXX: could be cute and give a different |
555 | | message for overflow == -1 */ |
556 | 14 | PyErr_SetString(PyExc_OverflowError, |
557 | 14 | "Python int too large to convert to C long"); |
558 | 14 | } |
559 | 4.16k | return result; |
560 | 4.16k | } |
561 | | |
562 | | /* Get a C int from an int object or any object that has an __int__ |
563 | | method. Return -1 and set an error if overflow occurs. */ |
564 | | |
565 | | int |
566 | | _PyLong_AsInt(PyObject *obj) |
567 | 2.29k | { |
568 | 2.29k | int overflow; |
569 | 2.29k | long result = PyLong_AsLongAndOverflow(obj, &overflow); |
570 | 2.29k | if (overflow || result > INT_MAX || result < INT_MIN) { |
571 | | /* XXX: could be cute and give a different |
572 | | message for overflow == -1 */ |
573 | 0 | PyErr_SetString(PyExc_OverflowError, |
574 | 0 | "Python int too large to convert to C int"); |
575 | 0 | return -1; |
576 | 0 | } |
577 | 2.29k | return (int)result; |
578 | 2.29k | } |
579 | | |
580 | | /* Get a Py_ssize_t from an int object. |
581 | | Returns -1 and sets an error condition if overflow occurs. */ |
582 | | |
583 | | Py_ssize_t |
584 | 18.7k | PyLong_AsSsize_t(PyObject *vv) { |
585 | 18.7k | PyLongObject *v; |
586 | 18.7k | size_t x, prev; |
587 | 18.7k | Py_ssize_t i; |
588 | 18.7k | int sign; |
589 | | |
590 | 18.7k | if (vv == NULL) { |
591 | 0 | PyErr_BadInternalCall(); |
592 | 0 | return -1; |
593 | 0 | } |
594 | 18.7k | if (!PyLong_Check(vv)) { |
595 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
596 | 0 | return -1; |
597 | 0 | } |
598 | | |
599 | 18.7k | v = (PyLongObject *)vv; |
600 | 18.7k | i = Py_SIZE(v); |
601 | 18.7k | switch (i) { |
602 | 320 | case -1: return -(sdigit)v->ob_digit[0]; |
603 | 6.93k | case 0: return 0; |
604 | 11.5k | case 1: return v->ob_digit[0]; |
605 | 18.7k | } |
606 | 0 | sign = 1; |
607 | 0 | x = 0; |
608 | 0 | if (i < 0) { |
609 | 0 | sign = -1; |
610 | 0 | i = -(i); |
611 | 0 | } |
612 | 0 | while (--i >= 0) { |
613 | 0 | prev = x; |
614 | 0 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
615 | 0 | if ((x >> PyLong_SHIFT) != prev) |
616 | 0 | goto overflow; |
617 | 0 | } |
618 | | /* Haven't lost any bits, but casting to a signed type requires |
619 | | * extra care (see comment above). |
620 | | */ |
621 | 0 | if (x <= (size_t)PY_SSIZE_T_MAX) { |
622 | 0 | return (Py_ssize_t)x * sign; |
623 | 0 | } |
624 | 0 | else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) { |
625 | 0 | return PY_SSIZE_T_MIN; |
626 | 0 | } |
627 | | /* else overflow */ |
628 | | |
629 | 0 | overflow: |
630 | 0 | PyErr_SetString(PyExc_OverflowError, |
631 | 0 | "Python int too large to convert to C ssize_t"); |
632 | 0 | return -1; |
633 | 0 | } |
634 | | |
635 | | /* Get a C unsigned long int from an int object. |
636 | | Returns -1 and sets an error condition if overflow occurs. */ |
637 | | |
638 | | unsigned long |
639 | | PyLong_AsUnsignedLong(PyObject *vv) |
640 | 784 | { |
641 | 784 | PyLongObject *v; |
642 | 784 | unsigned long x, prev; |
643 | 784 | Py_ssize_t i; |
644 | | |
645 | 784 | if (vv == NULL) { |
646 | 0 | PyErr_BadInternalCall(); |
647 | 0 | return (unsigned long)-1; |
648 | 0 | } |
649 | 784 | if (!PyLong_Check(vv)) { |
650 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
651 | 0 | return (unsigned long)-1; |
652 | 0 | } |
653 | | |
654 | 784 | v = (PyLongObject *)vv; |
655 | 784 | i = Py_SIZE(v); |
656 | 784 | x = 0; |
657 | 784 | if (i < 0) { |
658 | 0 | PyErr_SetString(PyExc_OverflowError, |
659 | 0 | "can't convert negative value to unsigned int"); |
660 | 0 | return (unsigned long) -1; |
661 | 0 | } |
662 | 784 | switch (i) { |
663 | 160 | case 0: return 0; |
664 | 594 | case 1: return v->ob_digit[0]; |
665 | 784 | } |
666 | 90 | while (--i >= 0) { |
667 | 60 | prev = x; |
668 | 60 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
669 | 60 | if ((x >> PyLong_SHIFT) != prev) { |
670 | 0 | PyErr_SetString(PyExc_OverflowError, |
671 | 0 | "Python int too large to convert " |
672 | 0 | "to C unsigned long"); |
673 | 0 | return (unsigned long) -1; |
674 | 0 | } |
675 | 60 | } |
676 | 30 | return x; |
677 | 30 | } |
678 | | |
679 | | /* Get a C size_t from an int object. Returns (size_t)-1 and sets |
680 | | an error condition if overflow occurs. */ |
681 | | |
682 | | size_t |
683 | | PyLong_AsSize_t(PyObject *vv) |
684 | 0 | { |
685 | 0 | PyLongObject *v; |
686 | 0 | size_t x, prev; |
687 | 0 | Py_ssize_t i; |
688 | |
|
689 | 0 | if (vv == NULL) { |
690 | 0 | PyErr_BadInternalCall(); |
691 | 0 | return (size_t) -1; |
692 | 0 | } |
693 | 0 | if (!PyLong_Check(vv)) { |
694 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
695 | 0 | return (size_t)-1; |
696 | 0 | } |
697 | | |
698 | 0 | v = (PyLongObject *)vv; |
699 | 0 | i = Py_SIZE(v); |
700 | 0 | x = 0; |
701 | 0 | if (i < 0) { |
702 | 0 | PyErr_SetString(PyExc_OverflowError, |
703 | 0 | "can't convert negative value to size_t"); |
704 | 0 | return (size_t) -1; |
705 | 0 | } |
706 | 0 | switch (i) { |
707 | 0 | case 0: return 0; |
708 | 0 | case 1: return v->ob_digit[0]; |
709 | 0 | } |
710 | 0 | while (--i >= 0) { |
711 | 0 | prev = x; |
712 | 0 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
713 | 0 | if ((x >> PyLong_SHIFT) != prev) { |
714 | 0 | PyErr_SetString(PyExc_OverflowError, |
715 | 0 | "Python int too large to convert to C size_t"); |
716 | 0 | return (size_t) -1; |
717 | 0 | } |
718 | 0 | } |
719 | 0 | return x; |
720 | 0 | } |
721 | | |
722 | | /* Get a C unsigned long int from an int object, ignoring the high bits. |
723 | | Returns -1 and sets an error condition if an error occurs. */ |
724 | | |
725 | | static unsigned long |
726 | | _PyLong_AsUnsignedLongMask(PyObject *vv) |
727 | 0 | { |
728 | 0 | PyLongObject *v; |
729 | 0 | unsigned long x; |
730 | 0 | Py_ssize_t i; |
731 | 0 | int sign; |
732 | |
|
733 | 0 | if (vv == NULL || !PyLong_Check(vv)) { |
734 | 0 | PyErr_BadInternalCall(); |
735 | 0 | return (unsigned long) -1; |
736 | 0 | } |
737 | 0 | v = (PyLongObject *)vv; |
738 | 0 | i = Py_SIZE(v); |
739 | 0 | switch (i) { |
740 | 0 | case 0: return 0; |
741 | 0 | case 1: return v->ob_digit[0]; |
742 | 0 | } |
743 | 0 | sign = 1; |
744 | 0 | x = 0; |
745 | 0 | if (i < 0) { |
746 | 0 | sign = -1; |
747 | 0 | i = -i; |
748 | 0 | } |
749 | 0 | while (--i >= 0) { |
750 | 0 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
751 | 0 | } |
752 | 0 | return x * sign; |
753 | 0 | } |
754 | | |
755 | | unsigned long |
756 | | PyLong_AsUnsignedLongMask(PyObject *op) |
757 | 0 | { |
758 | 0 | PyLongObject *lo; |
759 | 0 | unsigned long val; |
760 | |
|
761 | 0 | if (op == NULL) { |
762 | 0 | PyErr_BadInternalCall(); |
763 | 0 | return (unsigned long)-1; |
764 | 0 | } |
765 | | |
766 | 0 | if (PyLong_Check(op)) { |
767 | 0 | return _PyLong_AsUnsignedLongMask(op); |
768 | 0 | } |
769 | | |
770 | 0 | lo = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(op); |
771 | 0 | if (lo == NULL) |
772 | 0 | return (unsigned long)-1; |
773 | | |
774 | 0 | val = _PyLong_AsUnsignedLongMask((PyObject *)lo); |
775 | 0 | Py_DECREF(lo); |
776 | 0 | return val; |
777 | 0 | } |
778 | | |
779 | | int |
780 | | _PyLong_Sign(PyObject *vv) |
781 | 76 | { |
782 | 76 | PyLongObject *v = (PyLongObject *)vv; |
783 | | |
784 | 76 | assert(v != NULL); |
785 | 76 | assert(PyLong_Check(v)); |
786 | | |
787 | 76 | return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1); |
788 | 76 | } |
789 | | |
790 | | /* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d < |
791 | | 2**k if d is nonzero, else 0. */ |
792 | | |
793 | | static const unsigned char BitLengthTable[32] = { |
794 | | 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
795 | | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 |
796 | | }; |
797 | | |
798 | | static int |
799 | | bits_in_digit(digit d) |
800 | 14 | { |
801 | 14 | int d_bits = 0; |
802 | 14 | while (d >= 32) { |
803 | 0 | d_bits += 6; |
804 | 0 | d >>= 6; |
805 | 0 | } |
806 | 14 | d_bits += (int)BitLengthTable[d]; |
807 | 14 | return d_bits; |
808 | 14 | } |
809 | | |
810 | | size_t |
811 | | _PyLong_NumBits(PyObject *vv) |
812 | 0 | { |
813 | 0 | PyLongObject *v = (PyLongObject *)vv; |
814 | 0 | size_t result = 0; |
815 | 0 | Py_ssize_t ndigits; |
816 | 0 | int msd_bits; |
817 | |
|
818 | 0 | assert(v != NULL); |
819 | 0 | assert(PyLong_Check(v)); |
820 | 0 | ndigits = Py_ABS(Py_SIZE(v)); |
821 | 0 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
822 | 0 | if (ndigits > 0) { |
823 | 0 | digit msd = v->ob_digit[ndigits - 1]; |
824 | 0 | if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT) |
825 | 0 | goto Overflow; |
826 | 0 | result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT; |
827 | 0 | msd_bits = bits_in_digit(msd); |
828 | 0 | if (SIZE_MAX - msd_bits < result) |
829 | 0 | goto Overflow; |
830 | 0 | result += msd_bits; |
831 | 0 | } |
832 | 0 | return result; |
833 | | |
834 | 0 | Overflow: |
835 | 0 | PyErr_SetString(PyExc_OverflowError, "int has too many bits " |
836 | 0 | "to express in a platform size_t"); |
837 | 0 | return (size_t)-1; |
838 | 0 | } |
839 | | |
840 | | PyObject * |
841 | | _PyLong_FromByteArray(const unsigned char* bytes, size_t n, |
842 | | int little_endian, int is_signed) |
843 | 719 | { |
844 | 719 | const unsigned char* pstartbyte; /* LSB of bytes */ |
845 | 719 | int incr; /* direction to move pstartbyte */ |
846 | 719 | const unsigned char* pendbyte; /* MSB of bytes */ |
847 | 719 | size_t numsignificantbytes; /* number of bytes that matter */ |
848 | 719 | Py_ssize_t ndigits; /* number of Python int digits */ |
849 | 719 | PyLongObject* v; /* result */ |
850 | 719 | Py_ssize_t idigit = 0; /* next free index in v->ob_digit */ |
851 | | |
852 | 719 | if (n == 0) |
853 | 0 | return PyLong_FromLong(0L); |
854 | | |
855 | 719 | if (little_endian) { |
856 | 719 | pstartbyte = bytes; |
857 | 719 | pendbyte = bytes + n - 1; |
858 | 719 | incr = 1; |
859 | 719 | } |
860 | 0 | else { |
861 | 0 | pstartbyte = bytes + n - 1; |
862 | 0 | pendbyte = bytes; |
863 | 0 | incr = -1; |
864 | 0 | } |
865 | | |
866 | 719 | if (is_signed) |
867 | 0 | is_signed = *pendbyte >= 0x80; |
868 | | |
869 | | /* Compute numsignificantbytes. This consists of finding the most |
870 | | significant byte. Leading 0 bytes are insignificant if the number |
871 | | is positive, and leading 0xff bytes if negative. */ |
872 | 719 | { |
873 | 719 | size_t i; |
874 | 719 | const unsigned char* p = pendbyte; |
875 | 719 | const int pincr = -incr; /* search MSB to LSB */ |
876 | 719 | const unsigned char insignificant = is_signed ? 0xff : 0x00; |
877 | | |
878 | 2.12k | for (i = 0; i < n; ++i, p += pincr) { |
879 | 1.89k | if (*p != insignificant) |
880 | 484 | break; |
881 | 1.89k | } |
882 | 719 | numsignificantbytes = n - i; |
883 | | /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so |
884 | | actually has 2 significant bytes. OTOH, 0xff0001 == |
885 | | -0x00ffff, so we wouldn't *need* to bump it there; but we |
886 | | do for 0xffff = -0x0001. To be safe without bothering to |
887 | | check every case, bump it regardless. */ |
888 | 719 | if (is_signed && numsignificantbytes < n) |
889 | 0 | ++numsignificantbytes; |
890 | 719 | } |
891 | | |
892 | | /* How many Python int digits do we need? We have |
893 | | 8*numsignificantbytes bits, and each Python int digit has |
894 | | PyLong_SHIFT bits, so it's the ceiling of the quotient. */ |
895 | | /* catch overflow before it happens */ |
896 | 719 | if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) { |
897 | 0 | PyErr_SetString(PyExc_OverflowError, |
898 | 0 | "byte array too long to convert to int"); |
899 | 0 | return NULL; |
900 | 0 | } |
901 | 719 | ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT; |
902 | 719 | v = _PyLong_New(ndigits); |
903 | 719 | if (v == NULL) |
904 | 0 | return NULL; |
905 | | |
906 | | /* Copy the bits over. The tricky parts are computing 2's-comp on |
907 | | the fly for signed numbers, and dealing with the mismatch between |
908 | | 8-bit bytes and (probably) 15-bit Python digits.*/ |
909 | 719 | { |
910 | 719 | size_t i; |
911 | 719 | twodigits carry = 1; /* for 2's-comp calculation */ |
912 | 719 | twodigits accum = 0; /* sliding register */ |
913 | 719 | unsigned int accumbits = 0; /* number of bits in accum */ |
914 | 719 | const unsigned char* p = pstartbyte; |
915 | | |
916 | 2.18k | for (i = 0; i < numsignificantbytes; ++i, p += incr) { |
917 | 1.46k | twodigits thisbyte = *p; |
918 | | /* Compute correction for 2's comp, if needed. */ |
919 | 1.46k | if (is_signed) { |
920 | 0 | thisbyte = (0xff ^ thisbyte) + carry; |
921 | 0 | carry = thisbyte >> 8; |
922 | 0 | thisbyte &= 0xff; |
923 | 0 | } |
924 | | /* Because we're going LSB to MSB, thisbyte is |
925 | | more significant than what's already in accum, |
926 | | so needs to be prepended to accum. */ |
927 | 1.46k | accum |= thisbyte << accumbits; |
928 | 1.46k | accumbits += 8; |
929 | 1.46k | if (accumbits >= PyLong_SHIFT) { |
930 | | /* There's enough to fill a Python digit. */ |
931 | 249 | assert(idigit < ndigits); |
932 | 249 | v->ob_digit[idigit] = (digit)(accum & PyLong_MASK); |
933 | 249 | ++idigit; |
934 | 249 | accum >>= PyLong_SHIFT; |
935 | 249 | accumbits -= PyLong_SHIFT; |
936 | 249 | assert(accumbits < PyLong_SHIFT); |
937 | 249 | } |
938 | 1.46k | } |
939 | 719 | assert(accumbits < PyLong_SHIFT); |
940 | 719 | if (accumbits) { |
941 | 484 | assert(idigit < ndigits); |
942 | 484 | v->ob_digit[idigit] = (digit)accum; |
943 | 484 | ++idigit; |
944 | 484 | } |
945 | 719 | } |
946 | | |
947 | 719 | Py_SIZE(v) = is_signed ? -idigit : idigit; |
948 | 719 | return (PyObject *)long_normalize(v); |
949 | 719 | } |
950 | | |
951 | | int |
952 | | _PyLong_AsByteArray(PyLongObject* v, |
953 | | unsigned char* bytes, size_t n, |
954 | | int little_endian, int is_signed) |
955 | 14 | { |
956 | 14 | Py_ssize_t i; /* index into v->ob_digit */ |
957 | 14 | Py_ssize_t ndigits; /* |v->ob_size| */ |
958 | 14 | twodigits accum; /* sliding register */ |
959 | 14 | unsigned int accumbits; /* # bits in accum */ |
960 | 14 | int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */ |
961 | 14 | digit carry; /* for computing 2's-comp */ |
962 | 14 | size_t j; /* # bytes filled */ |
963 | 14 | unsigned char* p; /* pointer to next byte in bytes */ |
964 | 14 | int pincr; /* direction to move p */ |
965 | | |
966 | 14 | assert(v != NULL && PyLong_Check(v)); |
967 | | |
968 | 14 | if (Py_SIZE(v) < 0) { |
969 | 0 | ndigits = -(Py_SIZE(v)); |
970 | 0 | if (!is_signed) { |
971 | 0 | PyErr_SetString(PyExc_OverflowError, |
972 | 0 | "can't convert negative int to unsigned"); |
973 | 0 | return -1; |
974 | 0 | } |
975 | 0 | do_twos_comp = 1; |
976 | 0 | } |
977 | 14 | else { |
978 | 14 | ndigits = Py_SIZE(v); |
979 | 14 | do_twos_comp = 0; |
980 | 14 | } |
981 | | |
982 | 14 | if (little_endian) { |
983 | 14 | p = bytes; |
984 | 14 | pincr = 1; |
985 | 14 | } |
986 | 0 | else { |
987 | 0 | p = bytes + n - 1; |
988 | 0 | pincr = -1; |
989 | 0 | } |
990 | | |
991 | | /* Copy over all the Python digits. |
992 | | It's crucial that every Python digit except for the MSD contribute |
993 | | exactly PyLong_SHIFT bits to the total, so first assert that the int is |
994 | | normalized. */ |
995 | 14 | assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0); |
996 | 14 | j = 0; |
997 | 14 | accum = 0; |
998 | 14 | accumbits = 0; |
999 | 14 | carry = do_twos_comp ? 1 : 0; |
1000 | 28 | for (i = 0; i < ndigits; ++i) { |
1001 | 14 | digit thisdigit = v->ob_digit[i]; |
1002 | 14 | if (do_twos_comp) { |
1003 | 0 | thisdigit = (thisdigit ^ PyLong_MASK) + carry; |
1004 | 0 | carry = thisdigit >> PyLong_SHIFT; |
1005 | 0 | thisdigit &= PyLong_MASK; |
1006 | 0 | } |
1007 | | /* Because we're going LSB to MSB, thisdigit is more |
1008 | | significant than what's already in accum, so needs to be |
1009 | | prepended to accum. */ |
1010 | 14 | accum |= (twodigits)thisdigit << accumbits; |
1011 | | |
1012 | | /* The most-significant digit may be (probably is) at least |
1013 | | partly empty. */ |
1014 | 14 | if (i == ndigits - 1) { |
1015 | | /* Count # of sign bits -- they needn't be stored, |
1016 | | * although for signed conversion we need later to |
1017 | | * make sure at least one sign bit gets stored. */ |
1018 | 14 | digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit; |
1019 | 182 | while (s != 0) { |
1020 | 168 | s >>= 1; |
1021 | 168 | accumbits++; |
1022 | 168 | } |
1023 | 14 | } |
1024 | 0 | else |
1025 | 0 | accumbits += PyLong_SHIFT; |
1026 | | |
1027 | | /* Store as many bytes as possible. */ |
1028 | 28 | while (accumbits >= 8) { |
1029 | 14 | if (j >= n) |
1030 | 0 | goto Overflow; |
1031 | 14 | ++j; |
1032 | 14 | *p = (unsigned char)(accum & 0xff); |
1033 | 14 | p += pincr; |
1034 | 14 | accumbits -= 8; |
1035 | 14 | accum >>= 8; |
1036 | 14 | } |
1037 | 14 | } |
1038 | | |
1039 | | /* Store the straggler (if any). */ |
1040 | 14 | assert(accumbits < 8); |
1041 | 14 | assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */ |
1042 | 14 | if (accumbits > 0) { |
1043 | 14 | if (j >= n) |
1044 | 0 | goto Overflow; |
1045 | 14 | ++j; |
1046 | 14 | if (do_twos_comp) { |
1047 | | /* Fill leading bits of the byte with sign bits |
1048 | | (appropriately pretending that the int had an |
1049 | | infinite supply of sign bits). */ |
1050 | 0 | accum |= (~(twodigits)0) << accumbits; |
1051 | 0 | } |
1052 | 14 | *p = (unsigned char)(accum & 0xff); |
1053 | 14 | p += pincr; |
1054 | 14 | } |
1055 | 0 | else if (j == n && n > 0 && is_signed) { |
1056 | | /* The main loop filled the byte array exactly, so the code |
1057 | | just above didn't get to ensure there's a sign bit, and the |
1058 | | loop below wouldn't add one either. Make sure a sign bit |
1059 | | exists. */ |
1060 | 0 | unsigned char msb = *(p - pincr); |
1061 | 0 | int sign_bit_set = msb >= 0x80; |
1062 | 0 | assert(accumbits == 0); |
1063 | 0 | if (sign_bit_set == do_twos_comp) |
1064 | 0 | return 0; |
1065 | 0 | else |
1066 | 0 | goto Overflow; |
1067 | 0 | } |
1068 | | |
1069 | | /* Fill remaining bytes with copies of the sign bit. */ |
1070 | 14 | { |
1071 | 14 | unsigned char signbyte = do_twos_comp ? 0xffU : 0U; |
1072 | 14 | for ( ; j < n; ++j, p += pincr) |
1073 | 0 | *p = signbyte; |
1074 | 14 | } |
1075 | | |
1076 | 14 | return 0; |
1077 | | |
1078 | 0 | Overflow: |
1079 | 0 | PyErr_SetString(PyExc_OverflowError, "int too big to convert"); |
1080 | 0 | return -1; |
1081 | | |
1082 | 14 | } |
1083 | | |
1084 | | /* Create a new int object from a C pointer */ |
1085 | | |
1086 | | PyObject * |
1087 | | PyLong_FromVoidPtr(void *p) |
1088 | 4.58k | { |
1089 | 4.58k | #if SIZEOF_VOID_P <= SIZEOF_LONG |
1090 | 4.58k | return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p); |
1091 | | #else |
1092 | | |
1093 | | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
1094 | | # error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)" |
1095 | | #endif |
1096 | | return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p); |
1097 | | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
1098 | | |
1099 | 4.58k | } |
1100 | | |
1101 | | /* Get a C pointer from an int object. */ |
1102 | | |
1103 | | void * |
1104 | | PyLong_AsVoidPtr(PyObject *vv) |
1105 | 0 | { |
1106 | 0 | #if SIZEOF_VOID_P <= SIZEOF_LONG |
1107 | 0 | long x; |
1108 | |
|
1109 | 0 | if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) |
1110 | 0 | x = PyLong_AsLong(vv); |
1111 | 0 | else |
1112 | 0 | x = PyLong_AsUnsignedLong(vv); |
1113 | | #else |
1114 | | |
1115 | | #if SIZEOF_LONG_LONG < SIZEOF_VOID_P |
1116 | | # error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)" |
1117 | | #endif |
1118 | | long long x; |
1119 | | |
1120 | | if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0) |
1121 | | x = PyLong_AsLongLong(vv); |
1122 | | else |
1123 | | x = PyLong_AsUnsignedLongLong(vv); |
1124 | | |
1125 | | #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */ |
1126 | |
|
1127 | 0 | if (x == -1 && PyErr_Occurred()) |
1128 | 0 | return NULL; |
1129 | 0 | return (void *)x; |
1130 | 0 | } |
1131 | | |
1132 | | /* Initial long long support by Chris Herborth (chrish@qnx.com), later |
1133 | | * rewritten to use the newer PyLong_{As,From}ByteArray API. |
1134 | | */ |
1135 | | |
1136 | 0 | #define PY_ABS_LLONG_MIN (0-(unsigned long long)PY_LLONG_MIN) |
1137 | | |
1138 | | /* Create a new int object from a C long long int. */ |
1139 | | |
1140 | | PyObject * |
1141 | | PyLong_FromLongLong(long long ival) |
1142 | 4.44k | { |
1143 | 4.44k | PyLongObject *v; |
1144 | 4.44k | unsigned long long abs_ival; |
1145 | 4.44k | unsigned long long t; /* unsigned so >> doesn't propagate sign bit */ |
1146 | 4.44k | int ndigits = 0; |
1147 | 4.44k | int negative = 0; |
1148 | | |
1149 | 4.44k | CHECK_SMALL_INT(ival); |
1150 | 4.26k | if (ival < 0) { |
1151 | | /* avoid signed overflow on negation; see comments |
1152 | | in PyLong_FromLong above. */ |
1153 | 0 | abs_ival = (unsigned long long)(-1-ival) + 1; |
1154 | 0 | negative = 1; |
1155 | 0 | } |
1156 | 4.26k | else { |
1157 | 4.26k | abs_ival = (unsigned long long)ival; |
1158 | 4.26k | } |
1159 | | |
1160 | | /* Count the number of Python digits. |
1161 | | We used to pick 5 ("big enough for anything"), but that's a |
1162 | | waste of time and space given that 5*15 = 75 bits are rarely |
1163 | | needed. */ |
1164 | 4.26k | t = abs_ival; |
1165 | 11.0k | while (t) { |
1166 | 6.83k | ++ndigits; |
1167 | 6.83k | t >>= PyLong_SHIFT; |
1168 | 6.83k | } |
1169 | 4.26k | v = _PyLong_New(ndigits); |
1170 | 4.26k | if (v != NULL) { |
1171 | 4.26k | digit *p = v->ob_digit; |
1172 | 4.26k | Py_SIZE(v) = negative ? -ndigits : ndigits; |
1173 | 4.26k | t = abs_ival; |
1174 | 11.0k | while (t) { |
1175 | 6.83k | *p++ = (digit)(t & PyLong_MASK); |
1176 | 6.83k | t >>= PyLong_SHIFT; |
1177 | 6.83k | } |
1178 | 4.26k | } |
1179 | 4.26k | return (PyObject *)v; |
1180 | 4.44k | } |
1181 | | |
1182 | | /* Create a new int object from a C unsigned long long int. */ |
1183 | | |
1184 | | PyObject * |
1185 | | PyLong_FromUnsignedLongLong(unsigned long long ival) |
1186 | 854 | { |
1187 | 854 | PyLongObject *v; |
1188 | 854 | unsigned long long t; |
1189 | 854 | int ndigits = 0; |
1190 | | |
1191 | 854 | if (ival < PyLong_BASE) |
1192 | 854 | return PyLong_FromLong((long)ival); |
1193 | | /* Count the number of Python digits. */ |
1194 | 0 | t = ival; |
1195 | 0 | while (t) { |
1196 | 0 | ++ndigits; |
1197 | 0 | t >>= PyLong_SHIFT; |
1198 | 0 | } |
1199 | 0 | v = _PyLong_New(ndigits); |
1200 | 0 | if (v != NULL) { |
1201 | 0 | digit *p = v->ob_digit; |
1202 | 0 | while (ival) { |
1203 | 0 | *p++ = (digit)(ival & PyLong_MASK); |
1204 | 0 | ival >>= PyLong_SHIFT; |
1205 | 0 | } |
1206 | 0 | } |
1207 | 0 | return (PyObject *)v; |
1208 | 854 | } |
1209 | | |
1210 | | /* Create a new int object from a C Py_ssize_t. */ |
1211 | | |
1212 | | PyObject * |
1213 | | PyLong_FromSsize_t(Py_ssize_t ival) |
1214 | 4.26k | { |
1215 | 4.26k | PyLongObject *v; |
1216 | 4.26k | size_t abs_ival; |
1217 | 4.26k | size_t t; /* unsigned so >> doesn't propagate sign bit */ |
1218 | 4.26k | int ndigits = 0; |
1219 | 4.26k | int negative = 0; |
1220 | | |
1221 | 4.26k | CHECK_SMALL_INT(ival); |
1222 | 357 | if (ival < 0) { |
1223 | | /* avoid signed overflow when ival = SIZE_T_MIN */ |
1224 | 0 | abs_ival = (size_t)(-1-ival)+1; |
1225 | 0 | negative = 1; |
1226 | 0 | } |
1227 | 357 | else { |
1228 | 357 | abs_ival = (size_t)ival; |
1229 | 357 | } |
1230 | | |
1231 | | /* Count the number of Python digits. */ |
1232 | 357 | t = abs_ival; |
1233 | 770 | while (t) { |
1234 | 413 | ++ndigits; |
1235 | 413 | t >>= PyLong_SHIFT; |
1236 | 413 | } |
1237 | 357 | v = _PyLong_New(ndigits); |
1238 | 357 | if (v != NULL) { |
1239 | 357 | digit *p = v->ob_digit; |
1240 | 357 | Py_SIZE(v) = negative ? -ndigits : ndigits; |
1241 | 357 | t = abs_ival; |
1242 | 770 | while (t) { |
1243 | 413 | *p++ = (digit)(t & PyLong_MASK); |
1244 | 413 | t >>= PyLong_SHIFT; |
1245 | 413 | } |
1246 | 357 | } |
1247 | 357 | return (PyObject *)v; |
1248 | 4.26k | } |
1249 | | |
1250 | | /* Create a new int object from a C size_t. */ |
1251 | | |
1252 | | PyObject * |
1253 | | PyLong_FromSize_t(size_t ival) |
1254 | 458 | { |
1255 | 458 | PyLongObject *v; |
1256 | 458 | size_t t; |
1257 | 458 | int ndigits = 0; |
1258 | | |
1259 | 458 | if (ival < PyLong_BASE) |
1260 | 458 | return PyLong_FromLong((long)ival); |
1261 | | /* Count the number of Python digits. */ |
1262 | 0 | t = ival; |
1263 | 0 | while (t) { |
1264 | 0 | ++ndigits; |
1265 | 0 | t >>= PyLong_SHIFT; |
1266 | 0 | } |
1267 | 0 | v = _PyLong_New(ndigits); |
1268 | 0 | if (v != NULL) { |
1269 | 0 | digit *p = v->ob_digit; |
1270 | 0 | Py_SIZE(v) = ndigits; |
1271 | 0 | while (ival) { |
1272 | 0 | *p++ = (digit)(ival & PyLong_MASK); |
1273 | 0 | ival >>= PyLong_SHIFT; |
1274 | 0 | } |
1275 | 0 | } |
1276 | 0 | return (PyObject *)v; |
1277 | 458 | } |
1278 | | |
1279 | | /* Get a C long long int from an int object or any object that has an |
1280 | | __int__ method. Return -1 and set an error if overflow occurs. */ |
1281 | | |
1282 | | long long |
1283 | | PyLong_AsLongLong(PyObject *vv) |
1284 | 0 | { |
1285 | 0 | PyLongObject *v; |
1286 | 0 | long long bytes; |
1287 | 0 | int res; |
1288 | 0 | int do_decref = 0; /* if nb_int was called */ |
1289 | |
|
1290 | 0 | if (vv == NULL) { |
1291 | 0 | PyErr_BadInternalCall(); |
1292 | 0 | return -1; |
1293 | 0 | } |
1294 | | |
1295 | 0 | if (PyLong_Check(vv)) { |
1296 | 0 | v = (PyLongObject *)vv; |
1297 | 0 | } |
1298 | 0 | else { |
1299 | 0 | v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv); |
1300 | 0 | if (v == NULL) |
1301 | 0 | return -1; |
1302 | 0 | do_decref = 1; |
1303 | 0 | } |
1304 | | |
1305 | 0 | res = 0; |
1306 | 0 | switch(Py_SIZE(v)) { |
1307 | 0 | case -1: |
1308 | 0 | bytes = -(sdigit)v->ob_digit[0]; |
1309 | 0 | break; |
1310 | 0 | case 0: |
1311 | 0 | bytes = 0; |
1312 | 0 | break; |
1313 | 0 | case 1: |
1314 | 0 | bytes = v->ob_digit[0]; |
1315 | 0 | break; |
1316 | 0 | default: |
1317 | 0 | res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes, |
1318 | 0 | SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1); |
1319 | 0 | } |
1320 | 0 | if (do_decref) { |
1321 | 0 | Py_DECREF(v); |
1322 | 0 | } |
1323 | | |
1324 | | /* Plan 9 can't handle long long in ? : expressions */ |
1325 | 0 | if (res < 0) |
1326 | 0 | return (long long)-1; |
1327 | 0 | else |
1328 | 0 | return bytes; |
1329 | 0 | } |
1330 | | |
1331 | | /* Get a C unsigned long long int from an int object. |
1332 | | Return -1 and set an error if overflow occurs. */ |
1333 | | |
1334 | | unsigned long long |
1335 | | PyLong_AsUnsignedLongLong(PyObject *vv) |
1336 | 0 | { |
1337 | 0 | PyLongObject *v; |
1338 | 0 | unsigned long long bytes; |
1339 | 0 | int res; |
1340 | |
|
1341 | 0 | if (vv == NULL) { |
1342 | 0 | PyErr_BadInternalCall(); |
1343 | 0 | return (unsigned long long)-1; |
1344 | 0 | } |
1345 | 0 | if (!PyLong_Check(vv)) { |
1346 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
1347 | 0 | return (unsigned long long)-1; |
1348 | 0 | } |
1349 | | |
1350 | 0 | v = (PyLongObject*)vv; |
1351 | 0 | switch(Py_SIZE(v)) { |
1352 | 0 | case 0: return 0; |
1353 | 0 | case 1: return v->ob_digit[0]; |
1354 | 0 | } |
1355 | | |
1356 | 0 | res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes, |
1357 | 0 | SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0); |
1358 | | |
1359 | | /* Plan 9 can't handle long long in ? : expressions */ |
1360 | 0 | if (res < 0) |
1361 | 0 | return (unsigned long long)res; |
1362 | 0 | else |
1363 | 0 | return bytes; |
1364 | 0 | } |
1365 | | |
1366 | | /* Get a C unsigned long int from an int object, ignoring the high bits. |
1367 | | Returns -1 and sets an error condition if an error occurs. */ |
1368 | | |
1369 | | static unsigned long long |
1370 | | _PyLong_AsUnsignedLongLongMask(PyObject *vv) |
1371 | 0 | { |
1372 | 0 | PyLongObject *v; |
1373 | 0 | unsigned long long x; |
1374 | 0 | Py_ssize_t i; |
1375 | 0 | int sign; |
1376 | |
|
1377 | 0 | if (vv == NULL || !PyLong_Check(vv)) { |
1378 | 0 | PyErr_BadInternalCall(); |
1379 | 0 | return (unsigned long long) -1; |
1380 | 0 | } |
1381 | 0 | v = (PyLongObject *)vv; |
1382 | 0 | switch(Py_SIZE(v)) { |
1383 | 0 | case 0: return 0; |
1384 | 0 | case 1: return v->ob_digit[0]; |
1385 | 0 | } |
1386 | 0 | i = Py_SIZE(v); |
1387 | 0 | sign = 1; |
1388 | 0 | x = 0; |
1389 | 0 | if (i < 0) { |
1390 | 0 | sign = -1; |
1391 | 0 | i = -i; |
1392 | 0 | } |
1393 | 0 | while (--i >= 0) { |
1394 | 0 | x = (x << PyLong_SHIFT) | v->ob_digit[i]; |
1395 | 0 | } |
1396 | 0 | return x * sign; |
1397 | 0 | } |
1398 | | |
1399 | | unsigned long long |
1400 | | PyLong_AsUnsignedLongLongMask(PyObject *op) |
1401 | 0 | { |
1402 | 0 | PyLongObject *lo; |
1403 | 0 | unsigned long long val; |
1404 | |
|
1405 | 0 | if (op == NULL) { |
1406 | 0 | PyErr_BadInternalCall(); |
1407 | 0 | return (unsigned long long)-1; |
1408 | 0 | } |
1409 | | |
1410 | 0 | if (PyLong_Check(op)) { |
1411 | 0 | return _PyLong_AsUnsignedLongLongMask(op); |
1412 | 0 | } |
1413 | | |
1414 | 0 | lo = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(op); |
1415 | 0 | if (lo == NULL) |
1416 | 0 | return (unsigned long long)-1; |
1417 | | |
1418 | 0 | val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo); |
1419 | 0 | Py_DECREF(lo); |
1420 | 0 | return val; |
1421 | 0 | } |
1422 | | |
1423 | | /* Get a C long long int from an int object or any object that has an |
1424 | | __int__ method. |
1425 | | |
1426 | | On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of |
1427 | | the result. Otherwise *overflow is 0. |
1428 | | |
1429 | | For other errors (e.g., TypeError), return -1 and set an error condition. |
1430 | | In this case *overflow will be 0. |
1431 | | */ |
1432 | | |
1433 | | long long |
1434 | | PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow) |
1435 | 0 | { |
1436 | | /* This version by Tim Peters */ |
1437 | 0 | PyLongObject *v; |
1438 | 0 | unsigned long long x, prev; |
1439 | 0 | long long res; |
1440 | 0 | Py_ssize_t i; |
1441 | 0 | int sign; |
1442 | 0 | int do_decref = 0; /* if nb_int was called */ |
1443 | |
|
1444 | 0 | *overflow = 0; |
1445 | 0 | if (vv == NULL) { |
1446 | 0 | PyErr_BadInternalCall(); |
1447 | 0 | return -1; |
1448 | 0 | } |
1449 | | |
1450 | 0 | if (PyLong_Check(vv)) { |
1451 | 0 | v = (PyLongObject *)vv; |
1452 | 0 | } |
1453 | 0 | else { |
1454 | 0 | v = (PyLongObject *)_PyLong_FromNbIndexOrNbInt(vv); |
1455 | 0 | if (v == NULL) |
1456 | 0 | return -1; |
1457 | 0 | do_decref = 1; |
1458 | 0 | } |
1459 | | |
1460 | 0 | res = -1; |
1461 | 0 | i = Py_SIZE(v); |
1462 | |
|
1463 | 0 | switch (i) { |
1464 | 0 | case -1: |
1465 | 0 | res = -(sdigit)v->ob_digit[0]; |
1466 | 0 | break; |
1467 | 0 | case 0: |
1468 | 0 | res = 0; |
1469 | 0 | break; |
1470 | 0 | case 1: |
1471 | 0 | res = v->ob_digit[0]; |
1472 | 0 | break; |
1473 | 0 | default: |
1474 | 0 | sign = 1; |
1475 | 0 | x = 0; |
1476 | 0 | if (i < 0) { |
1477 | 0 | sign = -1; |
1478 | 0 | i = -(i); |
1479 | 0 | } |
1480 | 0 | while (--i >= 0) { |
1481 | 0 | prev = x; |
1482 | 0 | x = (x << PyLong_SHIFT) + v->ob_digit[i]; |
1483 | 0 | if ((x >> PyLong_SHIFT) != prev) { |
1484 | 0 | *overflow = sign; |
1485 | 0 | goto exit; |
1486 | 0 | } |
1487 | 0 | } |
1488 | | /* Haven't lost any bits, but casting to long requires extra |
1489 | | * care (see comment above). |
1490 | | */ |
1491 | 0 | if (x <= (unsigned long long)PY_LLONG_MAX) { |
1492 | 0 | res = (long long)x * sign; |
1493 | 0 | } |
1494 | 0 | else if (sign < 0 && x == PY_ABS_LLONG_MIN) { |
1495 | 0 | res = PY_LLONG_MIN; |
1496 | 0 | } |
1497 | 0 | else { |
1498 | 0 | *overflow = sign; |
1499 | | /* res is already set to -1 */ |
1500 | 0 | } |
1501 | 0 | } |
1502 | 0 | exit: |
1503 | 0 | if (do_decref) { |
1504 | 0 | Py_DECREF(v); |
1505 | 0 | } |
1506 | 0 | return res; |
1507 | 0 | } |
1508 | | |
1509 | | int |
1510 | | _PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr) |
1511 | 0 | { |
1512 | 0 | unsigned long uval; |
1513 | |
|
1514 | 0 | if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) { |
1515 | 0 | PyErr_SetString(PyExc_ValueError, "value must be positive"); |
1516 | 0 | return 0; |
1517 | 0 | } |
1518 | 0 | uval = PyLong_AsUnsignedLong(obj); |
1519 | 0 | if (uval == (unsigned long)-1 && PyErr_Occurred()) |
1520 | 0 | return 0; |
1521 | 0 | if (uval > USHRT_MAX) { |
1522 | 0 | PyErr_SetString(PyExc_OverflowError, |
1523 | 0 | "Python int too large for C unsigned short"); |
1524 | 0 | return 0; |
1525 | 0 | } |
1526 | | |
1527 | 0 | *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short); |
1528 | 0 | return 1; |
1529 | 0 | } |
1530 | | |
1531 | | int |
1532 | | _PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr) |
1533 | 0 | { |
1534 | 0 | unsigned long uval; |
1535 | |
|
1536 | 0 | if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) { |
1537 | 0 | PyErr_SetString(PyExc_ValueError, "value must be positive"); |
1538 | 0 | return 0; |
1539 | 0 | } |
1540 | 0 | uval = PyLong_AsUnsignedLong(obj); |
1541 | 0 | if (uval == (unsigned long)-1 && PyErr_Occurred()) |
1542 | 0 | return 0; |
1543 | 0 | if (uval > UINT_MAX) { |
1544 | 0 | PyErr_SetString(PyExc_OverflowError, |
1545 | 0 | "Python int too large for C unsigned int"); |
1546 | 0 | return 0; |
1547 | 0 | } |
1548 | | |
1549 | 0 | *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int); |
1550 | 0 | return 1; |
1551 | 0 | } |
1552 | | |
1553 | | int |
1554 | | _PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr) |
1555 | 0 | { |
1556 | 0 | unsigned long uval; |
1557 | |
|
1558 | 0 | if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) { |
1559 | 0 | PyErr_SetString(PyExc_ValueError, "value must be positive"); |
1560 | 0 | return 0; |
1561 | 0 | } |
1562 | 0 | uval = PyLong_AsUnsignedLong(obj); |
1563 | 0 | if (uval == (unsigned long)-1 && PyErr_Occurred()) |
1564 | 0 | return 0; |
1565 | | |
1566 | 0 | *(unsigned long *)ptr = uval; |
1567 | 0 | return 1; |
1568 | 0 | } |
1569 | | |
1570 | | int |
1571 | | _PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr) |
1572 | 0 | { |
1573 | 0 | unsigned long long uval; |
1574 | |
|
1575 | 0 | if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) { |
1576 | 0 | PyErr_SetString(PyExc_ValueError, "value must be positive"); |
1577 | 0 | return 0; |
1578 | 0 | } |
1579 | 0 | uval = PyLong_AsUnsignedLongLong(obj); |
1580 | 0 | if (uval == (unsigned long long)-1 && PyErr_Occurred()) |
1581 | 0 | return 0; |
1582 | | |
1583 | 0 | *(unsigned long long *)ptr = uval; |
1584 | 0 | return 1; |
1585 | 0 | } |
1586 | | |
1587 | | int |
1588 | | _PyLong_Size_t_Converter(PyObject *obj, void *ptr) |
1589 | 0 | { |
1590 | 0 | size_t uval; |
1591 | |
|
1592 | 0 | if (PyLong_Check(obj) && _PyLong_Sign(obj) < 0) { |
1593 | 0 | PyErr_SetString(PyExc_ValueError, "value must be positive"); |
1594 | 0 | return 0; |
1595 | 0 | } |
1596 | 0 | uval = PyLong_AsSize_t(obj); |
1597 | 0 | if (uval == (size_t)-1 && PyErr_Occurred()) |
1598 | 0 | return 0; |
1599 | | |
1600 | 0 | *(size_t *)ptr = uval; |
1601 | 0 | return 1; |
1602 | 0 | } |
1603 | | |
1604 | | |
1605 | | #define CHECK_BINOP(v,w) \ |
1606 | 19.9k | do { \ |
1607 | 19.9k | if (!PyLong_Check(v) || !PyLong_Check(w)) \ |
1608 | 19.9k | Py_RETURN_NOTIMPLEMENTED; \ |
1609 | 19.9k | } while(0) |
1610 | | |
1611 | | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
1612 | | * is modified in place, by adding y to it. Carries are propagated as far as |
1613 | | * x[m-1], and the remaining carry (0 or 1) is returned. |
1614 | | */ |
1615 | | static digit |
1616 | | v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
1617 | 0 | { |
1618 | 0 | Py_ssize_t i; |
1619 | 0 | digit carry = 0; |
1620 | |
|
1621 | 0 | assert(m >= n); |
1622 | 0 | for (i = 0; i < n; ++i) { |
1623 | 0 | carry += x[i] + y[i]; |
1624 | 0 | x[i] = carry & PyLong_MASK; |
1625 | 0 | carry >>= PyLong_SHIFT; |
1626 | 0 | assert((carry & 1) == carry); |
1627 | 0 | } |
1628 | 0 | for (; carry && i < m; ++i) { |
1629 | 0 | carry += x[i]; |
1630 | 0 | x[i] = carry & PyLong_MASK; |
1631 | 0 | carry >>= PyLong_SHIFT; |
1632 | 0 | assert((carry & 1) == carry); |
1633 | 0 | } |
1634 | 0 | return carry; |
1635 | 0 | } |
1636 | | |
1637 | | /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n] |
1638 | | * is modified in place, by subtracting y from it. Borrows are propagated as |
1639 | | * far as x[m-1], and the remaining borrow (0 or 1) is returned. |
1640 | | */ |
1641 | | static digit |
1642 | | v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n) |
1643 | 0 | { |
1644 | 0 | Py_ssize_t i; |
1645 | 0 | digit borrow = 0; |
1646 | |
|
1647 | 0 | assert(m >= n); |
1648 | 0 | for (i = 0; i < n; ++i) { |
1649 | 0 | borrow = x[i] - y[i] - borrow; |
1650 | 0 | x[i] = borrow & PyLong_MASK; |
1651 | 0 | borrow >>= PyLong_SHIFT; |
1652 | 0 | borrow &= 1; /* keep only 1 sign bit */ |
1653 | 0 | } |
1654 | 0 | for (; borrow && i < m; ++i) { |
1655 | 0 | borrow = x[i] - borrow; |
1656 | 0 | x[i] = borrow & PyLong_MASK; |
1657 | 0 | borrow >>= PyLong_SHIFT; |
1658 | 0 | borrow &= 1; |
1659 | 0 | } |
1660 | 0 | return borrow; |
1661 | 0 | } |
1662 | | |
1663 | | /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put |
1664 | | * result in z[0:m], and return the d bits shifted out of the top. |
1665 | | */ |
1666 | | static digit |
1667 | | v_lshift(digit *z, digit *a, Py_ssize_t m, int d) |
1668 | 14 | { |
1669 | 14 | Py_ssize_t i; |
1670 | 14 | digit carry = 0; |
1671 | | |
1672 | 14 | assert(0 <= d && d < PyLong_SHIFT); |
1673 | 42 | for (i=0; i < m; i++) { |
1674 | 28 | twodigits acc = (twodigits)a[i] << d | carry; |
1675 | 28 | z[i] = (digit)acc & PyLong_MASK; |
1676 | 28 | carry = (digit)(acc >> PyLong_SHIFT); |
1677 | 28 | } |
1678 | 14 | return carry; |
1679 | 14 | } |
1680 | | |
1681 | | /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put |
1682 | | * result in z[0:m], and return the d bits shifted out of the bottom. |
1683 | | */ |
1684 | | static digit |
1685 | | v_rshift(digit *z, digit *a, Py_ssize_t m, int d) |
1686 | 0 | { |
1687 | 0 | Py_ssize_t i; |
1688 | 0 | digit carry = 0; |
1689 | 0 | digit mask = ((digit)1 << d) - 1U; |
1690 | |
|
1691 | 0 | assert(0 <= d && d < PyLong_SHIFT); |
1692 | 0 | for (i=m; i-- > 0;) { |
1693 | 0 | twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i]; |
1694 | 0 | carry = (digit)acc & mask; |
1695 | 0 | z[i] = (digit)(acc >> d); |
1696 | 0 | } |
1697 | 0 | return carry; |
1698 | 0 | } |
1699 | | |
1700 | | /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient |
1701 | | in pout, and returning the remainder. pin and pout point at the LSD. |
1702 | | It's OK for pin == pout on entry, which saves oodles of mallocs/frees in |
1703 | | _PyLong_Format, but that should be done with great care since ints are |
1704 | | immutable. */ |
1705 | | |
1706 | | static digit |
1707 | | inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n) |
1708 | 14 | { |
1709 | 14 | twodigits rem = 0; |
1710 | | |
1711 | 14 | assert(n > 0 && n <= PyLong_MASK); |
1712 | 14 | pin += size; |
1713 | 14 | pout += size; |
1714 | 490 | while (--size >= 0) { |
1715 | 476 | digit hi; |
1716 | 476 | rem = (rem << PyLong_SHIFT) | *--pin; |
1717 | 476 | *--pout = hi = (digit)(rem / n); |
1718 | 476 | rem -= (twodigits)hi * n; |
1719 | 476 | } |
1720 | 14 | return (digit)rem; |
1721 | 14 | } |
1722 | | |
1723 | | /* Divide an integer by a digit, returning both the quotient |
1724 | | (as function result) and the remainder (through *prem). |
1725 | | The sign of a is ignored; n should not be zero. */ |
1726 | | |
1727 | | static PyLongObject * |
1728 | | divrem1(PyLongObject *a, digit n, digit *prem) |
1729 | 14 | { |
1730 | 14 | const Py_ssize_t size = Py_ABS(Py_SIZE(a)); |
1731 | 14 | PyLongObject *z; |
1732 | | |
1733 | 14 | assert(n > 0 && n <= PyLong_MASK); |
1734 | 14 | z = _PyLong_New(size); |
1735 | 14 | if (z == NULL) |
1736 | 0 | return NULL; |
1737 | 14 | *prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n); |
1738 | 14 | return long_normalize(z); |
1739 | 14 | } |
1740 | | |
1741 | | /* Convert an integer to a base 10 string. Returns a new non-shared |
1742 | | string. (Return value is non-shared so that callers can modify the |
1743 | | returned value if necessary.) */ |
1744 | | |
1745 | | static int |
1746 | | long_to_decimal_string_internal(PyObject *aa, |
1747 | | PyObject **p_output, |
1748 | | _PyUnicodeWriter *writer, |
1749 | | _PyBytesWriter *bytes_writer, |
1750 | | char **bytes_str) |
1751 | 93 | { |
1752 | 93 | PyLongObject *scratch, *a; |
1753 | 93 | PyObject *str = NULL; |
1754 | 93 | Py_ssize_t size, strlen, size_a, i, j; |
1755 | 93 | digit *pout, *pin, rem, tenpow; |
1756 | 93 | int negative; |
1757 | 93 | int d; |
1758 | 93 | enum PyUnicode_Kind kind; |
1759 | | |
1760 | 93 | a = (PyLongObject *)aa; |
1761 | 93 | if (a == NULL || !PyLong_Check(a)) { |
1762 | 0 | PyErr_BadInternalCall(); |
1763 | 0 | return -1; |
1764 | 0 | } |
1765 | 93 | size_a = Py_ABS(Py_SIZE(a)); |
1766 | 93 | negative = Py_SIZE(a) < 0; |
1767 | | |
1768 | | /* quick and dirty upper bound for the number of digits |
1769 | | required to express a in base _PyLong_DECIMAL_BASE: |
1770 | | |
1771 | | #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE)) |
1772 | | |
1773 | | But log2(a) < size_a * PyLong_SHIFT, and |
1774 | | log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT |
1775 | | > 3.3 * _PyLong_DECIMAL_SHIFT |
1776 | | |
1777 | | size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) = |
1778 | | size_a + size_a / d < size_a + size_a / floor(d), |
1779 | | where d = (3.3 * _PyLong_DECIMAL_SHIFT) / |
1780 | | (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT) |
1781 | | */ |
1782 | 93 | d = (33 * _PyLong_DECIMAL_SHIFT) / |
1783 | 93 | (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT); |
1784 | 93 | assert(size_a < PY_SSIZE_T_MAX/2); |
1785 | 93 | size = 1 + size_a + size_a / d; |
1786 | 93 | scratch = _PyLong_New(size); |
1787 | 93 | if (scratch == NULL) |
1788 | 0 | return -1; |
1789 | | |
1790 | | /* convert array of base _PyLong_BASE digits in pin to an array of |
1791 | | base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP, |
1792 | | Volume 2 (3rd edn), section 4.4, Method 1b). */ |
1793 | 93 | pin = a->ob_digit; |
1794 | 93 | pout = scratch->ob_digit; |
1795 | 93 | size = 0; |
1796 | 184 | for (i = size_a; --i >= 0; ) { |
1797 | 91 | digit hi = pin[i]; |
1798 | 91 | for (j = 0; j < size; j++) { |
1799 | 0 | twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi; |
1800 | 0 | hi = (digit)(z / _PyLong_DECIMAL_BASE); |
1801 | 0 | pout[j] = (digit)(z - (twodigits)hi * |
1802 | 0 | _PyLong_DECIMAL_BASE); |
1803 | 0 | } |
1804 | 182 | while (hi) { |
1805 | 91 | pout[size++] = hi % _PyLong_DECIMAL_BASE; |
1806 | 91 | hi /= _PyLong_DECIMAL_BASE; |
1807 | 91 | } |
1808 | | /* check for keyboard interrupt */ |
1809 | 91 | SIGCHECK({ |
1810 | 91 | Py_DECREF(scratch); |
1811 | 91 | return -1; |
1812 | 91 | }); |
1813 | 91 | } |
1814 | | /* pout should have at least one digit, so that the case when a = 0 |
1815 | | works correctly */ |
1816 | 93 | if (size == 0) |
1817 | 2 | pout[size++] = 0; |
1818 | | |
1819 | | /* calculate exact length of output string, and allocate */ |
1820 | 93 | strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT; |
1821 | 93 | tenpow = 10; |
1822 | 93 | rem = pout[size-1]; |
1823 | 149 | while (rem >= tenpow) { |
1824 | 56 | tenpow *= 10; |
1825 | 56 | strlen++; |
1826 | 56 | } |
1827 | 93 | if (writer) { |
1828 | 56 | if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) { |
1829 | 0 | Py_DECREF(scratch); |
1830 | 0 | return -1; |
1831 | 0 | } |
1832 | 56 | kind = writer->kind; |
1833 | 56 | } |
1834 | 37 | else if (bytes_writer) { |
1835 | 0 | *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen); |
1836 | 0 | if (*bytes_str == NULL) { |
1837 | 0 | Py_DECREF(scratch); |
1838 | 0 | return -1; |
1839 | 0 | } |
1840 | 0 | } |
1841 | 37 | else { |
1842 | 37 | str = PyUnicode_New(strlen, '9'); |
1843 | 37 | if (str == NULL) { |
1844 | 0 | Py_DECREF(scratch); |
1845 | 0 | return -1; |
1846 | 0 | } |
1847 | 37 | kind = PyUnicode_KIND(str); |
1848 | 37 | } |
1849 | | |
1850 | 93 | #define WRITE_DIGITS(p) \ |
1851 | 93 | do { \ |
1852 | | /* pout[0] through pout[size-2] contribute exactly \ |
1853 | | _PyLong_DECIMAL_SHIFT digits each */ \ |
1854 | 93 | for (i=0; i < size - 1; i++) { \ |
1855 | 0 | rem = pout[i]; \ |
1856 | 0 | for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \ |
1857 | 0 | *--p = '0' + rem % 10; \ |
1858 | 0 | rem /= 10; \ |
1859 | 0 | } \ |
1860 | 0 | } \ |
1861 | | /* pout[size-1]: always produce at least one decimal digit */ \ |
1862 | 93 | rem = pout[i]; \ |
1863 | 149 | do { \ |
1864 | 149 | *--p = '0' + rem % 10; \ |
1865 | 149 | rem /= 10; \ |
1866 | 149 | } while (rem != 0); \ |
1867 | 93 | \ |
1868 | | /* and sign */ \ |
1869 | 93 | if (negative) \ |
1870 | 93 | *--p = '-'; \ |
1871 | 93 | } while (0) |
1872 | | |
1873 | 93 | #define WRITE_UNICODE_DIGITS(TYPE) \ |
1874 | 93 | do { \ |
1875 | 93 | if (writer) \ |
1876 | 93 | p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \ |
1877 | 93 | else \ |
1878 | 93 | p = (TYPE*)PyUnicode_DATA(str) + strlen; \ |
1879 | 93 | \ |
1880 | 93 | WRITE_DIGITS(p); \ |
1881 | 93 | \ |
1882 | | /* check we've counted correctly */ \ |
1883 | 93 | if (writer) \ |
1884 | 93 | assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \ |
1885 | 93 | else \ |
1886 | 93 | assert(p == (TYPE*)PyUnicode_DATA(str)); \ |
1887 | 93 | } while (0) |
1888 | | |
1889 | | /* fill the string right-to-left */ |
1890 | 93 | if (bytes_writer) { |
1891 | 0 | char *p = *bytes_str + strlen; |
1892 | 0 | WRITE_DIGITS(p); |
1893 | 0 | assert(p == *bytes_str); |
1894 | 0 | } |
1895 | 93 | else if (kind == PyUnicode_1BYTE_KIND) { |
1896 | 93 | Py_UCS1 *p; |
1897 | 93 | WRITE_UNICODE_DIGITS(Py_UCS1); |
1898 | 93 | } |
1899 | 0 | else if (kind == PyUnicode_2BYTE_KIND) { |
1900 | 0 | Py_UCS2 *p; |
1901 | 0 | WRITE_UNICODE_DIGITS(Py_UCS2); |
1902 | 0 | } |
1903 | 0 | else { |
1904 | 0 | Py_UCS4 *p; |
1905 | 0 | assert (kind == PyUnicode_4BYTE_KIND); |
1906 | 0 | WRITE_UNICODE_DIGITS(Py_UCS4); |
1907 | 0 | } |
1908 | 93 | #undef WRITE_DIGITS |
1909 | 93 | #undef WRITE_UNICODE_DIGITS |
1910 | | |
1911 | 93 | Py_DECREF(scratch); |
1912 | 93 | if (writer) { |
1913 | 56 | writer->pos += strlen; |
1914 | 56 | } |
1915 | 37 | else if (bytes_writer) { |
1916 | 0 | (*bytes_str) += strlen; |
1917 | 0 | } |
1918 | 37 | else { |
1919 | 37 | assert(_PyUnicode_CheckConsistency(str, 1)); |
1920 | 37 | *p_output = (PyObject *)str; |
1921 | 37 | } |
1922 | 93 | return 0; |
1923 | 93 | } |
1924 | | |
1925 | | static PyObject * |
1926 | | long_to_decimal_string(PyObject *aa) |
1927 | 37 | { |
1928 | 37 | PyObject *v; |
1929 | 37 | if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1) |
1930 | 0 | return NULL; |
1931 | 37 | return v; |
1932 | 37 | } |
1933 | | |
1934 | | /* Convert an int object to a string, using a given conversion base, |
1935 | | which should be one of 2, 8 or 16. Return a string object. |
1936 | | If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x' |
1937 | | if alternate is nonzero. */ |
1938 | | |
1939 | | static int |
1940 | | long_format_binary(PyObject *aa, int base, int alternate, |
1941 | | PyObject **p_output, _PyUnicodeWriter *writer, |
1942 | | _PyBytesWriter *bytes_writer, char **bytes_str) |
1943 | 0 | { |
1944 | 0 | PyLongObject *a = (PyLongObject *)aa; |
1945 | 0 | PyObject *v = NULL; |
1946 | 0 | Py_ssize_t sz; |
1947 | 0 | Py_ssize_t size_a; |
1948 | 0 | enum PyUnicode_Kind kind; |
1949 | 0 | int negative; |
1950 | 0 | int bits; |
1951 | |
|
1952 | 0 | assert(base == 2 || base == 8 || base == 16); |
1953 | 0 | if (a == NULL || !PyLong_Check(a)) { |
1954 | 0 | PyErr_BadInternalCall(); |
1955 | 0 | return -1; |
1956 | 0 | } |
1957 | 0 | size_a = Py_ABS(Py_SIZE(a)); |
1958 | 0 | negative = Py_SIZE(a) < 0; |
1959 | | |
1960 | | /* Compute a rough upper bound for the length of the string */ |
1961 | 0 | switch (base) { |
1962 | 0 | case 16: |
1963 | 0 | bits = 4; |
1964 | 0 | break; |
1965 | 0 | case 8: |
1966 | 0 | bits = 3; |
1967 | 0 | break; |
1968 | 0 | case 2: |
1969 | 0 | bits = 1; |
1970 | 0 | break; |
1971 | 0 | default: |
1972 | 0 | Py_UNREACHABLE(); |
1973 | 0 | } |
1974 | | |
1975 | | /* Compute exact length 'sz' of output string. */ |
1976 | 0 | if (size_a == 0) { |
1977 | 0 | sz = 1; |
1978 | 0 | } |
1979 | 0 | else { |
1980 | 0 | Py_ssize_t size_a_in_bits; |
1981 | | /* Ensure overflow doesn't occur during computation of sz. */ |
1982 | 0 | if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) { |
1983 | 0 | PyErr_SetString(PyExc_OverflowError, |
1984 | 0 | "int too large to format"); |
1985 | 0 | return -1; |
1986 | 0 | } |
1987 | 0 | size_a_in_bits = (size_a - 1) * PyLong_SHIFT + |
1988 | 0 | bits_in_digit(a->ob_digit[size_a - 1]); |
1989 | | /* Allow 1 character for a '-' sign. */ |
1990 | 0 | sz = negative + (size_a_in_bits + (bits - 1)) / bits; |
1991 | 0 | } |
1992 | 0 | if (alternate) { |
1993 | | /* 2 characters for prefix */ |
1994 | 0 | sz += 2; |
1995 | 0 | } |
1996 | |
|
1997 | 0 | if (writer) { |
1998 | 0 | if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1) |
1999 | 0 | return -1; |
2000 | 0 | kind = writer->kind; |
2001 | 0 | } |
2002 | 0 | else if (bytes_writer) { |
2003 | 0 | *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz); |
2004 | 0 | if (*bytes_str == NULL) |
2005 | 0 | return -1; |
2006 | 0 | } |
2007 | 0 | else { |
2008 | 0 | v = PyUnicode_New(sz, 'x'); |
2009 | 0 | if (v == NULL) |
2010 | 0 | return -1; |
2011 | 0 | kind = PyUnicode_KIND(v); |
2012 | 0 | } |
2013 | | |
2014 | 0 | #define WRITE_DIGITS(p) \ |
2015 | 0 | do { \ |
2016 | 0 | if (size_a == 0) { \ |
2017 | 0 | *--p = '0'; \ |
2018 | 0 | } \ |
2019 | 0 | else { \ |
2020 | | /* JRH: special case for power-of-2 bases */ \ |
2021 | 0 | twodigits accum = 0; \ |
2022 | 0 | int accumbits = 0; /* # of bits in accum */ \ |
2023 | 0 | Py_ssize_t i; \ |
2024 | 0 | for (i = 0; i < size_a; ++i) { \ |
2025 | 0 | accum |= (twodigits)a->ob_digit[i] << accumbits; \ |
2026 | 0 | accumbits += PyLong_SHIFT; \ |
2027 | 0 | assert(accumbits >= bits); \ |
2028 | 0 | do { \ |
2029 | 0 | char cdigit; \ |
2030 | 0 | cdigit = (char)(accum & (base - 1)); \ |
2031 | 0 | cdigit += (cdigit < 10) ? '0' : 'a'-10; \ |
2032 | 0 | *--p = cdigit; \ |
2033 | 0 | accumbits -= bits; \ |
2034 | 0 | accum >>= bits; \ |
2035 | 0 | } while (i < size_a-1 ? accumbits >= bits : accum > 0); \ |
2036 | 0 | } \ |
2037 | 0 | } \ |
2038 | 0 | \ |
2039 | 0 | if (alternate) { \ |
2040 | 0 | if (base == 16) \ |
2041 | 0 | *--p = 'x'; \ |
2042 | 0 | else if (base == 8) \ |
2043 | 0 | *--p = 'o'; \ |
2044 | 0 | else /* (base == 2) */ \ |
2045 | 0 | *--p = 'b'; \ |
2046 | 0 | *--p = '0'; \ |
2047 | 0 | } \ |
2048 | 0 | if (negative) \ |
2049 | 0 | *--p = '-'; \ |
2050 | 0 | } while (0) |
2051 | | |
2052 | 0 | #define WRITE_UNICODE_DIGITS(TYPE) \ |
2053 | 0 | do { \ |
2054 | 0 | if (writer) \ |
2055 | 0 | p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \ |
2056 | 0 | else \ |
2057 | 0 | p = (TYPE*)PyUnicode_DATA(v) + sz; \ |
2058 | 0 | \ |
2059 | 0 | WRITE_DIGITS(p); \ |
2060 | 0 | \ |
2061 | 0 | if (writer) \ |
2062 | 0 | assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \ |
2063 | 0 | else \ |
2064 | 0 | assert(p == (TYPE*)PyUnicode_DATA(v)); \ |
2065 | 0 | } while (0) |
2066 | | |
2067 | 0 | if (bytes_writer) { |
2068 | 0 | char *p = *bytes_str + sz; |
2069 | 0 | WRITE_DIGITS(p); |
2070 | 0 | assert(p == *bytes_str); |
2071 | 0 | } |
2072 | 0 | else if (kind == PyUnicode_1BYTE_KIND) { |
2073 | 0 | Py_UCS1 *p; |
2074 | 0 | WRITE_UNICODE_DIGITS(Py_UCS1); |
2075 | 0 | } |
2076 | 0 | else if (kind == PyUnicode_2BYTE_KIND) { |
2077 | 0 | Py_UCS2 *p; |
2078 | 0 | WRITE_UNICODE_DIGITS(Py_UCS2); |
2079 | 0 | } |
2080 | 0 | else { |
2081 | 0 | Py_UCS4 *p; |
2082 | 0 | assert (kind == PyUnicode_4BYTE_KIND); |
2083 | 0 | WRITE_UNICODE_DIGITS(Py_UCS4); |
2084 | 0 | } |
2085 | 0 | #undef WRITE_DIGITS |
2086 | 0 | #undef WRITE_UNICODE_DIGITS |
2087 | |
|
2088 | 0 | if (writer) { |
2089 | 0 | writer->pos += sz; |
2090 | 0 | } |
2091 | 0 | else if (bytes_writer) { |
2092 | 0 | (*bytes_str) += sz; |
2093 | 0 | } |
2094 | 0 | else { |
2095 | 0 | assert(_PyUnicode_CheckConsistency(v, 1)); |
2096 | 0 | *p_output = v; |
2097 | 0 | } |
2098 | 0 | return 0; |
2099 | 0 | } |
2100 | | |
2101 | | PyObject * |
2102 | | _PyLong_Format(PyObject *obj, int base) |
2103 | 0 | { |
2104 | 0 | PyObject *str; |
2105 | 0 | int err; |
2106 | 0 | if (base == 10) |
2107 | 0 | err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL); |
2108 | 0 | else |
2109 | 0 | err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL); |
2110 | 0 | if (err == -1) |
2111 | 0 | return NULL; |
2112 | 0 | return str; |
2113 | 0 | } |
2114 | | |
2115 | | int |
2116 | | _PyLong_FormatWriter(_PyUnicodeWriter *writer, |
2117 | | PyObject *obj, |
2118 | | int base, int alternate) |
2119 | 56 | { |
2120 | 56 | if (base == 10) |
2121 | 56 | return long_to_decimal_string_internal(obj, NULL, writer, |
2122 | 56 | NULL, NULL); |
2123 | 0 | else |
2124 | 0 | return long_format_binary(obj, base, alternate, NULL, writer, |
2125 | 0 | NULL, NULL); |
2126 | 56 | } |
2127 | | |
2128 | | char* |
2129 | | _PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str, |
2130 | | PyObject *obj, |
2131 | | int base, int alternate) |
2132 | 0 | { |
2133 | 0 | char *str2; |
2134 | 0 | int res; |
2135 | 0 | str2 = str; |
2136 | 0 | if (base == 10) |
2137 | 0 | res = long_to_decimal_string_internal(obj, NULL, NULL, |
2138 | 0 | writer, &str2); |
2139 | 0 | else |
2140 | 0 | res = long_format_binary(obj, base, alternate, NULL, NULL, |
2141 | 0 | writer, &str2); |
2142 | 0 | if (res < 0) |
2143 | 0 | return NULL; |
2144 | 0 | assert(str2 != NULL); |
2145 | 0 | return str2; |
2146 | 0 | } |
2147 | | |
2148 | | /* Table of digit values for 8-bit string -> integer conversion. |
2149 | | * '0' maps to 0, ..., '9' maps to 9. |
2150 | | * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35. |
2151 | | * All other indices map to 37. |
2152 | | * Note that when converting a base B string, a char c is a legitimate |
2153 | | * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B. |
2154 | | */ |
2155 | | unsigned char _PyLong_DigitValue[256] = { |
2156 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2157 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2158 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2159 | | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37, |
2160 | | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
2161 | | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
2162 | | 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
2163 | | 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37, |
2164 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2165 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2166 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2167 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2168 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2169 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2170 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2171 | | 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, |
2172 | | }; |
2173 | | |
2174 | | /* *str points to the first digit in a string of base `base` digits. base |
2175 | | * is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first |
2176 | | * non-digit (which may be *str!). A normalized int is returned. |
2177 | | * The point to this routine is that it takes time linear in the number of |
2178 | | * string characters. |
2179 | | * |
2180 | | * Return values: |
2181 | | * -1 on syntax error (exception needs to be set, *res is untouched) |
2182 | | * 0 else (exception may be set, in that case *res is set to NULL) |
2183 | | */ |
2184 | | static int |
2185 | | long_from_binary_base(const char **str, int base, PyLongObject **res) |
2186 | 104 | { |
2187 | 104 | const char *p = *str; |
2188 | 104 | const char *start = p; |
2189 | 104 | char prev = 0; |
2190 | 104 | Py_ssize_t digits = 0; |
2191 | 104 | int bits_per_char; |
2192 | 104 | Py_ssize_t n; |
2193 | 104 | PyLongObject *z; |
2194 | 104 | twodigits accum; |
2195 | 104 | int bits_in_accum; |
2196 | 104 | digit *pdigit; |
2197 | | |
2198 | 104 | assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0); |
2199 | 104 | n = base; |
2200 | 312 | for (bits_per_char = -1; n; ++bits_per_char) { |
2201 | 208 | n >>= 1; |
2202 | 208 | } |
2203 | | /* count digits and set p to end-of-string */ |
2204 | 3.43k | while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') { |
2205 | 3.32k | if (*p == '_') { |
2206 | 0 | if (prev == '_') { |
2207 | 0 | *str = p - 1; |
2208 | 0 | return -1; |
2209 | 0 | } |
2210 | 3.32k | } else { |
2211 | 3.32k | ++digits; |
2212 | 3.32k | } |
2213 | 3.32k | prev = *p; |
2214 | 3.32k | ++p; |
2215 | 3.32k | } |
2216 | 104 | if (prev == '_') { |
2217 | | /* Trailing underscore not allowed. */ |
2218 | 0 | *str = p - 1; |
2219 | 0 | return -1; |
2220 | 0 | } |
2221 | | |
2222 | 104 | *str = p; |
2223 | | /* n <- the number of Python digits needed, |
2224 | | = ceiling((digits * bits_per_char) / PyLong_SHIFT). */ |
2225 | 104 | if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) { |
2226 | 0 | PyErr_SetString(PyExc_ValueError, |
2227 | 0 | "int string too large to convert"); |
2228 | 0 | *res = NULL; |
2229 | 0 | return 0; |
2230 | 0 | } |
2231 | 104 | n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT; |
2232 | 104 | z = _PyLong_New(n); |
2233 | 104 | if (z == NULL) { |
2234 | 0 | *res = NULL; |
2235 | 0 | return 0; |
2236 | 0 | } |
2237 | | /* Read string from right, and fill in int from left; i.e., |
2238 | | * from least to most significant in both. |
2239 | | */ |
2240 | 104 | accum = 0; |
2241 | 104 | bits_in_accum = 0; |
2242 | 104 | pdigit = z->ob_digit; |
2243 | 3.43k | while (--p >= start) { |
2244 | 3.32k | int k; |
2245 | 3.32k | if (*p == '_') { |
2246 | 0 | continue; |
2247 | 0 | } |
2248 | 3.32k | k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)]; |
2249 | 3.32k | assert(k >= 0 && k < base); |
2250 | 3.32k | accum |= (twodigits)k << bits_in_accum; |
2251 | 3.32k | bits_in_accum += bits_per_char; |
2252 | 3.32k | if (bits_in_accum >= PyLong_SHIFT) { |
2253 | 104 | *pdigit++ = (digit)(accum & PyLong_MASK); |
2254 | 104 | assert(pdigit - z->ob_digit <= n); |
2255 | 104 | accum >>= PyLong_SHIFT; |
2256 | 104 | bits_in_accum -= PyLong_SHIFT; |
2257 | 104 | assert(bits_in_accum < PyLong_SHIFT); |
2258 | 104 | } |
2259 | 3.32k | } |
2260 | 104 | if (bits_in_accum) { |
2261 | 104 | assert(bits_in_accum <= PyLong_SHIFT); |
2262 | 104 | *pdigit++ = (digit)accum; |
2263 | 104 | assert(pdigit - z->ob_digit <= n); |
2264 | 104 | } |
2265 | 104 | while (pdigit - z->ob_digit < n) |
2266 | 0 | *pdigit++ = 0; |
2267 | 104 | *res = long_normalize(z); |
2268 | 104 | return 0; |
2269 | 104 | } |
2270 | | |
2271 | | /* Parses an int from a bytestring. Leading and trailing whitespace will be |
2272 | | * ignored. |
2273 | | * |
2274 | | * If successful, a PyLong object will be returned and 'pend' will be pointing |
2275 | | * to the first unused byte unless it's NULL. |
2276 | | * |
2277 | | * If unsuccessful, NULL will be returned. |
2278 | | */ |
2279 | | PyObject * |
2280 | | PyLong_FromString(const char *str, char **pend, int base) |
2281 | 104 | { |
2282 | 104 | int sign = 1, error_if_nonzero = 0; |
2283 | 104 | const char *start, *orig_str = str; |
2284 | 104 | PyLongObject *z = NULL; |
2285 | 104 | PyObject *strobj; |
2286 | 104 | Py_ssize_t slen; |
2287 | | |
2288 | 104 | if ((base != 0 && base < 2) || base > 36) { |
2289 | 0 | PyErr_SetString(PyExc_ValueError, |
2290 | 0 | "int() arg 2 must be >= 2 and <= 36"); |
2291 | 0 | return NULL; |
2292 | 0 | } |
2293 | 104 | while (*str != '\0' && Py_ISSPACE(Py_CHARMASK(*str))) { |
2294 | 0 | str++; |
2295 | 0 | } |
2296 | 104 | if (*str == '+') { |
2297 | 0 | ++str; |
2298 | 0 | } |
2299 | 104 | else if (*str == '-') { |
2300 | 0 | ++str; |
2301 | 0 | sign = -1; |
2302 | 0 | } |
2303 | 104 | if (base == 0) { |
2304 | 0 | if (str[0] != '0') { |
2305 | 0 | base = 10; |
2306 | 0 | } |
2307 | 0 | else if (str[1] == 'x' || str[1] == 'X') { |
2308 | 0 | base = 16; |
2309 | 0 | } |
2310 | 0 | else if (str[1] == 'o' || str[1] == 'O') { |
2311 | 0 | base = 8; |
2312 | 0 | } |
2313 | 0 | else if (str[1] == 'b' || str[1] == 'B') { |
2314 | 0 | base = 2; |
2315 | 0 | } |
2316 | 0 | else { |
2317 | | /* "old" (C-style) octal literal, now invalid. |
2318 | | it might still be zero though */ |
2319 | 0 | error_if_nonzero = 1; |
2320 | 0 | base = 10; |
2321 | 0 | } |
2322 | 0 | } |
2323 | 104 | if (str[0] == '0' && |
2324 | 104 | ((base == 16 && (str[1] == 'x' || str[1] == 'X')) || |
2325 | 100 | (base == 8 && (str[1] == 'o' || str[1] == 'O')) || |
2326 | 100 | (base == 2 && (str[1] == 'b' || str[1] == 'B')))) { |
2327 | 0 | str += 2; |
2328 | | /* One underscore allowed here. */ |
2329 | 0 | if (*str == '_') { |
2330 | 0 | ++str; |
2331 | 0 | } |
2332 | 0 | } |
2333 | 104 | if (str[0] == '_') { |
2334 | | /* May not start with underscores. */ |
2335 | 0 | goto onError; |
2336 | 0 | } |
2337 | | |
2338 | 104 | start = str; |
2339 | 104 | if ((base & (base - 1)) == 0) { |
2340 | 104 | int res = long_from_binary_base(&str, base, &z); |
2341 | 104 | if (res < 0) { |
2342 | | /* Syntax error. */ |
2343 | 0 | goto onError; |
2344 | 0 | } |
2345 | 104 | } |
2346 | 0 | else { |
2347 | | /*** |
2348 | | Binary bases can be converted in time linear in the number of digits, because |
2349 | | Python's representation base is binary. Other bases (including decimal!) use |
2350 | | the simple quadratic-time algorithm below, complicated by some speed tricks. |
2351 | | |
2352 | | First some math: the largest integer that can be expressed in N base-B digits |
2353 | | is B**N-1. Consequently, if we have an N-digit input in base B, the worst- |
2354 | | case number of Python digits needed to hold it is the smallest integer n s.t. |
2355 | | |
2356 | | BASE**n-1 >= B**N-1 [or, adding 1 to both sides] |
2357 | | BASE**n >= B**N [taking logs to base BASE] |
2358 | | n >= log(B**N)/log(BASE) = N * log(B)/log(BASE) |
2359 | | |
2360 | | The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute |
2361 | | this quickly. A Python int with that much space is reserved near the start, |
2362 | | and the result is computed into it. |
2363 | | |
2364 | | The input string is actually treated as being in base base**i (i.e., i digits |
2365 | | are processed at a time), where two more static arrays hold: |
2366 | | |
2367 | | convwidth_base[base] = the largest integer i such that base**i <= BASE |
2368 | | convmultmax_base[base] = base ** convwidth_base[base] |
2369 | | |
2370 | | The first of these is the largest i such that i consecutive input digits |
2371 | | must fit in a single Python digit. The second is effectively the input |
2372 | | base we're really using. |
2373 | | |
2374 | | Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base |
2375 | | convmultmax_base[base], the result is "simply" |
2376 | | |
2377 | | (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1 |
2378 | | |
2379 | | where B = convmultmax_base[base]. |
2380 | | |
2381 | | Error analysis: as above, the number of Python digits `n` needed is worst- |
2382 | | case |
2383 | | |
2384 | | n >= N * log(B)/log(BASE) |
2385 | | |
2386 | | where `N` is the number of input digits in base `B`. This is computed via |
2387 | | |
2388 | | size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1; |
2389 | | |
2390 | | below. Two numeric concerns are how much space this can waste, and whether |
2391 | | the computed result can be too small. To be concrete, assume BASE = 2**15, |
2392 | | which is the default (and it's unlikely anyone changes that). |
2393 | | |
2394 | | Waste isn't a problem: provided the first input digit isn't 0, the difference |
2395 | | between the worst-case input with N digits and the smallest input with N |
2396 | | digits is about a factor of B, but B is small compared to BASE so at most |
2397 | | one allocated Python digit can remain unused on that count. If |
2398 | | N*log(B)/log(BASE) is mathematically an exact integer, then truncating that |
2399 | | and adding 1 returns a result 1 larger than necessary. However, that can't |
2400 | | happen: whenever B is a power of 2, long_from_binary_base() is called |
2401 | | instead, and it's impossible for B**i to be an integer power of 2**15 when |
2402 | | B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be |
2403 | | an exact integer when B is not a power of 2, since B**i has a prime factor |
2404 | | other than 2 in that case, but (2**15)**j's only prime factor is 2). |
2405 | | |
2406 | | The computed result can be too small if the true value of N*log(B)/log(BASE) |
2407 | | is a little bit larger than an exact integer, but due to roundoff errors (in |
2408 | | computing log(B), log(BASE), their quotient, and/or multiplying that by N) |
2409 | | yields a numeric result a little less than that integer. Unfortunately, "how |
2410 | | close can a transcendental function get to an integer over some range?" |
2411 | | questions are generally theoretically intractable. Computer analysis via |
2412 | | continued fractions is practical: expand log(B)/log(BASE) via continued |
2413 | | fractions, giving a sequence i/j of "the best" rational approximations. Then |
2414 | | j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that |
2415 | | we can get very close to being in trouble, but very rarely. For example, |
2416 | | 76573 is a denominator in one of the continued-fraction approximations to |
2417 | | log(10)/log(2**15), and indeed: |
2418 | | |
2419 | | >>> log(10)/log(2**15)*76573 |
2420 | | 16958.000000654003 |
2421 | | |
2422 | | is very close to an integer. If we were working with IEEE single-precision, |
2423 | | rounding errors could kill us. Finding worst cases in IEEE double-precision |
2424 | | requires better-than-double-precision log() functions, and Tim didn't bother. |
2425 | | Instead the code checks to see whether the allocated space is enough as each |
2426 | | new Python digit is added, and copies the whole thing to a larger int if not. |
2427 | | This should happen extremely rarely, and in fact I don't have a test case |
2428 | | that triggers it(!). Instead the code was tested by artificially allocating |
2429 | | just 1 digit at the start, so that the copying code was exercised for every |
2430 | | digit beyond the first. |
2431 | | ***/ |
2432 | 0 | twodigits c; /* current input character */ |
2433 | 0 | Py_ssize_t size_z; |
2434 | 0 | Py_ssize_t digits = 0; |
2435 | 0 | int i; |
2436 | 0 | int convwidth; |
2437 | 0 | twodigits convmultmax, convmult; |
2438 | 0 | digit *pz, *pzstop; |
2439 | 0 | const char *scan, *lastdigit; |
2440 | 0 | char prev = 0; |
2441 | |
|
2442 | 0 | static double log_base_BASE[37] = {0.0e0,}; |
2443 | 0 | static int convwidth_base[37] = {0,}; |
2444 | 0 | static twodigits convmultmax_base[37] = {0,}; |
2445 | |
|
2446 | 0 | if (log_base_BASE[base] == 0.0) { |
2447 | 0 | twodigits convmax = base; |
2448 | 0 | int i = 1; |
2449 | |
|
2450 | 0 | log_base_BASE[base] = (log((double)base) / |
2451 | 0 | log((double)PyLong_BASE)); |
2452 | 0 | for (;;) { |
2453 | 0 | twodigits next = convmax * base; |
2454 | 0 | if (next > PyLong_BASE) { |
2455 | 0 | break; |
2456 | 0 | } |
2457 | 0 | convmax = next; |
2458 | 0 | ++i; |
2459 | 0 | } |
2460 | 0 | convmultmax_base[base] = convmax; |
2461 | 0 | assert(i > 0); |
2462 | 0 | convwidth_base[base] = i; |
2463 | 0 | } |
2464 | | |
2465 | | /* Find length of the string of numeric characters. */ |
2466 | 0 | scan = str; |
2467 | 0 | lastdigit = str; |
2468 | |
|
2469 | 0 | while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') { |
2470 | 0 | if (*scan == '_') { |
2471 | 0 | if (prev == '_') { |
2472 | | /* Only one underscore allowed. */ |
2473 | 0 | str = lastdigit + 1; |
2474 | 0 | goto onError; |
2475 | 0 | } |
2476 | 0 | } |
2477 | 0 | else { |
2478 | 0 | ++digits; |
2479 | 0 | lastdigit = scan; |
2480 | 0 | } |
2481 | 0 | prev = *scan; |
2482 | 0 | ++scan; |
2483 | 0 | } |
2484 | 0 | if (prev == '_') { |
2485 | | /* Trailing underscore not allowed. */ |
2486 | | /* Set error pointer to first underscore. */ |
2487 | 0 | str = lastdigit + 1; |
2488 | 0 | goto onError; |
2489 | 0 | } |
2490 | | |
2491 | | /* Create an int object that can contain the largest possible |
2492 | | * integer with this base and length. Note that there's no |
2493 | | * need to initialize z->ob_digit -- no slot is read up before |
2494 | | * being stored into. |
2495 | | */ |
2496 | 0 | double fsize_z = (double)digits * log_base_BASE[base] + 1.0; |
2497 | 0 | if (fsize_z > (double)MAX_LONG_DIGITS) { |
2498 | | /* The same exception as in _PyLong_New(). */ |
2499 | 0 | PyErr_SetString(PyExc_OverflowError, |
2500 | 0 | "too many digits in integer"); |
2501 | 0 | return NULL; |
2502 | 0 | } |
2503 | 0 | size_z = (Py_ssize_t)fsize_z; |
2504 | | /* Uncomment next line to test exceedingly rare copy code */ |
2505 | | /* size_z = 1; */ |
2506 | 0 | assert(size_z > 0); |
2507 | 0 | z = _PyLong_New(size_z); |
2508 | 0 | if (z == NULL) { |
2509 | 0 | return NULL; |
2510 | 0 | } |
2511 | 0 | Py_SIZE(z) = 0; |
2512 | | |
2513 | | /* `convwidth` consecutive input digits are treated as a single |
2514 | | * digit in base `convmultmax`. |
2515 | | */ |
2516 | 0 | convwidth = convwidth_base[base]; |
2517 | 0 | convmultmax = convmultmax_base[base]; |
2518 | | |
2519 | | /* Work ;-) */ |
2520 | 0 | while (str < scan) { |
2521 | 0 | if (*str == '_') { |
2522 | 0 | str++; |
2523 | 0 | continue; |
2524 | 0 | } |
2525 | | /* grab up to convwidth digits from the input string */ |
2526 | 0 | c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)]; |
2527 | 0 | for (i = 1; i < convwidth && str != scan; ++str) { |
2528 | 0 | if (*str == '_') { |
2529 | 0 | continue; |
2530 | 0 | } |
2531 | 0 | i++; |
2532 | 0 | c = (twodigits)(c * base + |
2533 | 0 | (int)_PyLong_DigitValue[Py_CHARMASK(*str)]); |
2534 | 0 | assert(c < PyLong_BASE); |
2535 | 0 | } |
2536 | |
|
2537 | 0 | convmult = convmultmax; |
2538 | | /* Calculate the shift only if we couldn't get |
2539 | | * convwidth digits. |
2540 | | */ |
2541 | 0 | if (i != convwidth) { |
2542 | 0 | convmult = base; |
2543 | 0 | for ( ; i > 1; --i) { |
2544 | 0 | convmult *= base; |
2545 | 0 | } |
2546 | 0 | } |
2547 | | |
2548 | | /* Multiply z by convmult, and add c. */ |
2549 | 0 | pz = z->ob_digit; |
2550 | 0 | pzstop = pz + Py_SIZE(z); |
2551 | 0 | for (; pz < pzstop; ++pz) { |
2552 | 0 | c += (twodigits)*pz * convmult; |
2553 | 0 | *pz = (digit)(c & PyLong_MASK); |
2554 | 0 | c >>= PyLong_SHIFT; |
2555 | 0 | } |
2556 | | /* carry off the current end? */ |
2557 | 0 | if (c) { |
2558 | 0 | assert(c < PyLong_BASE); |
2559 | 0 | if (Py_SIZE(z) < size_z) { |
2560 | 0 | *pz = (digit)c; |
2561 | 0 | ++Py_SIZE(z); |
2562 | 0 | } |
2563 | 0 | else { |
2564 | 0 | PyLongObject *tmp; |
2565 | | /* Extremely rare. Get more space. */ |
2566 | 0 | assert(Py_SIZE(z) == size_z); |
2567 | 0 | tmp = _PyLong_New(size_z + 1); |
2568 | 0 | if (tmp == NULL) { |
2569 | 0 | Py_DECREF(z); |
2570 | 0 | return NULL; |
2571 | 0 | } |
2572 | 0 | memcpy(tmp->ob_digit, |
2573 | 0 | z->ob_digit, |
2574 | 0 | sizeof(digit) * size_z); |
2575 | 0 | Py_DECREF(z); |
2576 | 0 | z = tmp; |
2577 | 0 | z->ob_digit[size_z] = (digit)c; |
2578 | 0 | ++size_z; |
2579 | 0 | } |
2580 | 0 | } |
2581 | 0 | } |
2582 | 0 | } |
2583 | 104 | if (z == NULL) { |
2584 | 0 | return NULL; |
2585 | 0 | } |
2586 | 104 | if (error_if_nonzero) { |
2587 | | /* reset the base to 0, else the exception message |
2588 | | doesn't make too much sense */ |
2589 | 0 | base = 0; |
2590 | 0 | if (Py_SIZE(z) != 0) { |
2591 | 0 | goto onError; |
2592 | 0 | } |
2593 | | /* there might still be other problems, therefore base |
2594 | | remains zero here for the same reason */ |
2595 | 0 | } |
2596 | 104 | if (str == start) { |
2597 | 0 | goto onError; |
2598 | 0 | } |
2599 | 104 | if (sign < 0) { |
2600 | 0 | Py_SIZE(z) = -(Py_SIZE(z)); |
2601 | 0 | } |
2602 | 104 | while (*str && Py_ISSPACE(Py_CHARMASK(*str))) { |
2603 | 0 | str++; |
2604 | 0 | } |
2605 | 104 | if (*str != '\0') { |
2606 | 0 | goto onError; |
2607 | 0 | } |
2608 | 104 | long_normalize(z); |
2609 | 104 | z = maybe_small_long(z); |
2610 | 104 | if (z == NULL) { |
2611 | 0 | return NULL; |
2612 | 0 | } |
2613 | 104 | if (pend != NULL) { |
2614 | 104 | *pend = (char *)str; |
2615 | 104 | } |
2616 | 104 | return (PyObject *) z; |
2617 | | |
2618 | 0 | onError: |
2619 | 0 | if (pend != NULL) { |
2620 | 0 | *pend = (char *)str; |
2621 | 0 | } |
2622 | 0 | Py_XDECREF(z); |
2623 | 0 | slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200; |
2624 | 0 | strobj = PyUnicode_FromStringAndSize(orig_str, slen); |
2625 | 0 | if (strobj == NULL) { |
2626 | 0 | return NULL; |
2627 | 0 | } |
2628 | 0 | PyErr_Format(PyExc_ValueError, |
2629 | 0 | "invalid literal for int() with base %d: %.200R", |
2630 | 0 | base, strobj); |
2631 | 0 | Py_DECREF(strobj); |
2632 | 0 | return NULL; |
2633 | 0 | } |
2634 | | |
2635 | | /* Since PyLong_FromString doesn't have a length parameter, |
2636 | | * check here for possible NULs in the string. |
2637 | | * |
2638 | | * Reports an invalid literal as a bytes object. |
2639 | | */ |
2640 | | PyObject * |
2641 | | _PyLong_FromBytes(const char *s, Py_ssize_t len, int base) |
2642 | 104 | { |
2643 | 104 | PyObject *result, *strobj; |
2644 | 104 | char *end = NULL; |
2645 | | |
2646 | 104 | result = PyLong_FromString(s, &end, base); |
2647 | 104 | if (end == NULL || (result != NULL && end == s + len)) |
2648 | 104 | return result; |
2649 | 0 | Py_XDECREF(result); |
2650 | 0 | strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200)); |
2651 | 0 | if (strobj != NULL) { |
2652 | 0 | PyErr_Format(PyExc_ValueError, |
2653 | 0 | "invalid literal for int() with base %d: %.200R", |
2654 | 0 | base, strobj); |
2655 | 0 | Py_DECREF(strobj); |
2656 | 0 | } |
2657 | 0 | return NULL; |
2658 | 104 | } |
2659 | | |
2660 | | PyObject * |
2661 | | PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base) |
2662 | 0 | { |
2663 | 0 | PyObject *v, *unicode = PyUnicode_FromWideChar(u, length); |
2664 | 0 | if (unicode == NULL) |
2665 | 0 | return NULL; |
2666 | 0 | v = PyLong_FromUnicodeObject(unicode, base); |
2667 | 0 | Py_DECREF(unicode); |
2668 | 0 | return v; |
2669 | 0 | } |
2670 | | |
2671 | | PyObject * |
2672 | | PyLong_FromUnicodeObject(PyObject *u, int base) |
2673 | 0 | { |
2674 | 0 | PyObject *result, *asciidig; |
2675 | 0 | const char *buffer; |
2676 | 0 | char *end = NULL; |
2677 | 0 | Py_ssize_t buflen; |
2678 | |
|
2679 | 0 | asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u); |
2680 | 0 | if (asciidig == NULL) |
2681 | 0 | return NULL; |
2682 | 0 | assert(PyUnicode_IS_ASCII(asciidig)); |
2683 | | /* Simply get a pointer to existing ASCII characters. */ |
2684 | 0 | buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen); |
2685 | 0 | assert(buffer != NULL); |
2686 | |
|
2687 | 0 | result = PyLong_FromString(buffer, &end, base); |
2688 | 0 | if (end == NULL || (result != NULL && end == buffer + buflen)) { |
2689 | 0 | Py_DECREF(asciidig); |
2690 | 0 | return result; |
2691 | 0 | } |
2692 | 0 | Py_DECREF(asciidig); |
2693 | 0 | Py_XDECREF(result); |
2694 | 0 | PyErr_Format(PyExc_ValueError, |
2695 | 0 | "invalid literal for int() with base %d: %.200R", |
2696 | 0 | base, u); |
2697 | 0 | return NULL; |
2698 | 0 | } |
2699 | | |
2700 | | /* forward */ |
2701 | | static PyLongObject *x_divrem |
2702 | | (PyLongObject *, PyLongObject *, PyLongObject **); |
2703 | | static PyObject *long_long(PyObject *v); |
2704 | | |
2705 | | /* Int division with remainder, top-level routine */ |
2706 | | |
2707 | | static int |
2708 | | long_divrem(PyLongObject *a, PyLongObject *b, |
2709 | | PyLongObject **pdiv, PyLongObject **prem) |
2710 | 51 | { |
2711 | 51 | Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b)); |
2712 | 51 | PyLongObject *z; |
2713 | | |
2714 | 51 | if (size_b == 0) { |
2715 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
2716 | 0 | "integer division or modulo by zero"); |
2717 | 0 | return -1; |
2718 | 0 | } |
2719 | 51 | if (size_a < size_b || |
2720 | 51 | (size_a == size_b && |
2721 | 37 | a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) { |
2722 | | /* |a| < |b|. */ |
2723 | 37 | *prem = (PyLongObject *)long_long((PyObject *)a); |
2724 | 37 | if (*prem == NULL) { |
2725 | 0 | return -1; |
2726 | 0 | } |
2727 | 37 | Py_INCREF(_PyLong_Zero); |
2728 | 37 | *pdiv = (PyLongObject*)_PyLong_Zero; |
2729 | 37 | return 0; |
2730 | 37 | } |
2731 | 14 | if (size_b == 1) { |
2732 | 14 | digit rem = 0; |
2733 | 14 | z = divrem1(a, b->ob_digit[0], &rem); |
2734 | 14 | if (z == NULL) |
2735 | 0 | return -1; |
2736 | 14 | *prem = (PyLongObject *) PyLong_FromLong((long)rem); |
2737 | 14 | if (*prem == NULL) { |
2738 | 0 | Py_DECREF(z); |
2739 | 0 | return -1; |
2740 | 0 | } |
2741 | 14 | } |
2742 | 0 | else { |
2743 | 0 | z = x_divrem(a, b, prem); |
2744 | 0 | if (z == NULL) |
2745 | 0 | return -1; |
2746 | 0 | } |
2747 | | /* Set the signs. |
2748 | | The quotient z has the sign of a*b; |
2749 | | the remainder r has the sign of a, |
2750 | | so a = b*z + r. */ |
2751 | 14 | if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) { |
2752 | 0 | _PyLong_Negate(&z); |
2753 | 0 | if (z == NULL) { |
2754 | 0 | Py_CLEAR(*prem); |
2755 | 0 | return -1; |
2756 | 0 | } |
2757 | 0 | } |
2758 | 14 | if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) { |
2759 | 0 | _PyLong_Negate(prem); |
2760 | 0 | if (*prem == NULL) { |
2761 | 0 | Py_DECREF(z); |
2762 | 0 | Py_CLEAR(*prem); |
2763 | 0 | return -1; |
2764 | 0 | } |
2765 | 0 | } |
2766 | 14 | *pdiv = maybe_small_long(z); |
2767 | 14 | return 0; |
2768 | 14 | } |
2769 | | |
2770 | | /* Unsigned int division with remainder -- the algorithm. The arguments v1 |
2771 | | and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */ |
2772 | | |
2773 | | static PyLongObject * |
2774 | | x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem) |
2775 | 0 | { |
2776 | 0 | PyLongObject *v, *w, *a; |
2777 | 0 | Py_ssize_t i, k, size_v, size_w; |
2778 | 0 | int d; |
2779 | 0 | digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak; |
2780 | 0 | twodigits vv; |
2781 | 0 | sdigit zhi; |
2782 | 0 | stwodigits z; |
2783 | | |
2784 | | /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd |
2785 | | edn.), section 4.3.1, Algorithm D], except that we don't explicitly |
2786 | | handle the special case when the initial estimate q for a quotient |
2787 | | digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and |
2788 | | that won't overflow a digit. */ |
2789 | | |
2790 | | /* allocate space; w will also be used to hold the final remainder */ |
2791 | 0 | size_v = Py_ABS(Py_SIZE(v1)); |
2792 | 0 | size_w = Py_ABS(Py_SIZE(w1)); |
2793 | 0 | assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */ |
2794 | 0 | v = _PyLong_New(size_v+1); |
2795 | 0 | if (v == NULL) { |
2796 | 0 | *prem = NULL; |
2797 | 0 | return NULL; |
2798 | 0 | } |
2799 | 0 | w = _PyLong_New(size_w); |
2800 | 0 | if (w == NULL) { |
2801 | 0 | Py_DECREF(v); |
2802 | 0 | *prem = NULL; |
2803 | 0 | return NULL; |
2804 | 0 | } |
2805 | | |
2806 | | /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. |
2807 | | shift v1 left by the same amount. Results go into w and v. */ |
2808 | 0 | d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]); |
2809 | 0 | carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d); |
2810 | 0 | assert(carry == 0); |
2811 | 0 | carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d); |
2812 | 0 | if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) { |
2813 | 0 | v->ob_digit[size_v] = carry; |
2814 | 0 | size_v++; |
2815 | 0 | } |
2816 | | |
2817 | | /* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has |
2818 | | at most (and usually exactly) k = size_v - size_w digits. */ |
2819 | 0 | k = size_v - size_w; |
2820 | 0 | assert(k >= 0); |
2821 | 0 | a = _PyLong_New(k); |
2822 | 0 | if (a == NULL) { |
2823 | 0 | Py_DECREF(w); |
2824 | 0 | Py_DECREF(v); |
2825 | 0 | *prem = NULL; |
2826 | 0 | return NULL; |
2827 | 0 | } |
2828 | 0 | v0 = v->ob_digit; |
2829 | 0 | w0 = w->ob_digit; |
2830 | 0 | wm1 = w0[size_w-1]; |
2831 | 0 | wm2 = w0[size_w-2]; |
2832 | 0 | for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) { |
2833 | | /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving |
2834 | | single-digit quotient q, remainder in vk[0:size_w]. */ |
2835 | |
|
2836 | 0 | SIGCHECK({ |
2837 | 0 | Py_DECREF(a); |
2838 | 0 | Py_DECREF(w); |
2839 | 0 | Py_DECREF(v); |
2840 | 0 | *prem = NULL; |
2841 | 0 | return NULL; |
2842 | 0 | }); |
2843 | | |
2844 | | /* estimate quotient digit q; may overestimate by 1 (rare) */ |
2845 | 0 | vtop = vk[size_w]; |
2846 | 0 | assert(vtop <= wm1); |
2847 | 0 | vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1]; |
2848 | 0 | q = (digit)(vv / wm1); |
2849 | 0 | r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */ |
2850 | 0 | while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT) |
2851 | 0 | | vk[size_w-2])) { |
2852 | 0 | --q; |
2853 | 0 | r += wm1; |
2854 | 0 | if (r >= PyLong_BASE) |
2855 | 0 | break; |
2856 | 0 | } |
2857 | 0 | assert(q <= PyLong_BASE); |
2858 | | |
2859 | | /* subtract q*w0[0:size_w] from vk[0:size_w+1] */ |
2860 | 0 | zhi = 0; |
2861 | 0 | for (i = 0; i < size_w; ++i) { |
2862 | | /* invariants: -PyLong_BASE <= -q <= zhi <= 0; |
2863 | | -PyLong_BASE * q <= z < PyLong_BASE */ |
2864 | 0 | z = (sdigit)vk[i] + zhi - |
2865 | 0 | (stwodigits)q * (stwodigits)w0[i]; |
2866 | 0 | vk[i] = (digit)z & PyLong_MASK; |
2867 | 0 | zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits, |
2868 | 0 | z, PyLong_SHIFT); |
2869 | 0 | } |
2870 | | |
2871 | | /* add w back if q was too large (this branch taken rarely) */ |
2872 | 0 | assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0); |
2873 | 0 | if ((sdigit)vtop + zhi < 0) { |
2874 | 0 | carry = 0; |
2875 | 0 | for (i = 0; i < size_w; ++i) { |
2876 | 0 | carry += vk[i] + w0[i]; |
2877 | 0 | vk[i] = carry & PyLong_MASK; |
2878 | 0 | carry >>= PyLong_SHIFT; |
2879 | 0 | } |
2880 | 0 | --q; |
2881 | 0 | } |
2882 | | |
2883 | | /* store quotient digit */ |
2884 | 0 | assert(q < PyLong_BASE); |
2885 | 0 | *--ak = q; |
2886 | 0 | } |
2887 | | |
2888 | | /* unshift remainder; we reuse w to store the result */ |
2889 | 0 | carry = v_rshift(w0, v0, size_w, d); |
2890 | 0 | assert(carry==0); |
2891 | 0 | Py_DECREF(v); |
2892 | |
|
2893 | 0 | *prem = long_normalize(w); |
2894 | 0 | return long_normalize(a); |
2895 | 0 | } |
2896 | | |
2897 | | /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <= |
2898 | | abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is |
2899 | | rounded to DBL_MANT_DIG significant bits using round-half-to-even. |
2900 | | If a == 0, return 0.0 and set *e = 0. If the resulting exponent |
2901 | | e is larger than PY_SSIZE_T_MAX, raise OverflowError and return |
2902 | | -1.0. */ |
2903 | | |
2904 | | /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */ |
2905 | | #if DBL_MANT_DIG == 53 |
2906 | 14 | #define EXP2_DBL_MANT_DIG 9007199254740992.0 |
2907 | | #else |
2908 | | #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG)) |
2909 | | #endif |
2910 | | |
2911 | | double |
2912 | | _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e) |
2913 | 14 | { |
2914 | 14 | Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size; |
2915 | | /* See below for why x_digits is always large enough. */ |
2916 | 14 | digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT]; |
2917 | 14 | double dx; |
2918 | | /* Correction term for round-half-to-even rounding. For a digit x, |
2919 | | "x + half_even_correction[x & 7]" gives x rounded to the nearest |
2920 | | multiple of 4, rounding ties to a multiple of 8. */ |
2921 | 14 | static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1}; |
2922 | | |
2923 | 14 | a_size = Py_ABS(Py_SIZE(a)); |
2924 | 14 | if (a_size == 0) { |
2925 | | /* Special case for 0: significand 0.0, exponent 0. */ |
2926 | 0 | *e = 0; |
2927 | 0 | return 0.0; |
2928 | 0 | } |
2929 | 14 | a_bits = bits_in_digit(a->ob_digit[a_size-1]); |
2930 | | /* The following is an overflow-free version of the check |
2931 | | "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */ |
2932 | 14 | if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 && |
2933 | 14 | (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 || |
2934 | 0 | a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1)) |
2935 | 0 | goto overflow; |
2936 | 14 | a_bits = (a_size - 1) * PyLong_SHIFT + a_bits; |
2937 | | |
2938 | | /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size] |
2939 | | (shifting left if a_bits <= DBL_MANT_DIG + 2). |
2940 | | |
2941 | | Number of digits needed for result: write // for floor division. |
2942 | | Then if shifting left, we end up using |
2943 | | |
2944 | | 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT |
2945 | | |
2946 | | digits. If shifting right, we use |
2947 | | |
2948 | | a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT |
2949 | | |
2950 | | digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with |
2951 | | the inequalities |
2952 | | |
2953 | | m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT |
2954 | | m // PyLong_SHIFT - n // PyLong_SHIFT <= |
2955 | | 1 + (m - n - 1) // PyLong_SHIFT, |
2956 | | |
2957 | | valid for any integers m and n, we find that x_size satisfies |
2958 | | |
2959 | | x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT |
2960 | | |
2961 | | in both cases. |
2962 | | */ |
2963 | 14 | if (a_bits <= DBL_MANT_DIG + 2) { |
2964 | 14 | shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT; |
2965 | 14 | shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT; |
2966 | 14 | x_size = 0; |
2967 | 14 | while (x_size < shift_digits) |
2968 | 0 | x_digits[x_size++] = 0; |
2969 | 14 | rem = v_lshift(x_digits + x_size, a->ob_digit, a_size, |
2970 | 14 | (int)shift_bits); |
2971 | 14 | x_size += a_size; |
2972 | 14 | x_digits[x_size++] = rem; |
2973 | 14 | } |
2974 | 0 | else { |
2975 | 0 | shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT; |
2976 | 0 | shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT; |
2977 | 0 | rem = v_rshift(x_digits, a->ob_digit + shift_digits, |
2978 | 0 | a_size - shift_digits, (int)shift_bits); |
2979 | 0 | x_size = a_size - shift_digits; |
2980 | | /* For correct rounding below, we need the least significant |
2981 | | bit of x to be 'sticky' for this shift: if any of the bits |
2982 | | shifted out was nonzero, we set the least significant bit |
2983 | | of x. */ |
2984 | 0 | if (rem) |
2985 | 0 | x_digits[0] |= 1; |
2986 | 0 | else |
2987 | 0 | while (shift_digits > 0) |
2988 | 0 | if (a->ob_digit[--shift_digits]) { |
2989 | 0 | x_digits[0] |= 1; |
2990 | 0 | break; |
2991 | 0 | } |
2992 | 0 | } |
2993 | 14 | assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits)); |
2994 | | |
2995 | | /* Round, and convert to double. */ |
2996 | 14 | x_digits[0] += half_even_correction[x_digits[0] & 7]; |
2997 | 14 | dx = x_digits[--x_size]; |
2998 | 42 | while (x_size > 0) |
2999 | 28 | dx = dx * PyLong_BASE + x_digits[--x_size]; |
3000 | | |
3001 | | /* Rescale; make correction if result is 1.0. */ |
3002 | 14 | dx /= 4.0 * EXP2_DBL_MANT_DIG; |
3003 | 14 | if (dx == 1.0) { |
3004 | 0 | if (a_bits == PY_SSIZE_T_MAX) |
3005 | 0 | goto overflow; |
3006 | 0 | dx = 0.5; |
3007 | 0 | a_bits += 1; |
3008 | 0 | } |
3009 | | |
3010 | 14 | *e = a_bits; |
3011 | 14 | return Py_SIZE(a) < 0 ? -dx : dx; |
3012 | | |
3013 | 0 | overflow: |
3014 | | /* exponent > PY_SSIZE_T_MAX */ |
3015 | 0 | PyErr_SetString(PyExc_OverflowError, |
3016 | 0 | "huge integer: number of bits overflows a Py_ssize_t"); |
3017 | 0 | *e = 0; |
3018 | 0 | return -1.0; |
3019 | 14 | } |
3020 | | |
3021 | | /* Get a C double from an int object. Rounds to the nearest double, |
3022 | | using the round-half-to-even rule in the case of a tie. */ |
3023 | | |
3024 | | double |
3025 | | PyLong_AsDouble(PyObject *v) |
3026 | 42 | { |
3027 | 42 | Py_ssize_t exponent; |
3028 | 42 | double x; |
3029 | | |
3030 | 42 | if (v == NULL) { |
3031 | 0 | PyErr_BadInternalCall(); |
3032 | 0 | return -1.0; |
3033 | 0 | } |
3034 | 42 | if (!PyLong_Check(v)) { |
3035 | 0 | PyErr_SetString(PyExc_TypeError, "an integer is required"); |
3036 | 0 | return -1.0; |
3037 | 0 | } |
3038 | 42 | if (Py_ABS(Py_SIZE(v)) <= 1) { |
3039 | | /* Fast path; single digit long (31 bits) will cast safely |
3040 | | to double. This improves performance of FP/long operations |
3041 | | by 20%. |
3042 | | */ |
3043 | 28 | return (double)MEDIUM_VALUE((PyLongObject *)v); |
3044 | 28 | } |
3045 | 14 | x = _PyLong_Frexp((PyLongObject *)v, &exponent); |
3046 | 14 | if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) { |
3047 | 0 | PyErr_SetString(PyExc_OverflowError, |
3048 | 0 | "int too large to convert to float"); |
3049 | 0 | return -1.0; |
3050 | 0 | } |
3051 | 14 | return ldexp(x, (int)exponent); |
3052 | 14 | } |
3053 | | |
3054 | | /* Methods */ |
3055 | | |
3056 | | static int |
3057 | | long_compare(PyLongObject *a, PyLongObject *b) |
3058 | 5.28k | { |
3059 | 5.28k | Py_ssize_t sign; |
3060 | | |
3061 | 5.28k | if (Py_SIZE(a) != Py_SIZE(b)) { |
3062 | 3.09k | sign = Py_SIZE(a) - Py_SIZE(b); |
3063 | 3.09k | } |
3064 | 2.18k | else { |
3065 | 2.18k | Py_ssize_t i = Py_ABS(Py_SIZE(a)); |
3066 | 4.27k | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
3067 | 2.08k | ; |
3068 | 2.18k | if (i < 0) |
3069 | 1.29k | sign = 0; |
3070 | 887 | else { |
3071 | 887 | sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i]; |
3072 | 887 | if (Py_SIZE(a) < 0) |
3073 | 0 | sign = -sign; |
3074 | 887 | } |
3075 | 2.18k | } |
3076 | 5.28k | return sign < 0 ? -1 : sign > 0 ? 1 : 0; |
3077 | 5.28k | } |
3078 | | |
3079 | | static PyObject * |
3080 | | long_richcompare(PyObject *self, PyObject *other, int op) |
3081 | 8.24k | { |
3082 | 8.24k | int result; |
3083 | 8.24k | CHECK_BINOP(self, other); |
3084 | 8.24k | if (self == other) |
3085 | 2.95k | result = 0; |
3086 | 5.28k | else |
3087 | 5.28k | result = long_compare((PyLongObject*)self, (PyLongObject*)other); |
3088 | 8.24k | Py_RETURN_RICHCOMPARE(result, 0, op); |
3089 | 8.24k | } |
3090 | | |
3091 | | static Py_hash_t |
3092 | | long_hash(PyLongObject *v) |
3093 | 7.08k | { |
3094 | 7.08k | Py_uhash_t x; |
3095 | 7.08k | Py_ssize_t i; |
3096 | 7.08k | int sign; |
3097 | | |
3098 | 7.08k | i = Py_SIZE(v); |
3099 | 7.08k | switch(i) { |
3100 | 0 | case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0]; |
3101 | 87 | case 0: return 0; |
3102 | 1.56k | case 1: return v->ob_digit[0]; |
3103 | 7.08k | } |
3104 | 5.43k | sign = 1; |
3105 | 5.43k | x = 0; |
3106 | 5.43k | if (i < 0) { |
3107 | 0 | sign = -1; |
3108 | 0 | i = -(i); |
3109 | 0 | } |
3110 | 16.3k | while (--i >= 0) { |
3111 | | /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we |
3112 | | want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo |
3113 | | _PyHASH_MODULUS. |
3114 | | |
3115 | | The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS |
3116 | | amounts to a rotation of the bits of x. To see this, write |
3117 | | |
3118 | | x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z |
3119 | | |
3120 | | where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top |
3121 | | PyLong_SHIFT bits of x (those that are shifted out of the |
3122 | | original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) & |
3123 | | _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT |
3124 | | bits of x, shifted up. Then since 2**_PyHASH_BITS is |
3125 | | congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is |
3126 | | congruent to y modulo _PyHASH_MODULUS. So |
3127 | | |
3128 | | x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS). |
3129 | | |
3130 | | The right-hand side is just the result of rotating the |
3131 | | _PyHASH_BITS bits of x left by PyLong_SHIFT places; since |
3132 | | not all _PyHASH_BITS bits of x are 1s, the same is true |
3133 | | after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is |
3134 | | the reduction of x*2**PyLong_SHIFT modulo |
3135 | | _PyHASH_MODULUS. */ |
3136 | 10.8k | x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) | |
3137 | 10.8k | (x >> (_PyHASH_BITS - PyLong_SHIFT)); |
3138 | 10.8k | x += v->ob_digit[i]; |
3139 | 10.8k | if (x >= _PyHASH_MODULUS) |
3140 | 0 | x -= _PyHASH_MODULUS; |
3141 | 10.8k | } |
3142 | 5.43k | x = x * sign; |
3143 | 5.43k | if (x == (Py_uhash_t)-1) |
3144 | 0 | x = (Py_uhash_t)-2; |
3145 | 5.43k | return (Py_hash_t)x; |
3146 | 7.08k | } |
3147 | | |
3148 | | |
3149 | | /* Add the absolute values of two integers. */ |
3150 | | |
3151 | | static PyLongObject * |
3152 | | x_add(PyLongObject *a, PyLongObject *b) |
3153 | 2.63k | { |
3154 | 2.63k | Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b)); |
3155 | 2.63k | PyLongObject *z; |
3156 | 2.63k | Py_ssize_t i; |
3157 | 2.63k | digit carry = 0; |
3158 | | |
3159 | | /* Ensure a is the larger of the two: */ |
3160 | 2.63k | if (size_a < size_b) { |
3161 | 37 | { PyLongObject *temp = a; a = b; b = temp; } |
3162 | 37 | { Py_ssize_t size_temp = size_a; |
3163 | 37 | size_a = size_b; |
3164 | 37 | size_b = size_temp; } |
3165 | 37 | } |
3166 | 2.63k | z = _PyLong_New(size_a+1); |
3167 | 2.63k | if (z == NULL) |
3168 | 0 | return NULL; |
3169 | 5.25k | for (i = 0; i < size_b; ++i) { |
3170 | 2.62k | carry += a->ob_digit[i] + b->ob_digit[i]; |
3171 | 2.62k | z->ob_digit[i] = carry & PyLong_MASK; |
3172 | 2.62k | carry >>= PyLong_SHIFT; |
3173 | 2.62k | } |
3174 | 8.30k | for (; i < size_a; ++i) { |
3175 | 5.66k | carry += a->ob_digit[i]; |
3176 | 5.66k | z->ob_digit[i] = carry & PyLong_MASK; |
3177 | 5.66k | carry >>= PyLong_SHIFT; |
3178 | 5.66k | } |
3179 | 2.63k | z->ob_digit[i] = carry; |
3180 | 2.63k | return long_normalize(z); |
3181 | 2.63k | } |
3182 | | |
3183 | | /* Subtract the absolute values of two integers. */ |
3184 | | |
3185 | | static PyLongObject * |
3186 | | x_sub(PyLongObject *a, PyLongObject *b) |
3187 | 110 | { |
3188 | 110 | Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b)); |
3189 | 110 | PyLongObject *z; |
3190 | 110 | Py_ssize_t i; |
3191 | 110 | int sign = 1; |
3192 | 110 | digit borrow = 0; |
3193 | | |
3194 | | /* Ensure a is the larger of the two: */ |
3195 | 110 | if (size_a < size_b) { |
3196 | 0 | sign = -1; |
3197 | 0 | { PyLongObject *temp = a; a = b; b = temp; } |
3198 | 0 | { Py_ssize_t size_temp = size_a; |
3199 | 0 | size_a = size_b; |
3200 | 0 | size_b = size_temp; } |
3201 | 0 | } |
3202 | 110 | else if (size_a == size_b) { |
3203 | | /* Find highest digit where a and b differ: */ |
3204 | 0 | i = size_a; |
3205 | 0 | while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i]) |
3206 | 0 | ; |
3207 | 0 | if (i < 0) |
3208 | 0 | return (PyLongObject *)PyLong_FromLong(0); |
3209 | 0 | if (a->ob_digit[i] < b->ob_digit[i]) { |
3210 | 0 | sign = -1; |
3211 | 0 | { PyLongObject *temp = a; a = b; b = temp; } |
3212 | 0 | } |
3213 | 0 | size_a = size_b = i+1; |
3214 | 0 | } |
3215 | 110 | z = _PyLong_New(size_a); |
3216 | 110 | if (z == NULL) |
3217 | 0 | return NULL; |
3218 | 206 | for (i = 0; i < size_b; ++i) { |
3219 | | /* The following assumes unsigned arithmetic |
3220 | | works module 2**N for some N>PyLong_SHIFT. */ |
3221 | 96 | borrow = a->ob_digit[i] - b->ob_digit[i] - borrow; |
3222 | 96 | z->ob_digit[i] = borrow & PyLong_MASK; |
3223 | 96 | borrow >>= PyLong_SHIFT; |
3224 | 96 | borrow &= 1; /* Keep only one sign bit */ |
3225 | 96 | } |
3226 | 1.13k | for (; i < size_a; ++i) { |
3227 | 1.02k | borrow = a->ob_digit[i] - borrow; |
3228 | 1.02k | z->ob_digit[i] = borrow & PyLong_MASK; |
3229 | 1.02k | borrow >>= PyLong_SHIFT; |
3230 | 1.02k | borrow &= 1; /* Keep only one sign bit */ |
3231 | 1.02k | } |
3232 | 110 | assert(borrow == 0); |
3233 | 110 | if (sign < 0) { |
3234 | 0 | Py_SIZE(z) = -Py_SIZE(z); |
3235 | 0 | } |
3236 | 110 | return long_normalize(z); |
3237 | 110 | } |
3238 | | |
3239 | | static PyObject * |
3240 | | long_add(PyLongObject *a, PyLongObject *b) |
3241 | 4.66k | { |
3242 | 4.66k | PyLongObject *z; |
3243 | | |
3244 | 4.66k | CHECK_BINOP(a, b); |
3245 | | |
3246 | 4.66k | if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) { |
3247 | 2.02k | return PyLong_FromLong(MEDIUM_VALUE(a) + MEDIUM_VALUE(b)); |
3248 | 2.02k | } |
3249 | 2.63k | if (Py_SIZE(a) < 0) { |
3250 | 0 | if (Py_SIZE(b) < 0) { |
3251 | 0 | z = x_add(a, b); |
3252 | 0 | if (z != NULL) { |
3253 | | /* x_add received at least one multiple-digit int, |
3254 | | and thus z must be a multiple-digit int. |
3255 | | That also means z is not an element of |
3256 | | small_ints, so negating it in-place is safe. */ |
3257 | 0 | assert(Py_REFCNT(z) == 1); |
3258 | 0 | Py_SIZE(z) = -(Py_SIZE(z)); |
3259 | 0 | } |
3260 | 0 | } |
3261 | 0 | else |
3262 | 0 | z = x_sub(b, a); |
3263 | 0 | } |
3264 | 2.63k | else { |
3265 | 2.63k | if (Py_SIZE(b) < 0) |
3266 | 0 | z = x_sub(a, b); |
3267 | 2.63k | else |
3268 | 2.63k | z = x_add(a, b); |
3269 | 2.63k | } |
3270 | 2.63k | return (PyObject *)z; |
3271 | 4.66k | } |
3272 | | |
3273 | | static PyObject * |
3274 | | long_sub(PyLongObject *a, PyLongObject *b) |
3275 | 1.11k | { |
3276 | 1.11k | PyLongObject *z; |
3277 | | |
3278 | 1.11k | CHECK_BINOP(a, b); |
3279 | | |
3280 | 1.11k | if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) { |
3281 | 1.00k | return PyLong_FromLong(MEDIUM_VALUE(a) - MEDIUM_VALUE(b)); |
3282 | 1.00k | } |
3283 | 110 | if (Py_SIZE(a) < 0) { |
3284 | 0 | if (Py_SIZE(b) < 0) |
3285 | 0 | z = x_sub(a, b); |
3286 | 0 | else |
3287 | 0 | z = x_add(a, b); |
3288 | 0 | if (z != NULL) { |
3289 | 0 | assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1); |
3290 | 0 | Py_SIZE(z) = -(Py_SIZE(z)); |
3291 | 0 | } |
3292 | 0 | } |
3293 | 110 | else { |
3294 | 110 | if (Py_SIZE(b) < 0) |
3295 | 0 | z = x_add(a, b); |
3296 | 110 | else |
3297 | 110 | z = x_sub(a, b); |
3298 | 110 | } |
3299 | 110 | return (PyObject *)z; |
3300 | 1.11k | } |
3301 | | |
3302 | | /* Grade school multiplication, ignoring the signs. |
3303 | | * Returns the absolute value of the product, or NULL if error. |
3304 | | */ |
3305 | | static PyLongObject * |
3306 | | x_mul(PyLongObject *a, PyLongObject *b) |
3307 | 2.58k | { |
3308 | 2.58k | PyLongObject *z; |
3309 | 2.58k | Py_ssize_t size_a = Py_ABS(Py_SIZE(a)); |
3310 | 2.58k | Py_ssize_t size_b = Py_ABS(Py_SIZE(b)); |
3311 | 2.58k | Py_ssize_t i; |
3312 | | |
3313 | 2.58k | z = _PyLong_New(size_a + size_b); |
3314 | 2.58k | if (z == NULL) |
3315 | 0 | return NULL; |
3316 | | |
3317 | 2.58k | memset(z->ob_digit, 0, Py_SIZE(z) * sizeof(digit)); |
3318 | 2.58k | if (a == b) { |
3319 | | /* Efficient squaring per HAC, Algorithm 14.16: |
3320 | | * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf |
3321 | | * Gives slightly less than a 2x speedup when a == b, |
3322 | | * via exploiting that each entry in the multiplication |
3323 | | * pyramid appears twice (except for the size_a squares). |
3324 | | */ |
3325 | 0 | for (i = 0; i < size_a; ++i) { |
3326 | 0 | twodigits carry; |
3327 | 0 | twodigits f = a->ob_digit[i]; |
3328 | 0 | digit *pz = z->ob_digit + (i << 1); |
3329 | 0 | digit *pa = a->ob_digit + i + 1; |
3330 | 0 | digit *paend = a->ob_digit + size_a; |
3331 | |
|
3332 | 0 | SIGCHECK({ |
3333 | 0 | Py_DECREF(z); |
3334 | 0 | return NULL; |
3335 | 0 | }); |
3336 | | |
3337 | 0 | carry = *pz + f * f; |
3338 | 0 | *pz++ = (digit)(carry & PyLong_MASK); |
3339 | 0 | carry >>= PyLong_SHIFT; |
3340 | 0 | assert(carry <= PyLong_MASK); |
3341 | | |
3342 | | /* Now f is added in twice in each column of the |
3343 | | * pyramid it appears. Same as adding f<<1 once. |
3344 | | */ |
3345 | 0 | f <<= 1; |
3346 | 0 | while (pa < paend) { |
3347 | 0 | carry += *pz + *pa++ * f; |
3348 | 0 | *pz++ = (digit)(carry & PyLong_MASK); |
3349 | 0 | carry >>= PyLong_SHIFT; |
3350 | 0 | assert(carry <= (PyLong_MASK << 1)); |
3351 | 0 | } |
3352 | 0 | if (carry) { |
3353 | 0 | carry += *pz; |
3354 | 0 | *pz++ = (digit)(carry & PyLong_MASK); |
3355 | 0 | carry >>= PyLong_SHIFT; |
3356 | 0 | } |
3357 | 0 | if (carry) |
3358 | 0 | *pz += (digit)(carry & PyLong_MASK); |
3359 | 0 | assert((carry >> PyLong_SHIFT) == 0); |
3360 | 0 | } |
3361 | 0 | } |
3362 | 2.58k | else { /* a is not the same as b -- gradeschool int mult */ |
3363 | 5.17k | for (i = 0; i < size_a; ++i) { |
3364 | 2.58k | twodigits carry = 0; |
3365 | 2.58k | twodigits f = a->ob_digit[i]; |
3366 | 2.58k | digit *pz = z->ob_digit + i; |
3367 | 2.58k | digit *pb = b->ob_digit; |
3368 | 2.58k | digit *pbend = b->ob_digit + size_b; |
3369 | | |
3370 | 2.58k | SIGCHECK({ |
3371 | 2.58k | Py_DECREF(z); |
3372 | 2.58k | return NULL; |
3373 | 2.58k | }); |
3374 | | |
3375 | 7.76k | while (pb < pbend) { |
3376 | 5.17k | carry += *pz + *pb++ * f; |
3377 | 5.17k | *pz++ = (digit)(carry & PyLong_MASK); |
3378 | 5.17k | carry >>= PyLong_SHIFT; |
3379 | 5.17k | assert(carry <= PyLong_MASK); |
3380 | 5.17k | } |
3381 | 2.58k | if (carry) |
3382 | 2.56k | *pz += (digit)(carry & PyLong_MASK); |
3383 | 2.58k | assert((carry >> PyLong_SHIFT) == 0); |
3384 | 2.58k | } |
3385 | 2.58k | } |
3386 | 2.58k | return long_normalize(z); |
3387 | 2.58k | } |
3388 | | |
3389 | | /* A helper for Karatsuba multiplication (k_mul). |
3390 | | Takes an int "n" and an integer "size" representing the place to |
3391 | | split, and sets low and high such that abs(n) == (high << size) + low, |
3392 | | viewing the shift as being by digits. The sign bit is ignored, and |
3393 | | the return values are >= 0. |
3394 | | Returns 0 on success, -1 on failure. |
3395 | | */ |
3396 | | static int |
3397 | | kmul_split(PyLongObject *n, |
3398 | | Py_ssize_t size, |
3399 | | PyLongObject **high, |
3400 | | PyLongObject **low) |
3401 | 0 | { |
3402 | 0 | PyLongObject *hi, *lo; |
3403 | 0 | Py_ssize_t size_lo, size_hi; |
3404 | 0 | const Py_ssize_t size_n = Py_ABS(Py_SIZE(n)); |
3405 | |
|
3406 | 0 | size_lo = Py_MIN(size_n, size); |
3407 | 0 | size_hi = size_n - size_lo; |
3408 | |
|
3409 | 0 | if ((hi = _PyLong_New(size_hi)) == NULL) |
3410 | 0 | return -1; |
3411 | 0 | if ((lo = _PyLong_New(size_lo)) == NULL) { |
3412 | 0 | Py_DECREF(hi); |
3413 | 0 | return -1; |
3414 | 0 | } |
3415 | | |
3416 | 0 | memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit)); |
3417 | 0 | memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit)); |
3418 | |
|
3419 | 0 | *high = long_normalize(hi); |
3420 | 0 | *low = long_normalize(lo); |
3421 | 0 | return 0; |
3422 | 0 | } |
3423 | | |
3424 | | static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b); |
3425 | | |
3426 | | /* Karatsuba multiplication. Ignores the input signs, and returns the |
3427 | | * absolute value of the product (or NULL if error). |
3428 | | * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). |
3429 | | */ |
3430 | | static PyLongObject * |
3431 | | k_mul(PyLongObject *a, PyLongObject *b) |
3432 | 2.58k | { |
3433 | 2.58k | Py_ssize_t asize = Py_ABS(Py_SIZE(a)); |
3434 | 2.58k | Py_ssize_t bsize = Py_ABS(Py_SIZE(b)); |
3435 | 2.58k | PyLongObject *ah = NULL; |
3436 | 2.58k | PyLongObject *al = NULL; |
3437 | 2.58k | PyLongObject *bh = NULL; |
3438 | 2.58k | PyLongObject *bl = NULL; |
3439 | 2.58k | PyLongObject *ret = NULL; |
3440 | 2.58k | PyLongObject *t1, *t2, *t3; |
3441 | 2.58k | Py_ssize_t shift; /* the number of digits we split off */ |
3442 | 2.58k | Py_ssize_t i; |
3443 | | |
3444 | | /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl |
3445 | | * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl |
3446 | | * Then the original product is |
3447 | | * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl |
3448 | | * By picking X to be a power of 2, "*X" is just shifting, and it's |
3449 | | * been reduced to 3 multiplies on numbers half the size. |
3450 | | */ |
3451 | | |
3452 | | /* We want to split based on the larger number; fiddle so that b |
3453 | | * is largest. |
3454 | | */ |
3455 | 2.58k | if (asize > bsize) { |
3456 | 2.56k | t1 = a; |
3457 | 2.56k | a = b; |
3458 | 2.56k | b = t1; |
3459 | | |
3460 | 2.56k | i = asize; |
3461 | 2.56k | asize = bsize; |
3462 | 2.56k | bsize = i; |
3463 | 2.56k | } |
3464 | | |
3465 | | /* Use gradeschool math when either number is too small. */ |
3466 | 2.58k | i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF; |
3467 | 2.58k | if (asize <= i) { |
3468 | 2.58k | if (asize == 0) |
3469 | 0 | return (PyLongObject *)PyLong_FromLong(0); |
3470 | 2.58k | else |
3471 | 2.58k | return x_mul(a, b); |
3472 | 2.58k | } |
3473 | | |
3474 | | /* If a is small compared to b, splitting on b gives a degenerate |
3475 | | * case with ah==0, and Karatsuba may be (even much) less efficient |
3476 | | * than "grade school" then. However, we can still win, by viewing |
3477 | | * b as a string of "big digits", each of width a->ob_size. That |
3478 | | * leads to a sequence of balanced calls to k_mul. |
3479 | | */ |
3480 | 0 | if (2 * asize <= bsize) |
3481 | 0 | return k_lopsided_mul(a, b); |
3482 | | |
3483 | | /* Split a & b into hi & lo pieces. */ |
3484 | 0 | shift = bsize >> 1; |
3485 | 0 | if (kmul_split(a, shift, &ah, &al) < 0) goto fail; |
3486 | 0 | assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */ |
3487 | |
|
3488 | 0 | if (a == b) { |
3489 | 0 | bh = ah; |
3490 | 0 | bl = al; |
3491 | 0 | Py_INCREF(bh); |
3492 | 0 | Py_INCREF(bl); |
3493 | 0 | } |
3494 | 0 | else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail; |
3495 | | |
3496 | | /* The plan: |
3497 | | * 1. Allocate result space (asize + bsize digits: that's always |
3498 | | * enough). |
3499 | | * 2. Compute ah*bh, and copy into result at 2*shift. |
3500 | | * 3. Compute al*bl, and copy into result at 0. Note that this |
3501 | | * can't overlap with #2. |
3502 | | * 4. Subtract al*bl from the result, starting at shift. This may |
3503 | | * underflow (borrow out of the high digit), but we don't care: |
3504 | | * we're effectively doing unsigned arithmetic mod |
3505 | | * BASE**(sizea + sizeb), and so long as the *final* result fits, |
3506 | | * borrows and carries out of the high digit can be ignored. |
3507 | | * 5. Subtract ah*bh from the result, starting at shift. |
3508 | | * 6. Compute (ah+al)*(bh+bl), and add it into the result starting |
3509 | | * at shift. |
3510 | | */ |
3511 | | |
3512 | | /* 1. Allocate result space. */ |
3513 | 0 | ret = _PyLong_New(asize + bsize); |
3514 | 0 | if (ret == NULL) goto fail; |
3515 | | #ifdef Py_DEBUG |
3516 | | /* Fill with trash, to catch reference to uninitialized digits. */ |
3517 | | memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit)); |
3518 | | #endif |
3519 | | |
3520 | | /* 2. t1 <- ah*bh, and copy into high digits of result. */ |
3521 | 0 | if ((t1 = k_mul(ah, bh)) == NULL) goto fail; |
3522 | 0 | assert(Py_SIZE(t1) >= 0); |
3523 | 0 | assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret)); |
3524 | 0 | memcpy(ret->ob_digit + 2*shift, t1->ob_digit, |
3525 | 0 | Py_SIZE(t1) * sizeof(digit)); |
3526 | | |
3527 | | /* Zero-out the digits higher than the ah*bh copy. */ |
3528 | 0 | i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1); |
3529 | 0 | if (i) |
3530 | 0 | memset(ret->ob_digit + 2*shift + Py_SIZE(t1), 0, |
3531 | 0 | i * sizeof(digit)); |
3532 | | |
3533 | | /* 3. t2 <- al*bl, and copy into the low digits. */ |
3534 | 0 | if ((t2 = k_mul(al, bl)) == NULL) { |
3535 | 0 | Py_DECREF(t1); |
3536 | 0 | goto fail; |
3537 | 0 | } |
3538 | 0 | assert(Py_SIZE(t2) >= 0); |
3539 | 0 | assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */ |
3540 | 0 | memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit)); |
3541 | | |
3542 | | /* Zero out remaining digits. */ |
3543 | 0 | i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */ |
3544 | 0 | if (i) |
3545 | 0 | memset(ret->ob_digit + Py_SIZE(t2), 0, i * sizeof(digit)); |
3546 | | |
3547 | | /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first |
3548 | | * because it's fresher in cache. |
3549 | | */ |
3550 | 0 | i = Py_SIZE(ret) - shift; /* # digits after shift */ |
3551 | 0 | (void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2)); |
3552 | 0 | Py_DECREF(t2); |
3553 | |
|
3554 | 0 | (void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1)); |
3555 | 0 | Py_DECREF(t1); |
3556 | | |
3557 | | /* 6. t3 <- (ah+al)(bh+bl), and add into result. */ |
3558 | 0 | if ((t1 = x_add(ah, al)) == NULL) goto fail; |
3559 | 0 | Py_DECREF(ah); |
3560 | 0 | Py_DECREF(al); |
3561 | 0 | ah = al = NULL; |
3562 | |
|
3563 | 0 | if (a == b) { |
3564 | 0 | t2 = t1; |
3565 | 0 | Py_INCREF(t2); |
3566 | 0 | } |
3567 | 0 | else if ((t2 = x_add(bh, bl)) == NULL) { |
3568 | 0 | Py_DECREF(t1); |
3569 | 0 | goto fail; |
3570 | 0 | } |
3571 | 0 | Py_DECREF(bh); |
3572 | 0 | Py_DECREF(bl); |
3573 | 0 | bh = bl = NULL; |
3574 | |
|
3575 | 0 | t3 = k_mul(t1, t2); |
3576 | 0 | Py_DECREF(t1); |
3577 | 0 | Py_DECREF(t2); |
3578 | 0 | if (t3 == NULL) goto fail; |
3579 | 0 | assert(Py_SIZE(t3) >= 0); |
3580 | | |
3581 | | /* Add t3. It's not obvious why we can't run out of room here. |
3582 | | * See the (*) comment after this function. |
3583 | | */ |
3584 | 0 | (void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3)); |
3585 | 0 | Py_DECREF(t3); |
3586 | |
|
3587 | 0 | return long_normalize(ret); |
3588 | | |
3589 | 0 | fail: |
3590 | 0 | Py_XDECREF(ret); |
3591 | 0 | Py_XDECREF(ah); |
3592 | 0 | Py_XDECREF(al); |
3593 | 0 | Py_XDECREF(bh); |
3594 | 0 | Py_XDECREF(bl); |
3595 | 0 | return NULL; |
3596 | 0 | } |
3597 | | |
3598 | | /* (*) Why adding t3 can't "run out of room" above. |
3599 | | |
3600 | | Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts |
3601 | | to start with: |
3602 | | |
3603 | | 1. For any integer i, i = c(i/2) + f(i/2). In particular, |
3604 | | bsize = c(bsize/2) + f(bsize/2). |
3605 | | 2. shift = f(bsize/2) |
3606 | | 3. asize <= bsize |
3607 | | 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this |
3608 | | routine, so asize > bsize/2 >= f(bsize/2) in this routine. |
3609 | | |
3610 | | We allocated asize + bsize result digits, and add t3 into them at an offset |
3611 | | of shift. This leaves asize+bsize-shift allocated digit positions for t3 |
3612 | | to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = |
3613 | | asize + c(bsize/2) available digit positions. |
3614 | | |
3615 | | bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has |
3616 | | at most c(bsize/2) digits + 1 bit. |
3617 | | |
3618 | | If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) |
3619 | | digits, and al has at most f(bsize/2) digits in any case. So ah+al has at |
3620 | | most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. |
3621 | | |
3622 | | The product (ah+al)*(bh+bl) therefore has at most |
3623 | | |
3624 | | c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits |
3625 | | |
3626 | | and we have asize + c(bsize/2) available digit positions. We need to show |
3627 | | this is always enough. An instance of c(bsize/2) cancels out in both, so |
3628 | | the question reduces to whether asize digits is enough to hold |
3629 | | (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, |
3630 | | then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, |
3631 | | asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 |
3632 | | digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If |
3633 | | asize == bsize, then we're asking whether bsize digits is enough to hold |
3634 | | c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits |
3635 | | is enough to hold 2 bits. This is so if bsize >= 2, which holds because |
3636 | | bsize >= KARATSUBA_CUTOFF >= 2. |
3637 | | |
3638 | | Note that since there's always enough room for (ah+al)*(bh+bl), and that's |
3639 | | clearly >= each of ah*bh and al*bl, there's always enough room to subtract |
3640 | | ah*bh and al*bl too. |
3641 | | */ |
3642 | | |
3643 | | /* b has at least twice the digits of a, and a is big enough that Karatsuba |
3644 | | * would pay off *if* the inputs had balanced sizes. View b as a sequence |
3645 | | * of slices, each with a->ob_size digits, and multiply the slices by a, |
3646 | | * one at a time. This gives k_mul balanced inputs to work with, and is |
3647 | | * also cache-friendly (we compute one double-width slice of the result |
3648 | | * at a time, then move on, never backtracking except for the helpful |
3649 | | * single-width slice overlap between successive partial sums). |
3650 | | */ |
3651 | | static PyLongObject * |
3652 | | k_lopsided_mul(PyLongObject *a, PyLongObject *b) |
3653 | 0 | { |
3654 | 0 | const Py_ssize_t asize = Py_ABS(Py_SIZE(a)); |
3655 | 0 | Py_ssize_t bsize = Py_ABS(Py_SIZE(b)); |
3656 | 0 | Py_ssize_t nbdone; /* # of b digits already multiplied */ |
3657 | 0 | PyLongObject *ret; |
3658 | 0 | PyLongObject *bslice = NULL; |
3659 | |
|
3660 | 0 | assert(asize > KARATSUBA_CUTOFF); |
3661 | 0 | assert(2 * asize <= bsize); |
3662 | | |
3663 | | /* Allocate result space, and zero it out. */ |
3664 | 0 | ret = _PyLong_New(asize + bsize); |
3665 | 0 | if (ret == NULL) |
3666 | 0 | return NULL; |
3667 | 0 | memset(ret->ob_digit, 0, Py_SIZE(ret) * sizeof(digit)); |
3668 | | |
3669 | | /* Successive slices of b are copied into bslice. */ |
3670 | 0 | bslice = _PyLong_New(asize); |
3671 | 0 | if (bslice == NULL) |
3672 | 0 | goto fail; |
3673 | | |
3674 | 0 | nbdone = 0; |
3675 | 0 | while (bsize > 0) { |
3676 | 0 | PyLongObject *product; |
3677 | 0 | const Py_ssize_t nbtouse = Py_MIN(bsize, asize); |
3678 | | |
3679 | | /* Multiply the next slice of b by a. */ |
3680 | 0 | memcpy(bslice->ob_digit, b->ob_digit + nbdone, |
3681 | 0 | nbtouse * sizeof(digit)); |
3682 | 0 | Py_SIZE(bslice) = nbtouse; |
3683 | 0 | product = k_mul(a, bslice); |
3684 | 0 | if (product == NULL) |
3685 | 0 | goto fail; |
3686 | | |
3687 | | /* Add into result. */ |
3688 | 0 | (void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone, |
3689 | 0 | product->ob_digit, Py_SIZE(product)); |
3690 | 0 | Py_DECREF(product); |
3691 | |
|
3692 | 0 | bsize -= nbtouse; |
3693 | 0 | nbdone += nbtouse; |
3694 | 0 | } |
3695 | | |
3696 | 0 | Py_DECREF(bslice); |
3697 | 0 | return long_normalize(ret); |
3698 | | |
3699 | 0 | fail: |
3700 | 0 | Py_DECREF(ret); |
3701 | 0 | Py_XDECREF(bslice); |
3702 | 0 | return NULL; |
3703 | 0 | } |
3704 | | |
3705 | | static PyObject * |
3706 | | long_mul(PyLongObject *a, PyLongObject *b) |
3707 | 2.95k | { |
3708 | 2.95k | PyLongObject *z; |
3709 | | |
3710 | 2.95k | CHECK_BINOP(a, b); |
3711 | | |
3712 | | /* fast path for single-digit multiplication */ |
3713 | 2.76k | if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) { |
3714 | 177 | stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b); |
3715 | 177 | return PyLong_FromLongLong((long long)v); |
3716 | 177 | } |
3717 | | |
3718 | 2.58k | z = k_mul(a, b); |
3719 | | /* Negate if exactly one of the inputs is negative. */ |
3720 | 2.58k | if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) { |
3721 | 0 | _PyLong_Negate(&z); |
3722 | 0 | if (z == NULL) |
3723 | 0 | return NULL; |
3724 | 0 | } |
3725 | 2.58k | return (PyObject *)z; |
3726 | 2.58k | } |
3727 | | |
3728 | | /* Fast modulo division for single-digit longs. */ |
3729 | | static PyObject * |
3730 | | fast_mod(PyLongObject *a, PyLongObject *b) |
3731 | 0 | { |
3732 | 0 | sdigit left = a->ob_digit[0]; |
3733 | 0 | sdigit right = b->ob_digit[0]; |
3734 | 0 | sdigit mod; |
3735 | |
|
3736 | 0 | assert(Py_ABS(Py_SIZE(a)) == 1); |
3737 | 0 | assert(Py_ABS(Py_SIZE(b)) == 1); |
3738 | |
|
3739 | 0 | if (Py_SIZE(a) == Py_SIZE(b)) { |
3740 | | /* 'a' and 'b' have the same sign. */ |
3741 | 0 | mod = left % right; |
3742 | 0 | } |
3743 | 0 | else { |
3744 | | /* Either 'a' or 'b' is negative. */ |
3745 | 0 | mod = right - 1 - (left - 1) % right; |
3746 | 0 | } |
3747 | |
|
3748 | 0 | return PyLong_FromLong(mod * (sdigit)Py_SIZE(b)); |
3749 | 0 | } |
3750 | | |
3751 | | /* Fast floor division for single-digit longs. */ |
3752 | | static PyObject * |
3753 | | fast_floor_div(PyLongObject *a, PyLongObject *b) |
3754 | 561 | { |
3755 | 561 | sdigit left = a->ob_digit[0]; |
3756 | 561 | sdigit right = b->ob_digit[0]; |
3757 | 561 | sdigit div; |
3758 | | |
3759 | 561 | assert(Py_ABS(Py_SIZE(a)) == 1); |
3760 | 561 | assert(Py_ABS(Py_SIZE(b)) == 1); |
3761 | | |
3762 | 561 | if (Py_SIZE(a) == Py_SIZE(b)) { |
3763 | | /* 'a' and 'b' have the same sign. */ |
3764 | 561 | div = left / right; |
3765 | 561 | } |
3766 | 0 | else { |
3767 | | /* Either 'a' or 'b' is negative. */ |
3768 | 0 | div = -1 - (left - 1) / right; |
3769 | 0 | } |
3770 | | |
3771 | 561 | return PyLong_FromLong(div); |
3772 | 561 | } |
3773 | | |
3774 | | /* The / and % operators are now defined in terms of divmod(). |
3775 | | The expression a mod b has the value a - b*floor(a/b). |
3776 | | The long_divrem function gives the remainder after division of |
3777 | | |a| by |b|, with the sign of a. This is also expressed |
3778 | | as a - b*trunc(a/b), if trunc truncates towards zero. |
3779 | | Some examples: |
3780 | | a b a rem b a mod b |
3781 | | 13 10 3 3 |
3782 | | -13 10 -3 7 |
3783 | | 13 -10 3 -7 |
3784 | | -13 -10 -3 -3 |
3785 | | So, to get from rem to mod, we have to add b if a and b |
3786 | | have different signs. We then subtract one from the 'div' |
3787 | | part of the outcome to keep the invariant intact. */ |
3788 | | |
3789 | | /* Compute |
3790 | | * *pdiv, *pmod = divmod(v, w) |
3791 | | * NULL can be passed for pdiv or pmod, in which case that part of |
3792 | | * the result is simply thrown away. The caller owns a reference to |
3793 | | * each of these it requests (does not pass NULL for). |
3794 | | */ |
3795 | | static int |
3796 | | l_divmod(PyLongObject *v, PyLongObject *w, |
3797 | | PyLongObject **pdiv, PyLongObject **pmod) |
3798 | 51 | { |
3799 | 51 | PyLongObject *div, *mod; |
3800 | | |
3801 | 51 | if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) { |
3802 | | /* Fast path for single-digit longs */ |
3803 | 0 | div = NULL; |
3804 | 0 | if (pdiv != NULL) { |
3805 | 0 | div = (PyLongObject *)fast_floor_div(v, w); |
3806 | 0 | if (div == NULL) { |
3807 | 0 | return -1; |
3808 | 0 | } |
3809 | 0 | } |
3810 | 0 | if (pmod != NULL) { |
3811 | 0 | mod = (PyLongObject *)fast_mod(v, w); |
3812 | 0 | if (mod == NULL) { |
3813 | 0 | Py_XDECREF(div); |
3814 | 0 | return -1; |
3815 | 0 | } |
3816 | 0 | *pmod = mod; |
3817 | 0 | } |
3818 | 0 | if (pdiv != NULL) { |
3819 | | /* We only want to set `*pdiv` when `*pmod` is |
3820 | | set successfully. */ |
3821 | 0 | *pdiv = div; |
3822 | 0 | } |
3823 | 0 | return 0; |
3824 | 0 | } |
3825 | 51 | if (long_divrem(v, w, &div, &mod) < 0) |
3826 | 0 | return -1; |
3827 | 51 | if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) || |
3828 | 51 | (Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) { |
3829 | 0 | PyLongObject *temp; |
3830 | 0 | temp = (PyLongObject *) long_add(mod, w); |
3831 | 0 | Py_DECREF(mod); |
3832 | 0 | mod = temp; |
3833 | 0 | if (mod == NULL) { |
3834 | 0 | Py_DECREF(div); |
3835 | 0 | return -1; |
3836 | 0 | } |
3837 | 0 | temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_One); |
3838 | 0 | if (temp == NULL) { |
3839 | 0 | Py_DECREF(mod); |
3840 | 0 | Py_DECREF(div); |
3841 | 0 | return -1; |
3842 | 0 | } |
3843 | 0 | Py_DECREF(div); |
3844 | 0 | div = temp; |
3845 | 0 | } |
3846 | 51 | if (pdiv != NULL) |
3847 | 51 | *pdiv = div; |
3848 | 0 | else |
3849 | 0 | Py_DECREF(div); |
3850 | | |
3851 | 51 | if (pmod != NULL) |
3852 | 0 | *pmod = mod; |
3853 | 51 | else |
3854 | 51 | Py_DECREF(mod); |
3855 | | |
3856 | 51 | return 0; |
3857 | 51 | } |
3858 | | |
3859 | | static PyObject * |
3860 | | long_div(PyObject *a, PyObject *b) |
3861 | 612 | { |
3862 | 612 | PyLongObject *div; |
3863 | | |
3864 | 612 | CHECK_BINOP(a, b); |
3865 | | |
3866 | 612 | if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) { |
3867 | 561 | return fast_floor_div((PyLongObject*)a, (PyLongObject*)b); |
3868 | 561 | } |
3869 | | |
3870 | 51 | if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0) |
3871 | 0 | div = NULL; |
3872 | 51 | return (PyObject *)div; |
3873 | 612 | } |
3874 | | |
3875 | | /* PyLong/PyLong -> float, with correctly rounded result. */ |
3876 | | |
3877 | 0 | #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT) |
3878 | 0 | #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT) |
3879 | | |
3880 | | static PyObject * |
3881 | | long_true_divide(PyObject *v, PyObject *w) |
3882 | 0 | { |
3883 | 0 | PyLongObject *a, *b, *x; |
3884 | 0 | Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits; |
3885 | 0 | digit mask, low; |
3886 | 0 | int inexact, negate, a_is_small, b_is_small; |
3887 | 0 | double dx, result; |
3888 | |
|
3889 | 0 | CHECK_BINOP(v, w); |
3890 | 0 | a = (PyLongObject *)v; |
3891 | 0 | b = (PyLongObject *)w; |
3892 | | |
3893 | | /* |
3894 | | Method in a nutshell: |
3895 | | |
3896 | | 0. reduce to case a, b > 0; filter out obvious underflow/overflow |
3897 | | 1. choose a suitable integer 'shift' |
3898 | | 2. use integer arithmetic to compute x = floor(2**-shift*a/b) |
3899 | | 3. adjust x for correct rounding |
3900 | | 4. convert x to a double dx with the same value |
3901 | | 5. return ldexp(dx, shift). |
3902 | | |
3903 | | In more detail: |
3904 | | |
3905 | | 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b |
3906 | | returns either 0.0 or -0.0, depending on the sign of b. For a and |
3907 | | b both nonzero, ignore signs of a and b, and add the sign back in |
3908 | | at the end. Now write a_bits and b_bits for the bit lengths of a |
3909 | | and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise |
3910 | | for b). Then |
3911 | | |
3912 | | 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1). |
3913 | | |
3914 | | So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and |
3915 | | so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP - |
3916 | | DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of |
3917 | | the way, we can assume that |
3918 | | |
3919 | | DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP. |
3920 | | |
3921 | | 1. The integer 'shift' is chosen so that x has the right number of |
3922 | | bits for a double, plus two or three extra bits that will be used |
3923 | | in the rounding decisions. Writing a_bits and b_bits for the |
3924 | | number of significant bits in a and b respectively, a |
3925 | | straightforward formula for shift is: |
3926 | | |
3927 | | shift = a_bits - b_bits - DBL_MANT_DIG - 2 |
3928 | | |
3929 | | This is fine in the usual case, but if a/b is smaller than the |
3930 | | smallest normal float then it can lead to double rounding on an |
3931 | | IEEE 754 platform, giving incorrectly rounded results. So we |
3932 | | adjust the formula slightly. The actual formula used is: |
3933 | | |
3934 | | shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2 |
3935 | | |
3936 | | 2. The quantity x is computed by first shifting a (left -shift bits |
3937 | | if shift <= 0, right shift bits if shift > 0) and then dividing by |
3938 | | b. For both the shift and the division, we keep track of whether |
3939 | | the result is inexact, in a flag 'inexact'; this information is |
3940 | | needed at the rounding stage. |
3941 | | |
3942 | | With the choice of shift above, together with our assumption that |
3943 | | a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows |
3944 | | that x >= 1. |
3945 | | |
3946 | | 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace |
3947 | | this with an exactly representable float of the form |
3948 | | |
3949 | | round(x/2**extra_bits) * 2**(extra_bits+shift). |
3950 | | |
3951 | | For float representability, we need x/2**extra_bits < |
3952 | | 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP - |
3953 | | DBL_MANT_DIG. This translates to the condition: |
3954 | | |
3955 | | extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG |
3956 | | |
3957 | | To round, we just modify the bottom digit of x in-place; this can |
3958 | | end up giving a digit with value > PyLONG_MASK, but that's not a |
3959 | | problem since digits can hold values up to 2*PyLONG_MASK+1. |
3960 | | |
3961 | | With the original choices for shift above, extra_bits will always |
3962 | | be 2 or 3. Then rounding under the round-half-to-even rule, we |
3963 | | round up iff the most significant of the extra bits is 1, and |
3964 | | either: (a) the computation of x in step 2 had an inexact result, |
3965 | | or (b) at least one other of the extra bits is 1, or (c) the least |
3966 | | significant bit of x (above those to be rounded) is 1. |
3967 | | |
3968 | | 4. Conversion to a double is straightforward; all floating-point |
3969 | | operations involved in the conversion are exact, so there's no |
3970 | | danger of rounding errors. |
3971 | | |
3972 | | 5. Use ldexp(x, shift) to compute x*2**shift, the final result. |
3973 | | The result will always be exactly representable as a double, except |
3974 | | in the case that it overflows. To avoid dependence on the exact |
3975 | | behaviour of ldexp on overflow, we check for overflow before |
3976 | | applying ldexp. The result of ldexp is adjusted for sign before |
3977 | | returning. |
3978 | | */ |
3979 | | |
3980 | | /* Reduce to case where a and b are both positive. */ |
3981 | 0 | a_size = Py_ABS(Py_SIZE(a)); |
3982 | 0 | b_size = Py_ABS(Py_SIZE(b)); |
3983 | 0 | negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0); |
3984 | 0 | if (b_size == 0) { |
3985 | 0 | PyErr_SetString(PyExc_ZeroDivisionError, |
3986 | 0 | "division by zero"); |
3987 | 0 | goto error; |
3988 | 0 | } |
3989 | 0 | if (a_size == 0) |
3990 | 0 | goto underflow_or_zero; |
3991 | | |
3992 | | /* Fast path for a and b small (exactly representable in a double). |
3993 | | Relies on floating-point division being correctly rounded; results |
3994 | | may be subject to double rounding on x86 machines that operate with |
3995 | | the x87 FPU set to 64-bit precision. */ |
3996 | 0 | a_is_small = a_size <= MANT_DIG_DIGITS || |
3997 | 0 | (a_size == MANT_DIG_DIGITS+1 && |
3998 | 0 | a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); |
3999 | 0 | b_is_small = b_size <= MANT_DIG_DIGITS || |
4000 | 0 | (b_size == MANT_DIG_DIGITS+1 && |
4001 | 0 | b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0); |
4002 | 0 | if (a_is_small && b_is_small) { |
4003 | 0 | double da, db; |
4004 | 0 | da = a->ob_digit[--a_size]; |
4005 | 0 | while (a_size > 0) |
4006 | 0 | da = da * PyLong_BASE + a->ob_digit[--a_size]; |
4007 | 0 | db = b->ob_digit[--b_size]; |
4008 | 0 | while (b_size > 0) |
4009 | 0 | db = db * PyLong_BASE + b->ob_digit[--b_size]; |
4010 | 0 | result = da / db; |
4011 | 0 | goto success; |
4012 | 0 | } |
4013 | | |
4014 | | /* Catch obvious cases of underflow and overflow */ |
4015 | 0 | diff = a_size - b_size; |
4016 | 0 | if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1) |
4017 | | /* Extreme overflow */ |
4018 | 0 | goto overflow; |
4019 | 0 | else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT) |
4020 | | /* Extreme underflow */ |
4021 | 0 | goto underflow_or_zero; |
4022 | | /* Next line is now safe from overflowing a Py_ssize_t */ |
4023 | 0 | diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) - |
4024 | 0 | bits_in_digit(b->ob_digit[b_size - 1]); |
4025 | | /* Now diff = a_bits - b_bits. */ |
4026 | 0 | if (diff > DBL_MAX_EXP) |
4027 | 0 | goto overflow; |
4028 | 0 | else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1) |
4029 | 0 | goto underflow_or_zero; |
4030 | | |
4031 | | /* Choose value for shift; see comments for step 1 above. */ |
4032 | 0 | shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2; |
4033 | |
|
4034 | 0 | inexact = 0; |
4035 | | |
4036 | | /* x = abs(a * 2**-shift) */ |
4037 | 0 | if (shift <= 0) { |
4038 | 0 | Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT; |
4039 | 0 | digit rem; |
4040 | | /* x = a << -shift */ |
4041 | 0 | if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) { |
4042 | | /* In practice, it's probably impossible to end up |
4043 | | here. Both a and b would have to be enormous, |
4044 | | using close to SIZE_T_MAX bytes of memory each. */ |
4045 | 0 | PyErr_SetString(PyExc_OverflowError, |
4046 | 0 | "intermediate overflow during division"); |
4047 | 0 | goto error; |
4048 | 0 | } |
4049 | 0 | x = _PyLong_New(a_size + shift_digits + 1); |
4050 | 0 | if (x == NULL) |
4051 | 0 | goto error; |
4052 | 0 | for (i = 0; i < shift_digits; i++) |
4053 | 0 | x->ob_digit[i] = 0; |
4054 | 0 | rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit, |
4055 | 0 | a_size, -shift % PyLong_SHIFT); |
4056 | 0 | x->ob_digit[a_size + shift_digits] = rem; |
4057 | 0 | } |
4058 | 0 | else { |
4059 | 0 | Py_ssize_t shift_digits = shift / PyLong_SHIFT; |
4060 | 0 | digit rem; |
4061 | | /* x = a >> shift */ |
4062 | 0 | assert(a_size >= shift_digits); |
4063 | 0 | x = _PyLong_New(a_size - shift_digits); |
4064 | 0 | if (x == NULL) |
4065 | 0 | goto error; |
4066 | 0 | rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits, |
4067 | 0 | a_size - shift_digits, shift % PyLong_SHIFT); |
4068 | | /* set inexact if any of the bits shifted out is nonzero */ |
4069 | 0 | if (rem) |
4070 | 0 | inexact = 1; |
4071 | 0 | while (!inexact && shift_digits > 0) |
4072 | 0 | if (a->ob_digit[--shift_digits]) |
4073 | 0 | inexact = 1; |
4074 | 0 | } |
4075 | 0 | long_normalize(x); |
4076 | 0 | x_size = Py_SIZE(x); |
4077 | | |
4078 | | /* x //= b. If the remainder is nonzero, set inexact. We own the only |
4079 | | reference to x, so it's safe to modify it in-place. */ |
4080 | 0 | if (b_size == 1) { |
4081 | 0 | digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size, |
4082 | 0 | b->ob_digit[0]); |
4083 | 0 | long_normalize(x); |
4084 | 0 | if (rem) |
4085 | 0 | inexact = 1; |
4086 | 0 | } |
4087 | 0 | else { |
4088 | 0 | PyLongObject *div, *rem; |
4089 | 0 | div = x_divrem(x, b, &rem); |
4090 | 0 | Py_DECREF(x); |
4091 | 0 | x = div; |
4092 | 0 | if (x == NULL) |
4093 | 0 | goto error; |
4094 | 0 | if (Py_SIZE(rem)) |
4095 | 0 | inexact = 1; |
4096 | 0 | Py_DECREF(rem); |
4097 | 0 | } |
4098 | 0 | x_size = Py_ABS(Py_SIZE(x)); |
4099 | 0 | assert(x_size > 0); /* result of division is never zero */ |
4100 | 0 | x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]); |
4101 | | |
4102 | | /* The number of extra bits that have to be rounded away. */ |
4103 | 0 | extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG; |
4104 | 0 | assert(extra_bits == 2 || extra_bits == 3); |
4105 | | |
4106 | | /* Round by directly modifying the low digit of x. */ |
4107 | 0 | mask = (digit)1 << (extra_bits - 1); |
4108 | 0 | low = x->ob_digit[0] | inexact; |
4109 | 0 | if ((low & mask) && (low & (3U*mask-1U))) |
4110 | 0 | low += mask; |
4111 | 0 | x->ob_digit[0] = low & ~(2U*mask-1U); |
4112 | | |
4113 | | /* Convert x to a double dx; the conversion is exact. */ |
4114 | 0 | dx = x->ob_digit[--x_size]; |
4115 | 0 | while (x_size > 0) |
4116 | 0 | dx = dx * PyLong_BASE + x->ob_digit[--x_size]; |
4117 | 0 | Py_DECREF(x); |
4118 | | |
4119 | | /* Check whether ldexp result will overflow a double. */ |
4120 | 0 | if (shift + x_bits >= DBL_MAX_EXP && |
4121 | 0 | (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits))) |
4122 | 0 | goto overflow; |
4123 | 0 | result = ldexp(dx, (int)shift); |
4124 | |
|
4125 | 0 | success: |
4126 | 0 | return PyFloat_FromDouble(negate ? -result : result); |
4127 | | |
4128 | 0 | underflow_or_zero: |
4129 | 0 | return PyFloat_FromDouble(negate ? -0.0 : 0.0); |
4130 | | |
4131 | 0 | overflow: |
4132 | 0 | PyErr_SetString(PyExc_OverflowError, |
4133 | 0 | "integer division result too large for a float"); |
4134 | 0 | error: |
4135 | 0 | return NULL; |
4136 | 0 | } |
4137 | | |
4138 | | static PyObject * |
4139 | | long_mod(PyObject *a, PyObject *b) |
4140 | 0 | { |
4141 | 0 | PyLongObject *mod; |
4142 | |
|
4143 | 0 | CHECK_BINOP(a, b); |
4144 | | |
4145 | 0 | if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) { |
4146 | 0 | return fast_mod((PyLongObject*)a, (PyLongObject*)b); |
4147 | 0 | } |
4148 | | |
4149 | 0 | if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0) |
4150 | 0 | mod = NULL; |
4151 | 0 | return (PyObject *)mod; |
4152 | 0 | } |
4153 | | |
4154 | | static PyObject * |
4155 | | long_divmod(PyObject *a, PyObject *b) |
4156 | 0 | { |
4157 | 0 | PyLongObject *div, *mod; |
4158 | 0 | PyObject *z; |
4159 | |
|
4160 | 0 | CHECK_BINOP(a, b); |
4161 | | |
4162 | 0 | if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) { |
4163 | 0 | return NULL; |
4164 | 0 | } |
4165 | 0 | z = PyTuple_New(2); |
4166 | 0 | if (z != NULL) { |
4167 | 0 | PyTuple_SET_ITEM(z, 0, (PyObject *) div); |
4168 | 0 | PyTuple_SET_ITEM(z, 1, (PyObject *) mod); |
4169 | 0 | } |
4170 | 0 | else { |
4171 | 0 | Py_DECREF(div); |
4172 | 0 | Py_DECREF(mod); |
4173 | 0 | } |
4174 | 0 | return z; |
4175 | 0 | } |
4176 | | |
4177 | | |
4178 | | /* Compute an inverse to a modulo n, or raise ValueError if a is not |
4179 | | invertible modulo n. Assumes n is positive. The inverse returned |
4180 | | is whatever falls out of the extended Euclidean algorithm: it may |
4181 | | be either positive or negative, but will be smaller than n in |
4182 | | absolute value. |
4183 | | |
4184 | | Pure Python equivalent for long_invmod: |
4185 | | |
4186 | | def invmod(a, n): |
4187 | | b, c = 1, 0 |
4188 | | while n: |
4189 | | q, r = divmod(a, n) |
4190 | | a, b, c, n = n, c, b - q*c, r |
4191 | | |
4192 | | # at this point a is the gcd of the original inputs |
4193 | | if a == 1: |
4194 | | return b |
4195 | | raise ValueError("Not invertible") |
4196 | | */ |
4197 | | |
4198 | | static PyLongObject * |
4199 | | long_invmod(PyLongObject *a, PyLongObject *n) |
4200 | 0 | { |
4201 | 0 | PyLongObject *b, *c; |
4202 | | |
4203 | | /* Should only ever be called for positive n */ |
4204 | 0 | assert(Py_SIZE(n) > 0); |
4205 | |
|
4206 | 0 | b = (PyLongObject *)PyLong_FromLong(1L); |
4207 | 0 | if (b == NULL) { |
4208 | 0 | return NULL; |
4209 | 0 | } |
4210 | 0 | c = (PyLongObject *)PyLong_FromLong(0L); |
4211 | 0 | if (c == NULL) { |
4212 | 0 | Py_DECREF(b); |
4213 | 0 | return NULL; |
4214 | 0 | } |
4215 | 0 | Py_INCREF(a); |
4216 | 0 | Py_INCREF(n); |
4217 | | |
4218 | | /* references now owned: a, b, c, n */ |
4219 | 0 | while (Py_SIZE(n) != 0) { |
4220 | 0 | PyLongObject *q, *r, *s, *t; |
4221 | |
|
4222 | 0 | if (l_divmod(a, n, &q, &r) == -1) { |
4223 | 0 | goto Error; |
4224 | 0 | } |
4225 | 0 | Py_DECREF(a); |
4226 | 0 | a = n; |
4227 | 0 | n = r; |
4228 | 0 | t = (PyLongObject *)long_mul(q, c); |
4229 | 0 | Py_DECREF(q); |
4230 | 0 | if (t == NULL) { |
4231 | 0 | goto Error; |
4232 | 0 | } |
4233 | 0 | s = (PyLongObject *)long_sub(b, t); |
4234 | 0 | Py_DECREF(t); |
4235 | 0 | if (s == NULL) { |
4236 | 0 | goto Error; |
4237 | 0 | } |
4238 | 0 | Py_DECREF(b); |
4239 | 0 | b = c; |
4240 | 0 | c = s; |
4241 | 0 | } |
4242 | | /* references now owned: a, b, c, n */ |
4243 | | |
4244 | 0 | Py_DECREF(c); |
4245 | 0 | Py_DECREF(n); |
4246 | 0 | if (long_compare(a, (PyLongObject *)_PyLong_One)) { |
4247 | | /* a != 1; we don't have an inverse. */ |
4248 | 0 | Py_DECREF(a); |
4249 | 0 | Py_DECREF(b); |
4250 | 0 | PyErr_SetString(PyExc_ValueError, |
4251 | 0 | "base is not invertible for the given modulus"); |
4252 | 0 | return NULL; |
4253 | 0 | } |
4254 | 0 | else { |
4255 | | /* a == 1; b gives an inverse modulo n */ |
4256 | 0 | Py_DECREF(a); |
4257 | 0 | return b; |
4258 | 0 | } |
4259 | | |
4260 | 0 | Error: |
4261 | 0 | Py_DECREF(a); |
4262 | 0 | Py_DECREF(b); |
4263 | 0 | Py_DECREF(c); |
4264 | 0 | Py_DECREF(n); |
4265 | 0 | return NULL; |
4266 | 0 | } |
4267 | | |
4268 | | |
4269 | | /* pow(v, w, x) */ |
4270 | | static PyObject * |
4271 | | long_pow(PyObject *v, PyObject *w, PyObject *x) |
4272 | 0 | { |
4273 | 0 | PyLongObject *a, *b, *c; /* a,b,c = v,w,x */ |
4274 | 0 | int negativeOutput = 0; /* if x<0 return negative output */ |
4275 | |
|
4276 | 0 | PyLongObject *z = NULL; /* accumulated result */ |
4277 | 0 | Py_ssize_t i, j, k; /* counters */ |
4278 | 0 | PyLongObject *temp = NULL; |
4279 | | |
4280 | | /* 5-ary values. If the exponent is large enough, table is |
4281 | | * precomputed so that table[i] == a**i % c for i in range(32). |
4282 | | */ |
4283 | 0 | PyLongObject *table[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
4284 | 0 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
4285 | | |
4286 | | /* a, b, c = v, w, x */ |
4287 | 0 | CHECK_BINOP(v, w); |
4288 | 0 | a = (PyLongObject*)v; Py_INCREF(a); |
4289 | 0 | b = (PyLongObject*)w; Py_INCREF(b); |
4290 | 0 | if (PyLong_Check(x)) { |
4291 | 0 | c = (PyLongObject *)x; |
4292 | 0 | Py_INCREF(x); |
4293 | 0 | } |
4294 | 0 | else if (x == Py_None) |
4295 | 0 | c = NULL; |
4296 | 0 | else { |
4297 | 0 | Py_DECREF(a); |
4298 | 0 | Py_DECREF(b); |
4299 | 0 | Py_RETURN_NOTIMPLEMENTED; |
4300 | 0 | } |
4301 | | |
4302 | 0 | if (Py_SIZE(b) < 0 && c == NULL) { |
4303 | | /* if exponent is negative and there's no modulus: |
4304 | | return a float. This works because we know |
4305 | | that this calls float_pow() which converts its |
4306 | | arguments to double. */ |
4307 | 0 | Py_DECREF(a); |
4308 | 0 | Py_DECREF(b); |
4309 | 0 | return PyFloat_Type.tp_as_number->nb_power(v, w, x); |
4310 | 0 | } |
4311 | | |
4312 | 0 | if (c) { |
4313 | | /* if modulus == 0: |
4314 | | raise ValueError() */ |
4315 | 0 | if (Py_SIZE(c) == 0) { |
4316 | 0 | PyErr_SetString(PyExc_ValueError, |
4317 | 0 | "pow() 3rd argument cannot be 0"); |
4318 | 0 | goto Error; |
4319 | 0 | } |
4320 | | |
4321 | | /* if modulus < 0: |
4322 | | negativeOutput = True |
4323 | | modulus = -modulus */ |
4324 | 0 | if (Py_SIZE(c) < 0) { |
4325 | 0 | negativeOutput = 1; |
4326 | 0 | temp = (PyLongObject *)_PyLong_Copy(c); |
4327 | 0 | if (temp == NULL) |
4328 | 0 | goto Error; |
4329 | 0 | Py_DECREF(c); |
4330 | 0 | c = temp; |
4331 | 0 | temp = NULL; |
4332 | 0 | _PyLong_Negate(&c); |
4333 | 0 | if (c == NULL) |
4334 | 0 | goto Error; |
4335 | 0 | } |
4336 | | |
4337 | | /* if modulus == 1: |
4338 | | return 0 */ |
4339 | 0 | if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) { |
4340 | 0 | z = (PyLongObject *)PyLong_FromLong(0L); |
4341 | 0 | goto Done; |
4342 | 0 | } |
4343 | | |
4344 | | /* if exponent is negative, negate the exponent and |
4345 | | replace the base with a modular inverse */ |
4346 | 0 | if (Py_SIZE(b) < 0) { |
4347 | 0 | temp = (PyLongObject *)_PyLong_Copy(b); |
4348 | 0 | if (temp == NULL) |
4349 | 0 | goto Error; |
4350 | 0 | Py_DECREF(b); |
4351 | 0 | b = temp; |
4352 | 0 | temp = NULL; |
4353 | 0 | _PyLong_Negate(&b); |
4354 | 0 | if (b == NULL) |
4355 | 0 | goto Error; |
4356 | | |
4357 | 0 | temp = long_invmod(a, c); |
4358 | 0 | if (temp == NULL) |
4359 | 0 | goto Error; |
4360 | 0 | Py_DECREF(a); |
4361 | 0 | a = temp; |
4362 | 0 | } |
4363 | | |
4364 | | /* Reduce base by modulus in some cases: |
4365 | | 1. If base < 0. Forcing the base non-negative makes things easier. |
4366 | | 2. If base is obviously larger than the modulus. The "small |
4367 | | exponent" case later can multiply directly by base repeatedly, |
4368 | | while the "large exponent" case multiplies directly by base 31 |
4369 | | times. It can be unboundedly faster to multiply by |
4370 | | base % modulus instead. |
4371 | | We could _always_ do this reduction, but l_divmod() isn't cheap, |
4372 | | so we only do it when it buys something. */ |
4373 | 0 | if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) { |
4374 | 0 | if (l_divmod(a, c, NULL, &temp) < 0) |
4375 | 0 | goto Error; |
4376 | 0 | Py_DECREF(a); |
4377 | 0 | a = temp; |
4378 | 0 | temp = NULL; |
4379 | 0 | } |
4380 | 0 | } |
4381 | | |
4382 | | /* At this point a, b, and c are guaranteed non-negative UNLESS |
4383 | | c is NULL, in which case a may be negative. */ |
4384 | | |
4385 | 0 | z = (PyLongObject *)PyLong_FromLong(1L); |
4386 | 0 | if (z == NULL) |
4387 | 0 | goto Error; |
4388 | | |
4389 | | /* Perform a modular reduction, X = X % c, but leave X alone if c |
4390 | | * is NULL. |
4391 | | */ |
4392 | 0 | #define REDUCE(X) \ |
4393 | 0 | do { \ |
4394 | 0 | if (c != NULL) { \ |
4395 | 0 | if (l_divmod(X, c, NULL, &temp) < 0) \ |
4396 | 0 | goto Error; \ |
4397 | 0 | Py_XDECREF(X); \ |
4398 | 0 | X = temp; \ |
4399 | 0 | temp = NULL; \ |
4400 | 0 | } \ |
4401 | 0 | } while(0) |
4402 | | |
4403 | | /* Multiply two values, then reduce the result: |
4404 | | result = X*Y % c. If c is NULL, skip the mod. */ |
4405 | 0 | #define MULT(X, Y, result) \ |
4406 | 0 | do { \ |
4407 | 0 | temp = (PyLongObject *)long_mul(X, Y); \ |
4408 | 0 | if (temp == NULL) \ |
4409 | 0 | goto Error; \ |
4410 | 0 | Py_XDECREF(result); \ |
4411 | 0 | result = temp; \ |
4412 | 0 | temp = NULL; \ |
4413 | 0 | REDUCE(result); \ |
4414 | 0 | } while(0) |
4415 | | |
4416 | 0 | if (Py_SIZE(b) <= FIVEARY_CUTOFF) { |
4417 | | /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */ |
4418 | | /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */ |
4419 | 0 | for (i = Py_SIZE(b) - 1; i >= 0; --i) { |
4420 | 0 | digit bi = b->ob_digit[i]; |
4421 | |
|
4422 | 0 | for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) { |
4423 | 0 | MULT(z, z, z); |
4424 | 0 | if (bi & j) |
4425 | 0 | MULT(z, a, z); |
4426 | 0 | } |
4427 | 0 | } |
4428 | 0 | } |
4429 | 0 | else { |
4430 | | /* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */ |
4431 | 0 | Py_INCREF(z); /* still holds 1L */ |
4432 | 0 | table[0] = z; |
4433 | 0 | for (i = 1; i < 32; ++i) |
4434 | 0 | MULT(table[i-1], a, table[i]); |
4435 | | |
4436 | 0 | for (i = Py_SIZE(b) - 1; i >= 0; --i) { |
4437 | 0 | const digit bi = b->ob_digit[i]; |
4438 | |
|
4439 | 0 | for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) { |
4440 | 0 | const int index = (bi >> j) & 0x1f; |
4441 | 0 | for (k = 0; k < 5; ++k) |
4442 | 0 | MULT(z, z, z); |
4443 | 0 | if (index) |
4444 | 0 | MULT(z, table[index], z); |
4445 | 0 | } |
4446 | 0 | } |
4447 | 0 | } |
4448 | | |
4449 | 0 | if (negativeOutput && (Py_SIZE(z) != 0)) { |
4450 | 0 | temp = (PyLongObject *)long_sub(z, c); |
4451 | 0 | if (temp == NULL) |
4452 | 0 | goto Error; |
4453 | 0 | Py_DECREF(z); |
4454 | 0 | z = temp; |
4455 | 0 | temp = NULL; |
4456 | 0 | } |
4457 | 0 | goto Done; |
4458 | | |
4459 | 0 | Error: |
4460 | 0 | Py_CLEAR(z); |
4461 | | /* fall through */ |
4462 | 0 | Done: |
4463 | 0 | if (Py_SIZE(b) > FIVEARY_CUTOFF) { |
4464 | 0 | for (i = 0; i < 32; ++i) |
4465 | 0 | Py_XDECREF(table[i]); |
4466 | 0 | } |
4467 | 0 | Py_DECREF(a); |
4468 | 0 | Py_DECREF(b); |
4469 | 0 | Py_XDECREF(c); |
4470 | 0 | Py_XDECREF(temp); |
4471 | 0 | return (PyObject *)z; |
4472 | 0 | } |
4473 | | |
4474 | | static PyObject * |
4475 | | long_invert(PyLongObject *v) |
4476 | 20 | { |
4477 | | /* Implement ~x as -(x+1) */ |
4478 | 20 | PyLongObject *x; |
4479 | 20 | if (Py_ABS(Py_SIZE(v)) <=1) |
4480 | 20 | return PyLong_FromLong(-(MEDIUM_VALUE(v)+1)); |
4481 | 0 | x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_One); |
4482 | 0 | if (x == NULL) |
4483 | 0 | return NULL; |
4484 | 0 | _PyLong_Negate(&x); |
4485 | | /* No need for maybe_small_long here, since any small |
4486 | | longs will have been caught in the Py_SIZE <= 1 fast path. */ |
4487 | 0 | return (PyObject *)x; |
4488 | 0 | } |
4489 | | |
4490 | | static PyObject * |
4491 | | long_neg(PyLongObject *v) |
4492 | 54 | { |
4493 | 54 | PyLongObject *z; |
4494 | 54 | if (Py_ABS(Py_SIZE(v)) <= 1) |
4495 | 54 | return PyLong_FromLong(-MEDIUM_VALUE(v)); |
4496 | 0 | z = (PyLongObject *)_PyLong_Copy(v); |
4497 | 0 | if (z != NULL) |
4498 | 0 | Py_SIZE(z) = -(Py_SIZE(v)); |
4499 | 0 | return (PyObject *)z; |
4500 | 54 | } |
4501 | | |
4502 | | static PyObject * |
4503 | | long_abs(PyLongObject *v) |
4504 | 0 | { |
4505 | 0 | if (Py_SIZE(v) < 0) |
4506 | 0 | return long_neg(v); |
4507 | 0 | else |
4508 | 0 | return long_long((PyObject *)v); |
4509 | 0 | } |
4510 | | |
4511 | | static int |
4512 | | long_bool(PyLongObject *v) |
4513 | 1.71k | { |
4514 | 1.71k | return Py_SIZE(v) != 0; |
4515 | 1.71k | } |
4516 | | |
4517 | | /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */ |
4518 | | static int |
4519 | | divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift) |
4520 | 15 | { |
4521 | 15 | assert(PyLong_Check(shiftby)); |
4522 | 15 | assert(Py_SIZE(shiftby) >= 0); |
4523 | 15 | Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby); |
4524 | 15 | if (lshiftby >= 0) { |
4525 | 15 | *wordshift = lshiftby / PyLong_SHIFT; |
4526 | 15 | *remshift = lshiftby % PyLong_SHIFT; |
4527 | 15 | return 0; |
4528 | 15 | } |
4529 | | /* PyLong_Check(shiftby) is true and Py_SIZE(shiftby) >= 0, so it must |
4530 | | be that PyLong_AsSsize_t raised an OverflowError. */ |
4531 | 0 | assert(PyErr_ExceptionMatches(PyExc_OverflowError)); |
4532 | 0 | PyErr_Clear(); |
4533 | 0 | PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift); |
4534 | 0 | if (wordshift_obj == NULL) { |
4535 | 0 | return -1; |
4536 | 0 | } |
4537 | 0 | *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj); |
4538 | 0 | Py_DECREF(wordshift_obj); |
4539 | 0 | if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) { |
4540 | 0 | return 0; |
4541 | 0 | } |
4542 | 0 | PyErr_Clear(); |
4543 | | /* Clip the value. With such large wordshift the right shift |
4544 | | returns 0 and the left shift raises an error in _PyLong_New(). */ |
4545 | 0 | *wordshift = PY_SSIZE_T_MAX / sizeof(digit); |
4546 | 0 | *remshift = 0; |
4547 | 0 | return 0; |
4548 | 0 | } |
4549 | | |
4550 | | static PyObject * |
4551 | | long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift) |
4552 | 0 | { |
4553 | 0 | PyLongObject *z = NULL; |
4554 | 0 | Py_ssize_t newsize, hishift, i, j; |
4555 | 0 | digit lomask, himask; |
4556 | |
|
4557 | 0 | if (Py_SIZE(a) < 0) { |
4558 | | /* Right shifting negative numbers is harder */ |
4559 | 0 | PyLongObject *a1, *a2; |
4560 | 0 | a1 = (PyLongObject *) long_invert(a); |
4561 | 0 | if (a1 == NULL) |
4562 | 0 | return NULL; |
4563 | 0 | a2 = (PyLongObject *) long_rshift1(a1, wordshift, remshift); |
4564 | 0 | Py_DECREF(a1); |
4565 | 0 | if (a2 == NULL) |
4566 | 0 | return NULL; |
4567 | 0 | z = (PyLongObject *) long_invert(a2); |
4568 | 0 | Py_DECREF(a2); |
4569 | 0 | } |
4570 | 0 | else { |
4571 | 0 | newsize = Py_SIZE(a) - wordshift; |
4572 | 0 | if (newsize <= 0) |
4573 | 0 | return PyLong_FromLong(0); |
4574 | 0 | hishift = PyLong_SHIFT - remshift; |
4575 | 0 | lomask = ((digit)1 << hishift) - 1; |
4576 | 0 | himask = PyLong_MASK ^ lomask; |
4577 | 0 | z = _PyLong_New(newsize); |
4578 | 0 | if (z == NULL) |
4579 | 0 | return NULL; |
4580 | 0 | for (i = 0, j = wordshift; i < newsize; i++, j++) { |
4581 | 0 | z->ob_digit[i] = (a->ob_digit[j] >> remshift) & lomask; |
4582 | 0 | if (i+1 < newsize) |
4583 | 0 | z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask; |
4584 | 0 | } |
4585 | 0 | z = maybe_small_long(long_normalize(z)); |
4586 | 0 | } |
4587 | 0 | return (PyObject *)z; |
4588 | 0 | } |
4589 | | |
4590 | | static PyObject * |
4591 | | long_rshift(PyObject *a, PyObject *b) |
4592 | 0 | { |
4593 | 0 | Py_ssize_t wordshift; |
4594 | 0 | digit remshift; |
4595 | |
|
4596 | 0 | CHECK_BINOP(a, b); |
4597 | | |
4598 | 0 | if (Py_SIZE(b) < 0) { |
4599 | 0 | PyErr_SetString(PyExc_ValueError, "negative shift count"); |
4600 | 0 | return NULL; |
4601 | 0 | } |
4602 | 0 | if (Py_SIZE(a) == 0) { |
4603 | 0 | return PyLong_FromLong(0); |
4604 | 0 | } |
4605 | 0 | if (divmod_shift(b, &wordshift, &remshift) < 0) |
4606 | 0 | return NULL; |
4607 | 0 | return long_rshift1((PyLongObject *)a, wordshift, remshift); |
4608 | 0 | } |
4609 | | |
4610 | | /* Return a >> shiftby. */ |
4611 | | PyObject * |
4612 | | _PyLong_Rshift(PyObject *a, size_t shiftby) |
4613 | 0 | { |
4614 | 0 | Py_ssize_t wordshift; |
4615 | 0 | digit remshift; |
4616 | |
|
4617 | 0 | assert(PyLong_Check(a)); |
4618 | 0 | if (Py_SIZE(a) == 0) { |
4619 | 0 | return PyLong_FromLong(0); |
4620 | 0 | } |
4621 | 0 | wordshift = shiftby / PyLong_SHIFT; |
4622 | 0 | remshift = shiftby % PyLong_SHIFT; |
4623 | 0 | return long_rshift1((PyLongObject *)a, wordshift, remshift); |
4624 | 0 | } |
4625 | | |
4626 | | static PyObject * |
4627 | | long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift) |
4628 | 15 | { |
4629 | | /* This version due to Tim Peters */ |
4630 | 15 | PyLongObject *z = NULL; |
4631 | 15 | Py_ssize_t oldsize, newsize, i, j; |
4632 | 15 | twodigits accum; |
4633 | | |
4634 | 15 | oldsize = Py_ABS(Py_SIZE(a)); |
4635 | 15 | newsize = oldsize + wordshift; |
4636 | 15 | if (remshift) |
4637 | 15 | ++newsize; |
4638 | 15 | z = _PyLong_New(newsize); |
4639 | 15 | if (z == NULL) |
4640 | 0 | return NULL; |
4641 | 15 | if (Py_SIZE(a) < 0) { |
4642 | 0 | assert(Py_REFCNT(z) == 1); |
4643 | 0 | Py_SIZE(z) = -Py_SIZE(z); |
4644 | 0 | } |
4645 | 478 | for (i = 0; i < wordshift; i++) |
4646 | 463 | z->ob_digit[i] = 0; |
4647 | 15 | accum = 0; |
4648 | 30 | for (i = wordshift, j = 0; j < oldsize; i++, j++) { |
4649 | 15 | accum |= (twodigits)a->ob_digit[j] << remshift; |
4650 | 15 | z->ob_digit[i] = (digit)(accum & PyLong_MASK); |
4651 | 15 | accum >>= PyLong_SHIFT; |
4652 | 15 | } |
4653 | 15 | if (remshift) |
4654 | 15 | z->ob_digit[newsize-1] = (digit)accum; |
4655 | 0 | else |
4656 | 0 | assert(!accum); |
4657 | 15 | z = long_normalize(z); |
4658 | 15 | return (PyObject *) maybe_small_long(z); |
4659 | 15 | } |
4660 | | |
4661 | | static PyObject * |
4662 | | long_lshift(PyObject *a, PyObject *b) |
4663 | 15 | { |
4664 | 15 | Py_ssize_t wordshift; |
4665 | 15 | digit remshift; |
4666 | | |
4667 | 15 | CHECK_BINOP(a, b); |
4668 | | |
4669 | 15 | if (Py_SIZE(b) < 0) { |
4670 | 0 | PyErr_SetString(PyExc_ValueError, "negative shift count"); |
4671 | 0 | return NULL; |
4672 | 0 | } |
4673 | 15 | if (Py_SIZE(a) == 0) { |
4674 | 0 | return PyLong_FromLong(0); |
4675 | 0 | } |
4676 | 15 | if (divmod_shift(b, &wordshift, &remshift) < 0) |
4677 | 0 | return NULL; |
4678 | 15 | return long_lshift1((PyLongObject *)a, wordshift, remshift); |
4679 | 15 | } |
4680 | | |
4681 | | /* Return a << shiftby. */ |
4682 | | PyObject * |
4683 | | _PyLong_Lshift(PyObject *a, size_t shiftby) |
4684 | 0 | { |
4685 | 0 | Py_ssize_t wordshift; |
4686 | 0 | digit remshift; |
4687 | |
|
4688 | 0 | assert(PyLong_Check(a)); |
4689 | 0 | if (Py_SIZE(a) == 0) { |
4690 | 0 | return PyLong_FromLong(0); |
4691 | 0 | } |
4692 | 0 | wordshift = shiftby / PyLong_SHIFT; |
4693 | 0 | remshift = shiftby % PyLong_SHIFT; |
4694 | 0 | return long_lshift1((PyLongObject *)a, wordshift, remshift); |
4695 | 0 | } |
4696 | | |
4697 | | /* Compute two's complement of digit vector a[0:m], writing result to |
4698 | | z[0:m]. The digit vector a need not be normalized, but should not |
4699 | | be entirely zero. a and z may point to the same digit vector. */ |
4700 | | |
4701 | | static void |
4702 | | v_complement(digit *z, digit *a, Py_ssize_t m) |
4703 | 255 | { |
4704 | 255 | Py_ssize_t i; |
4705 | 255 | digit carry = 1; |
4706 | 510 | for (i = 0; i < m; ++i) { |
4707 | 255 | carry += a[i] ^ PyLong_MASK; |
4708 | 255 | z[i] = carry & PyLong_MASK; |
4709 | 255 | carry >>= PyLong_SHIFT; |
4710 | 255 | } |
4711 | 255 | assert(carry == 0); |
4712 | 255 | } |
4713 | | |
4714 | | /* Bitwise and/xor/or operations */ |
4715 | | |
4716 | | static PyObject * |
4717 | | long_bitwise(PyLongObject *a, |
4718 | | char op, /* '&', '|', '^' */ |
4719 | | PyLongObject *b) |
4720 | 2.35k | { |
4721 | 2.35k | int nega, negb, negz; |
4722 | 2.35k | Py_ssize_t size_a, size_b, size_z, i; |
4723 | 2.35k | PyLongObject *z; |
4724 | | |
4725 | | /* Bitwise operations for negative numbers operate as though |
4726 | | on a two's complement representation. So convert arguments |
4727 | | from sign-magnitude to two's complement, and convert the |
4728 | | result back to sign-magnitude at the end. */ |
4729 | | |
4730 | | /* If a is negative, replace it by its two's complement. */ |
4731 | 2.35k | size_a = Py_ABS(Py_SIZE(a)); |
4732 | 2.35k | nega = Py_SIZE(a) < 0; |
4733 | 2.35k | if (nega) { |
4734 | 0 | z = _PyLong_New(size_a); |
4735 | 0 | if (z == NULL) |
4736 | 0 | return NULL; |
4737 | 0 | v_complement(z->ob_digit, a->ob_digit, size_a); |
4738 | 0 | a = z; |
4739 | 0 | } |
4740 | 2.35k | else |
4741 | | /* Keep reference count consistent. */ |
4742 | 2.35k | Py_INCREF(a); |
4743 | | |
4744 | | /* Same for b. */ |
4745 | 2.35k | size_b = Py_ABS(Py_SIZE(b)); |
4746 | 2.35k | negb = Py_SIZE(b) < 0; |
4747 | 2.35k | if (negb) { |
4748 | 255 | z = _PyLong_New(size_b); |
4749 | 255 | if (z == NULL) { |
4750 | 0 | Py_DECREF(a); |
4751 | 0 | return NULL; |
4752 | 0 | } |
4753 | 255 | v_complement(z->ob_digit, b->ob_digit, size_b); |
4754 | 255 | b = z; |
4755 | 255 | } |
4756 | 2.09k | else |
4757 | 2.09k | Py_INCREF(b); |
4758 | | |
4759 | | /* Swap a and b if necessary to ensure size_a >= size_b. */ |
4760 | 2.35k | if (size_a < size_b) { |
4761 | 764 | z = a; a = b; b = z; |
4762 | 764 | size_z = size_a; size_a = size_b; size_b = size_z; |
4763 | 764 | negz = nega; nega = negb; negb = negz; |
4764 | 764 | } |
4765 | | |
4766 | | /* JRH: The original logic here was to allocate the result value (z) |
4767 | | as the longer of the two operands. However, there are some cases |
4768 | | where the result is guaranteed to be shorter than that: AND of two |
4769 | | positives, OR of two negatives: use the shorter number. AND with |
4770 | | mixed signs: use the positive number. OR with mixed signs: use the |
4771 | | negative number. |
4772 | | */ |
4773 | 2.35k | switch (op) { |
4774 | 512 | case '^': |
4775 | 512 | negz = nega ^ negb; |
4776 | 512 | size_z = size_a; |
4777 | 512 | break; |
4778 | 1.75k | case '&': |
4779 | 1.75k | negz = nega & negb; |
4780 | 1.75k | size_z = negb ? size_a : size_b; |
4781 | 1.75k | break; |
4782 | 86 | case '|': |
4783 | 86 | negz = nega | negb; |
4784 | 86 | size_z = negb ? size_b : size_a; |
4785 | 86 | break; |
4786 | 0 | default: |
4787 | 0 | Py_UNREACHABLE(); |
4788 | 2.35k | } |
4789 | | |
4790 | | /* We allow an extra digit if z is negative, to make sure that |
4791 | | the final two's complement of z doesn't overflow. */ |
4792 | 2.35k | z = _PyLong_New(size_z + negz); |
4793 | 2.35k | if (z == NULL) { |
4794 | 0 | Py_DECREF(a); |
4795 | 0 | Py_DECREF(b); |
4796 | 0 | return NULL; |
4797 | 0 | } |
4798 | | |
4799 | | /* Compute digits for overlap of a and b. */ |
4800 | 2.35k | switch(op) { |
4801 | 1.75k | case '&': |
4802 | 3.21k | for (i = 0; i < size_b; ++i) |
4803 | 1.45k | z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i]; |
4804 | 1.75k | break; |
4805 | 86 | case '|': |
4806 | 147 | for (i = 0; i < size_b; ++i) |
4807 | 61 | z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; |
4808 | 86 | break; |
4809 | 512 | case '^': |
4810 | 1.02k | for (i = 0; i < size_b; ++i) |
4811 | 510 | z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i]; |
4812 | 512 | break; |
4813 | 0 | default: |
4814 | 0 | Py_UNREACHABLE(); |
4815 | 2.35k | } |
4816 | | |
4817 | | /* Copy any remaining digits of a, inverting if necessary. */ |
4818 | 2.35k | if (op == '^' && negb) |
4819 | 0 | for (; i < size_z; ++i) |
4820 | 0 | z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK; |
4821 | 2.35k | else if (i < size_z) |
4822 | 27 | memcpy(&z->ob_digit[i], &a->ob_digit[i], |
4823 | 27 | (size_z-i)*sizeof(digit)); |
4824 | | |
4825 | | /* Complement result if negative. */ |
4826 | 2.35k | if (negz) { |
4827 | 0 | Py_SIZE(z) = -(Py_SIZE(z)); |
4828 | 0 | z->ob_digit[size_z] = PyLong_MASK; |
4829 | 0 | v_complement(z->ob_digit, z->ob_digit, size_z+1); |
4830 | 0 | } |
4831 | | |
4832 | 2.35k | Py_DECREF(a); |
4833 | 2.35k | Py_DECREF(b); |
4834 | 2.35k | return (PyObject *)maybe_small_long(long_normalize(z)); |
4835 | 2.35k | } |
4836 | | |
4837 | | static PyObject * |
4838 | | long_and(PyObject *a, PyObject *b) |
4839 | 1.75k | { |
4840 | 1.75k | PyObject *c; |
4841 | 1.75k | CHECK_BINOP(a, b); |
4842 | 1.75k | c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b); |
4843 | 1.75k | return c; |
4844 | 1.75k | } |
4845 | | |
4846 | | static PyObject * |
4847 | | long_xor(PyObject *a, PyObject *b) |
4848 | 512 | { |
4849 | 512 | PyObject *c; |
4850 | 512 | CHECK_BINOP(a, b); |
4851 | 512 | c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b); |
4852 | 512 | return c; |
4853 | 512 | } |
4854 | | |
4855 | | static PyObject * |
4856 | | long_or(PyObject *a, PyObject *b) |
4857 | 86 | { |
4858 | 86 | PyObject *c; |
4859 | 86 | CHECK_BINOP(a, b); |
4860 | 86 | c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b); |
4861 | 86 | return c; |
4862 | 86 | } |
4863 | | |
4864 | | static PyObject * |
4865 | | long_long(PyObject *v) |
4866 | 37 | { |
4867 | 37 | if (PyLong_CheckExact(v)) |
4868 | 37 | Py_INCREF(v); |
4869 | 0 | else |
4870 | 0 | v = _PyLong_Copy((PyLongObject *)v); |
4871 | 37 | return v; |
4872 | 37 | } |
4873 | | |
4874 | | PyObject * |
4875 | | _PyLong_GCD(PyObject *aarg, PyObject *barg) |
4876 | 0 | { |
4877 | 0 | PyLongObject *a, *b, *c = NULL, *d = NULL, *r; |
4878 | 0 | stwodigits x, y, q, s, t, c_carry, d_carry; |
4879 | 0 | stwodigits A, B, C, D, T; |
4880 | 0 | int nbits, k; |
4881 | 0 | Py_ssize_t size_a, size_b, alloc_a, alloc_b; |
4882 | 0 | digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end; |
4883 | |
|
4884 | 0 | a = (PyLongObject *)aarg; |
4885 | 0 | b = (PyLongObject *)barg; |
4886 | 0 | size_a = Py_SIZE(a); |
4887 | 0 | size_b = Py_SIZE(b); |
4888 | 0 | if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) { |
4889 | 0 | Py_INCREF(a); |
4890 | 0 | Py_INCREF(b); |
4891 | 0 | goto simple; |
4892 | 0 | } |
4893 | | |
4894 | | /* Initial reduction: make sure that 0 <= b <= a. */ |
4895 | 0 | a = (PyLongObject *)long_abs(a); |
4896 | 0 | if (a == NULL) |
4897 | 0 | return NULL; |
4898 | 0 | b = (PyLongObject *)long_abs(b); |
4899 | 0 | if (b == NULL) { |
4900 | 0 | Py_DECREF(a); |
4901 | 0 | return NULL; |
4902 | 0 | } |
4903 | 0 | if (long_compare(a, b) < 0) { |
4904 | 0 | r = a; |
4905 | 0 | a = b; |
4906 | 0 | b = r; |
4907 | 0 | } |
4908 | | /* We now own references to a and b */ |
4909 | |
|
4910 | 0 | alloc_a = Py_SIZE(a); |
4911 | 0 | alloc_b = Py_SIZE(b); |
4912 | | /* reduce until a fits into 2 digits */ |
4913 | 0 | while ((size_a = Py_SIZE(a)) > 2) { |
4914 | 0 | nbits = bits_in_digit(a->ob_digit[size_a-1]); |
4915 | | /* extract top 2*PyLong_SHIFT bits of a into x, along with |
4916 | | corresponding bits of b into y */ |
4917 | 0 | size_b = Py_SIZE(b); |
4918 | 0 | assert(size_b <= size_a); |
4919 | 0 | if (size_b == 0) { |
4920 | 0 | if (size_a < alloc_a) { |
4921 | 0 | r = (PyLongObject *)_PyLong_Copy(a); |
4922 | 0 | Py_DECREF(a); |
4923 | 0 | } |
4924 | 0 | else |
4925 | 0 | r = a; |
4926 | 0 | Py_DECREF(b); |
4927 | 0 | Py_XDECREF(c); |
4928 | 0 | Py_XDECREF(d); |
4929 | 0 | return (PyObject *)r; |
4930 | 0 | } |
4931 | 0 | x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) | |
4932 | 0 | ((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) | |
4933 | 0 | (a->ob_digit[size_a-3] >> nbits)); |
4934 | |
|
4935 | 0 | y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) | |
4936 | 0 | (size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) | |
4937 | 0 | (size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0)); |
4938 | | |
4939 | | /* inner loop of Lehmer's algorithm; A, B, C, D never grow |
4940 | | larger than PyLong_MASK during the algorithm. */ |
4941 | 0 | A = 1; B = 0; C = 0; D = 1; |
4942 | 0 | for (k=0;; k++) { |
4943 | 0 | if (y-C == 0) |
4944 | 0 | break; |
4945 | 0 | q = (x+(A-1))/(y-C); |
4946 | 0 | s = B+q*D; |
4947 | 0 | t = x-q*y; |
4948 | 0 | if (s > t) |
4949 | 0 | break; |
4950 | 0 | x = y; y = t; |
4951 | 0 | t = A+q*C; A = D; B = C; C = s; D = t; |
4952 | 0 | } |
4953 | |
|
4954 | 0 | if (k == 0) { |
4955 | | /* no progress; do a Euclidean step */ |
4956 | 0 | if (l_divmod(a, b, NULL, &r) < 0) |
4957 | 0 | goto error; |
4958 | 0 | Py_DECREF(a); |
4959 | 0 | a = b; |
4960 | 0 | b = r; |
4961 | 0 | alloc_a = alloc_b; |
4962 | 0 | alloc_b = Py_SIZE(b); |
4963 | 0 | continue; |
4964 | 0 | } |
4965 | | |
4966 | | /* |
4967 | | a, b = A*b-B*a, D*a-C*b if k is odd |
4968 | | a, b = A*a-B*b, D*b-C*a if k is even |
4969 | | */ |
4970 | 0 | if (k&1) { |
4971 | 0 | T = -A; A = -B; B = T; |
4972 | 0 | T = -C; C = -D; D = T; |
4973 | 0 | } |
4974 | 0 | if (c != NULL) |
4975 | 0 | Py_SIZE(c) = size_a; |
4976 | 0 | else if (Py_REFCNT(a) == 1) { |
4977 | 0 | Py_INCREF(a); |
4978 | 0 | c = a; |
4979 | 0 | } |
4980 | 0 | else { |
4981 | 0 | alloc_a = size_a; |
4982 | 0 | c = _PyLong_New(size_a); |
4983 | 0 | if (c == NULL) |
4984 | 0 | goto error; |
4985 | 0 | } |
4986 | | |
4987 | 0 | if (d != NULL) |
4988 | 0 | Py_SIZE(d) = size_a; |
4989 | 0 | else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) { |
4990 | 0 | Py_INCREF(b); |
4991 | 0 | d = b; |
4992 | 0 | Py_SIZE(d) = size_a; |
4993 | 0 | } |
4994 | 0 | else { |
4995 | 0 | alloc_b = size_a; |
4996 | 0 | d = _PyLong_New(size_a); |
4997 | 0 | if (d == NULL) |
4998 | 0 | goto error; |
4999 | 0 | } |
5000 | 0 | a_end = a->ob_digit + size_a; |
5001 | 0 | b_end = b->ob_digit + size_b; |
5002 | | |
5003 | | /* compute new a and new b in parallel */ |
5004 | 0 | a_digit = a->ob_digit; |
5005 | 0 | b_digit = b->ob_digit; |
5006 | 0 | c_digit = c->ob_digit; |
5007 | 0 | d_digit = d->ob_digit; |
5008 | 0 | c_carry = 0; |
5009 | 0 | d_carry = 0; |
5010 | 0 | while (b_digit < b_end) { |
5011 | 0 | c_carry += (A * *a_digit) - (B * *b_digit); |
5012 | 0 | d_carry += (D * *b_digit++) - (C * *a_digit++); |
5013 | 0 | *c_digit++ = (digit)(c_carry & PyLong_MASK); |
5014 | 0 | *d_digit++ = (digit)(d_carry & PyLong_MASK); |
5015 | 0 | c_carry >>= PyLong_SHIFT; |
5016 | 0 | d_carry >>= PyLong_SHIFT; |
5017 | 0 | } |
5018 | 0 | while (a_digit < a_end) { |
5019 | 0 | c_carry += A * *a_digit; |
5020 | 0 | d_carry -= C * *a_digit++; |
5021 | 0 | *c_digit++ = (digit)(c_carry & PyLong_MASK); |
5022 | 0 | *d_digit++ = (digit)(d_carry & PyLong_MASK); |
5023 | 0 | c_carry >>= PyLong_SHIFT; |
5024 | 0 | d_carry >>= PyLong_SHIFT; |
5025 | 0 | } |
5026 | 0 | assert(c_carry == 0); |
5027 | 0 | assert(d_carry == 0); |
5028 | |
|
5029 | 0 | Py_INCREF(c); |
5030 | 0 | Py_INCREF(d); |
5031 | 0 | Py_DECREF(a); |
5032 | 0 | Py_DECREF(b); |
5033 | 0 | a = long_normalize(c); |
5034 | 0 | b = long_normalize(d); |
5035 | 0 | } |
5036 | 0 | Py_XDECREF(c); |
5037 | 0 | Py_XDECREF(d); |
5038 | |
|
5039 | 0 | simple: |
5040 | 0 | assert(Py_REFCNT(a) > 0); |
5041 | 0 | assert(Py_REFCNT(b) > 0); |
5042 | | /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid |
5043 | | undefined behaviour when LONG_MAX type is smaller than 60 bits */ |
5044 | 0 | #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5045 | | /* a fits into a long, so b must too */ |
5046 | 0 | x = PyLong_AsLong((PyObject *)a); |
5047 | 0 | y = PyLong_AsLong((PyObject *)b); |
5048 | | #elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5049 | | x = PyLong_AsLongLong((PyObject *)a); |
5050 | | y = PyLong_AsLongLong((PyObject *)b); |
5051 | | #else |
5052 | | # error "_PyLong_GCD" |
5053 | | #endif |
5054 | 0 | x = Py_ABS(x); |
5055 | 0 | y = Py_ABS(y); |
5056 | 0 | Py_DECREF(a); |
5057 | 0 | Py_DECREF(b); |
5058 | | |
5059 | | /* usual Euclidean algorithm for longs */ |
5060 | 0 | while (y != 0) { |
5061 | 0 | t = y; |
5062 | 0 | y = x % y; |
5063 | 0 | x = t; |
5064 | 0 | } |
5065 | 0 | #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5066 | 0 | return PyLong_FromLong(x); |
5067 | | #elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT |
5068 | | return PyLong_FromLongLong(x); |
5069 | | #else |
5070 | | # error "_PyLong_GCD" |
5071 | | #endif |
5072 | | |
5073 | 0 | error: |
5074 | 0 | Py_DECREF(a); |
5075 | 0 | Py_DECREF(b); |
5076 | 0 | Py_XDECREF(c); |
5077 | 0 | Py_XDECREF(d); |
5078 | 0 | return NULL; |
5079 | 0 | } |
5080 | | |
5081 | | static PyObject * |
5082 | | long_float(PyObject *v) |
5083 | 0 | { |
5084 | 0 | double result; |
5085 | 0 | result = PyLong_AsDouble(v); |
5086 | 0 | if (result == -1.0 && PyErr_Occurred()) |
5087 | 0 | return NULL; |
5088 | 0 | return PyFloat_FromDouble(result); |
5089 | 0 | } |
5090 | | |
5091 | | static PyObject * |
5092 | | long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase); |
5093 | | |
5094 | | /*[clinic input] |
5095 | | @classmethod |
5096 | | int.__new__ as long_new |
5097 | | x: object(c_default="NULL") = 0 |
5098 | | / |
5099 | | base as obase: object(c_default="NULL") = 10 |
5100 | | [clinic start generated code]*/ |
5101 | | |
5102 | | static PyObject * |
5103 | | long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase) |
5104 | | /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/ |
5105 | 556 | { |
5106 | 556 | Py_ssize_t base; |
5107 | | |
5108 | 556 | if (type != &PyLong_Type) |
5109 | 93 | return long_subtype_new(type, x, obase); /* Wimp out */ |
5110 | 463 | if (x == NULL) { |
5111 | 0 | if (obase != NULL) { |
5112 | 0 | PyErr_SetString(PyExc_TypeError, |
5113 | 0 | "int() missing string argument"); |
5114 | 0 | return NULL; |
5115 | 0 | } |
5116 | 0 | return PyLong_FromLong(0L); |
5117 | 0 | } |
5118 | 463 | if (obase == NULL) |
5119 | 359 | return PyNumber_Long(x); |
5120 | | |
5121 | 104 | base = PyNumber_AsSsize_t(obase, NULL); |
5122 | 104 | if (base == -1 && PyErr_Occurred()) |
5123 | 0 | return NULL; |
5124 | 104 | if ((base != 0 && base < 2) || base > 36) { |
5125 | 0 | PyErr_SetString(PyExc_ValueError, |
5126 | 0 | "int() base must be >= 2 and <= 36, or 0"); |
5127 | 0 | return NULL; |
5128 | 0 | } |
5129 | | |
5130 | 104 | if (PyUnicode_Check(x)) |
5131 | 0 | return PyLong_FromUnicodeObject(x, (int)base); |
5132 | 104 | else if (PyByteArray_Check(x) || PyBytes_Check(x)) { |
5133 | 104 | char *string; |
5134 | 104 | if (PyByteArray_Check(x)) |
5135 | 104 | string = PyByteArray_AS_STRING(x); |
5136 | 0 | else |
5137 | 0 | string = PyBytes_AS_STRING(x); |
5138 | 104 | return _PyLong_FromBytes(string, Py_SIZE(x), (int)base); |
5139 | 104 | } |
5140 | 0 | else { |
5141 | 0 | PyErr_SetString(PyExc_TypeError, |
5142 | 0 | "int() can't convert non-string with explicit base"); |
5143 | 0 | return NULL; |
5144 | 0 | } |
5145 | 104 | } |
5146 | | |
5147 | | /* Wimpy, slow approach to tp_new calls for subtypes of int: |
5148 | | first create a regular int from whatever arguments we got, |
5149 | | then allocate a subtype instance and initialize it from |
5150 | | the regular int. The regular int is then thrown away. |
5151 | | */ |
5152 | | static PyObject * |
5153 | | long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase) |
5154 | 93 | { |
5155 | 93 | PyLongObject *tmp, *newobj; |
5156 | 93 | Py_ssize_t i, n; |
5157 | | |
5158 | 93 | assert(PyType_IsSubtype(type, &PyLong_Type)); |
5159 | 93 | tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase); |
5160 | 93 | if (tmp == NULL) |
5161 | 0 | return NULL; |
5162 | 93 | assert(PyLong_Check(tmp)); |
5163 | 93 | n = Py_SIZE(tmp); |
5164 | 93 | if (n < 0) |
5165 | 0 | n = -n; |
5166 | 93 | newobj = (PyLongObject *)type->tp_alloc(type, n); |
5167 | 93 | if (newobj == NULL) { |
5168 | 0 | Py_DECREF(tmp); |
5169 | 0 | return NULL; |
5170 | 0 | } |
5171 | 93 | assert(PyLong_Check(newobj)); |
5172 | 93 | Py_SIZE(newobj) = Py_SIZE(tmp); |
5173 | 183 | for (i = 0; i < n; i++) |
5174 | 90 | newobj->ob_digit[i] = tmp->ob_digit[i]; |
5175 | 93 | Py_DECREF(tmp); |
5176 | 93 | return (PyObject *)newobj; |
5177 | 93 | } |
5178 | | |
5179 | | /*[clinic input] |
5180 | | int.__getnewargs__ |
5181 | | [clinic start generated code]*/ |
5182 | | |
5183 | | static PyObject * |
5184 | | int___getnewargs___impl(PyObject *self) |
5185 | | /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/ |
5186 | 0 | { |
5187 | 0 | return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self)); |
5188 | 0 | } |
5189 | | |
5190 | | static PyObject * |
5191 | | long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context)) |
5192 | 0 | { |
5193 | 0 | return PyLong_FromLong(0L); |
5194 | 0 | } |
5195 | | |
5196 | | static PyObject * |
5197 | | long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored)) |
5198 | 0 | { |
5199 | 0 | return PyLong_FromLong(1L); |
5200 | 0 | } |
5201 | | |
5202 | | /*[clinic input] |
5203 | | int.__format__ |
5204 | | |
5205 | | format_spec: unicode |
5206 | | / |
5207 | | [clinic start generated code]*/ |
5208 | | |
5209 | | static PyObject * |
5210 | | int___format___impl(PyObject *self, PyObject *format_spec) |
5211 | | /*[clinic end generated code: output=b4929dee9ae18689 input=e31944a9b3e428b7]*/ |
5212 | 0 | { |
5213 | 0 | _PyUnicodeWriter writer; |
5214 | 0 | int ret; |
5215 | |
|
5216 | 0 | _PyUnicodeWriter_Init(&writer); |
5217 | 0 | ret = _PyLong_FormatAdvancedWriter( |
5218 | 0 | &writer, |
5219 | 0 | self, |
5220 | 0 | format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); |
5221 | 0 | if (ret == -1) { |
5222 | 0 | _PyUnicodeWriter_Dealloc(&writer); |
5223 | 0 | return NULL; |
5224 | 0 | } |
5225 | 0 | return _PyUnicodeWriter_Finish(&writer); |
5226 | 0 | } |
5227 | | |
5228 | | /* Return a pair (q, r) such that a = b * q + r, and |
5229 | | abs(r) <= abs(b)/2, with equality possible only if q is even. |
5230 | | In other words, q == a / b, rounded to the nearest integer using |
5231 | | round-half-to-even. */ |
5232 | | |
5233 | | PyObject * |
5234 | | _PyLong_DivmodNear(PyObject *a, PyObject *b) |
5235 | 0 | { |
5236 | 0 | PyLongObject *quo = NULL, *rem = NULL; |
5237 | 0 | PyObject *twice_rem, *result, *temp; |
5238 | 0 | int cmp, quo_is_odd, quo_is_neg; |
5239 | | |
5240 | | /* Equivalent Python code: |
5241 | | |
5242 | | def divmod_near(a, b): |
5243 | | q, r = divmod(a, b) |
5244 | | # round up if either r / b > 0.5, or r / b == 0.5 and q is odd. |
5245 | | # The expression r / b > 0.5 is equivalent to 2 * r > b if b is |
5246 | | # positive, 2 * r < b if b negative. |
5247 | | greater_than_half = 2*r > b if b > 0 else 2*r < b |
5248 | | exactly_half = 2*r == b |
5249 | | if greater_than_half or exactly_half and q % 2 == 1: |
5250 | | q += 1 |
5251 | | r -= b |
5252 | | return q, r |
5253 | | |
5254 | | */ |
5255 | 0 | if (!PyLong_Check(a) || !PyLong_Check(b)) { |
5256 | 0 | PyErr_SetString(PyExc_TypeError, |
5257 | 0 | "non-integer arguments in division"); |
5258 | 0 | return NULL; |
5259 | 0 | } |
5260 | | |
5261 | | /* Do a and b have different signs? If so, quotient is negative. */ |
5262 | 0 | quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0); |
5263 | |
|
5264 | 0 | if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0) |
5265 | 0 | goto error; |
5266 | | |
5267 | | /* compare twice the remainder with the divisor, to see |
5268 | | if we need to adjust the quotient and remainder */ |
5269 | 0 | twice_rem = long_lshift((PyObject *)rem, _PyLong_One); |
5270 | 0 | if (twice_rem == NULL) |
5271 | 0 | goto error; |
5272 | 0 | if (quo_is_neg) { |
5273 | 0 | temp = long_neg((PyLongObject*)twice_rem); |
5274 | 0 | Py_DECREF(twice_rem); |
5275 | 0 | twice_rem = temp; |
5276 | 0 | if (twice_rem == NULL) |
5277 | 0 | goto error; |
5278 | 0 | } |
5279 | 0 | cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b); |
5280 | 0 | Py_DECREF(twice_rem); |
5281 | |
|
5282 | 0 | quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0); |
5283 | 0 | if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) { |
5284 | | /* fix up quotient */ |
5285 | 0 | if (quo_is_neg) |
5286 | 0 | temp = long_sub(quo, (PyLongObject *)_PyLong_One); |
5287 | 0 | else |
5288 | 0 | temp = long_add(quo, (PyLongObject *)_PyLong_One); |
5289 | 0 | Py_DECREF(quo); |
5290 | 0 | quo = (PyLongObject *)temp; |
5291 | 0 | if (quo == NULL) |
5292 | 0 | goto error; |
5293 | | /* and remainder */ |
5294 | 0 | if (quo_is_neg) |
5295 | 0 | temp = long_add(rem, (PyLongObject *)b); |
5296 | 0 | else |
5297 | 0 | temp = long_sub(rem, (PyLongObject *)b); |
5298 | 0 | Py_DECREF(rem); |
5299 | 0 | rem = (PyLongObject *)temp; |
5300 | 0 | if (rem == NULL) |
5301 | 0 | goto error; |
5302 | 0 | } |
5303 | | |
5304 | 0 | result = PyTuple_New(2); |
5305 | 0 | if (result == NULL) |
5306 | 0 | goto error; |
5307 | | |
5308 | | /* PyTuple_SET_ITEM steals references */ |
5309 | 0 | PyTuple_SET_ITEM(result, 0, (PyObject *)quo); |
5310 | 0 | PyTuple_SET_ITEM(result, 1, (PyObject *)rem); |
5311 | 0 | return result; |
5312 | | |
5313 | 0 | error: |
5314 | 0 | Py_XDECREF(quo); |
5315 | 0 | Py_XDECREF(rem); |
5316 | 0 | return NULL; |
5317 | 0 | } |
5318 | | |
5319 | | static PyObject * |
5320 | | long_round(PyObject *self, PyObject *args) |
5321 | 0 | { |
5322 | 0 | PyObject *o_ndigits=NULL, *temp, *result, *ndigits; |
5323 | | |
5324 | | /* To round an integer m to the nearest 10**n (n positive), we make use of |
5325 | | * the divmod_near operation, defined by: |
5326 | | * |
5327 | | * divmod_near(a, b) = (q, r) |
5328 | | * |
5329 | | * where q is the nearest integer to the quotient a / b (the |
5330 | | * nearest even integer in the case of a tie) and r == a - q * b. |
5331 | | * Hence q * b = a - r is the nearest multiple of b to a, |
5332 | | * preferring even multiples in the case of a tie. |
5333 | | * |
5334 | | * So the nearest multiple of 10**n to m is: |
5335 | | * |
5336 | | * m - divmod_near(m, 10**n)[1]. |
5337 | | */ |
5338 | 0 | if (!PyArg_ParseTuple(args, "|O", &o_ndigits)) |
5339 | 0 | return NULL; |
5340 | 0 | if (o_ndigits == NULL) |
5341 | 0 | return long_long(self); |
5342 | | |
5343 | 0 | ndigits = PyNumber_Index(o_ndigits); |
5344 | 0 | if (ndigits == NULL) |
5345 | 0 | return NULL; |
5346 | | |
5347 | | /* if ndigits >= 0 then no rounding is necessary; return self unchanged */ |
5348 | 0 | if (Py_SIZE(ndigits) >= 0) { |
5349 | 0 | Py_DECREF(ndigits); |
5350 | 0 | return long_long(self); |
5351 | 0 | } |
5352 | | |
5353 | | /* result = self - divmod_near(self, 10 ** -ndigits)[1] */ |
5354 | 0 | temp = long_neg((PyLongObject*)ndigits); |
5355 | 0 | Py_DECREF(ndigits); |
5356 | 0 | ndigits = temp; |
5357 | 0 | if (ndigits == NULL) |
5358 | 0 | return NULL; |
5359 | | |
5360 | 0 | result = PyLong_FromLong(10L); |
5361 | 0 | if (result == NULL) { |
5362 | 0 | Py_DECREF(ndigits); |
5363 | 0 | return NULL; |
5364 | 0 | } |
5365 | | |
5366 | 0 | temp = long_pow(result, ndigits, Py_None); |
5367 | 0 | Py_DECREF(ndigits); |
5368 | 0 | Py_DECREF(result); |
5369 | 0 | result = temp; |
5370 | 0 | if (result == NULL) |
5371 | 0 | return NULL; |
5372 | | |
5373 | 0 | temp = _PyLong_DivmodNear(self, result); |
5374 | 0 | Py_DECREF(result); |
5375 | 0 | result = temp; |
5376 | 0 | if (result == NULL) |
5377 | 0 | return NULL; |
5378 | | |
5379 | 0 | temp = long_sub((PyLongObject *)self, |
5380 | 0 | (PyLongObject *)PyTuple_GET_ITEM(result, 1)); |
5381 | 0 | Py_DECREF(result); |
5382 | 0 | result = temp; |
5383 | |
|
5384 | 0 | return result; |
5385 | 0 | } |
5386 | | |
5387 | | /*[clinic input] |
5388 | | int.__sizeof__ -> Py_ssize_t |
5389 | | |
5390 | | Returns size in memory, in bytes. |
5391 | | [clinic start generated code]*/ |
5392 | | |
5393 | | static Py_ssize_t |
5394 | | int___sizeof___impl(PyObject *self) |
5395 | | /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/ |
5396 | 0 | { |
5397 | 0 | Py_ssize_t res; |
5398 | |
|
5399 | 0 | res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(self))*sizeof(digit); |
5400 | 0 | return res; |
5401 | 0 | } |
5402 | | |
5403 | | /*[clinic input] |
5404 | | int.bit_length |
5405 | | |
5406 | | Number of bits necessary to represent self in binary. |
5407 | | |
5408 | | >>> bin(37) |
5409 | | '0b100101' |
5410 | | >>> (37).bit_length() |
5411 | | 6 |
5412 | | [clinic start generated code]*/ |
5413 | | |
5414 | | static PyObject * |
5415 | | int_bit_length_impl(PyObject *self) |
5416 | | /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/ |
5417 | 0 | { |
5418 | 0 | PyLongObject *result, *x, *y; |
5419 | 0 | Py_ssize_t ndigits; |
5420 | 0 | int msd_bits; |
5421 | 0 | digit msd; |
5422 | |
|
5423 | 0 | assert(self != NULL); |
5424 | 0 | assert(PyLong_Check(self)); |
5425 | |
|
5426 | 0 | ndigits = Py_ABS(Py_SIZE(self)); |
5427 | 0 | if (ndigits == 0) |
5428 | 0 | return PyLong_FromLong(0); |
5429 | | |
5430 | 0 | msd = ((PyLongObject *)self)->ob_digit[ndigits-1]; |
5431 | 0 | msd_bits = bits_in_digit(msd); |
5432 | |
|
5433 | 0 | if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT) |
5434 | 0 | return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits); |
5435 | | |
5436 | | /* expression above may overflow; use Python integers instead */ |
5437 | 0 | result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1); |
5438 | 0 | if (result == NULL) |
5439 | 0 | return NULL; |
5440 | 0 | x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT); |
5441 | 0 | if (x == NULL) |
5442 | 0 | goto error; |
5443 | 0 | y = (PyLongObject *)long_mul(result, x); |
5444 | 0 | Py_DECREF(x); |
5445 | 0 | if (y == NULL) |
5446 | 0 | goto error; |
5447 | 0 | Py_DECREF(result); |
5448 | 0 | result = y; |
5449 | |
|
5450 | 0 | x = (PyLongObject *)PyLong_FromLong((long)msd_bits); |
5451 | 0 | if (x == NULL) |
5452 | 0 | goto error; |
5453 | 0 | y = (PyLongObject *)long_add(result, x); |
5454 | 0 | Py_DECREF(x); |
5455 | 0 | if (y == NULL) |
5456 | 0 | goto error; |
5457 | 0 | Py_DECREF(result); |
5458 | 0 | result = y; |
5459 | |
|
5460 | 0 | return (PyObject *)result; |
5461 | | |
5462 | 0 | error: |
5463 | 0 | Py_DECREF(result); |
5464 | 0 | return NULL; |
5465 | 0 | } |
5466 | | |
5467 | | |
5468 | | /*[clinic input] |
5469 | | int.as_integer_ratio |
5470 | | |
5471 | | Return integer ratio. |
5472 | | |
5473 | | Return a pair of integers, whose ratio is exactly equal to the original int |
5474 | | and with a positive denominator. |
5475 | | |
5476 | | >>> (10).as_integer_ratio() |
5477 | | (10, 1) |
5478 | | >>> (-10).as_integer_ratio() |
5479 | | (-10, 1) |
5480 | | >>> (0).as_integer_ratio() |
5481 | | (0, 1) |
5482 | | [clinic start generated code]*/ |
5483 | | |
5484 | | static PyObject * |
5485 | | int_as_integer_ratio_impl(PyObject *self) |
5486 | | /*[clinic end generated code: output=e60803ae1cc8621a input=55ce3058e15de393]*/ |
5487 | 0 | { |
5488 | 0 | PyObject *ratio_tuple; |
5489 | 0 | PyObject *numerator = long_long(self); |
5490 | 0 | if (numerator == NULL) { |
5491 | 0 | return NULL; |
5492 | 0 | } |
5493 | 0 | ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_One); |
5494 | 0 | Py_DECREF(numerator); |
5495 | 0 | return ratio_tuple; |
5496 | 0 | } |
5497 | | |
5498 | | /*[clinic input] |
5499 | | int.to_bytes |
5500 | | |
5501 | | length: Py_ssize_t |
5502 | | Length of bytes object to use. An OverflowError is raised if the |
5503 | | integer is not representable with the given number of bytes. |
5504 | | byteorder: unicode |
5505 | | The byte order used to represent the integer. If byteorder is 'big', |
5506 | | the most significant byte is at the beginning of the byte array. If |
5507 | | byteorder is 'little', the most significant byte is at the end of the |
5508 | | byte array. To request the native byte order of the host system, use |
5509 | | `sys.byteorder' as the byte order value. |
5510 | | * |
5511 | | signed as is_signed: bool = False |
5512 | | Determines whether two's complement is used to represent the integer. |
5513 | | If signed is False and a negative integer is given, an OverflowError |
5514 | | is raised. |
5515 | | |
5516 | | Return an array of bytes representing an integer. |
5517 | | [clinic start generated code]*/ |
5518 | | |
5519 | | static PyObject * |
5520 | | int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder, |
5521 | | int is_signed) |
5522 | | /*[clinic end generated code: output=89c801df114050a3 input=ddac63f4c7bf414c]*/ |
5523 | 14 | { |
5524 | 14 | int little_endian; |
5525 | 14 | PyObject *bytes; |
5526 | | |
5527 | 14 | if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little)) |
5528 | 14 | little_endian = 1; |
5529 | 0 | else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big)) |
5530 | 0 | little_endian = 0; |
5531 | 0 | else { |
5532 | 0 | PyErr_SetString(PyExc_ValueError, |
5533 | 0 | "byteorder must be either 'little' or 'big'"); |
5534 | 0 | return NULL; |
5535 | 0 | } |
5536 | | |
5537 | 14 | if (length < 0) { |
5538 | 0 | PyErr_SetString(PyExc_ValueError, |
5539 | 0 | "length argument must be non-negative"); |
5540 | 0 | return NULL; |
5541 | 0 | } |
5542 | | |
5543 | 14 | bytes = PyBytes_FromStringAndSize(NULL, length); |
5544 | 14 | if (bytes == NULL) |
5545 | 0 | return NULL; |
5546 | | |
5547 | 14 | if (_PyLong_AsByteArray((PyLongObject *)self, |
5548 | 14 | (unsigned char *)PyBytes_AS_STRING(bytes), |
5549 | 14 | length, little_endian, is_signed) < 0) { |
5550 | 0 | Py_DECREF(bytes); |
5551 | 0 | return NULL; |
5552 | 0 | } |
5553 | | |
5554 | 14 | return bytes; |
5555 | 14 | } |
5556 | | |
5557 | | /*[clinic input] |
5558 | | @classmethod |
5559 | | int.from_bytes |
5560 | | |
5561 | | bytes as bytes_obj: object |
5562 | | Holds the array of bytes to convert. The argument must either |
5563 | | support the buffer protocol or be an iterable object producing bytes. |
5564 | | Bytes and bytearray are examples of built-in objects that support the |
5565 | | buffer protocol. |
5566 | | byteorder: unicode |
5567 | | The byte order used to represent the integer. If byteorder is 'big', |
5568 | | the most significant byte is at the beginning of the byte array. If |
5569 | | byteorder is 'little', the most significant byte is at the end of the |
5570 | | byte array. To request the native byte order of the host system, use |
5571 | | `sys.byteorder' as the byte order value. |
5572 | | * |
5573 | | signed as is_signed: bool = False |
5574 | | Indicates whether two's complement is used to represent the integer. |
5575 | | |
5576 | | Return the integer represented by the given array of bytes. |
5577 | | [clinic start generated code]*/ |
5578 | | |
5579 | | static PyObject * |
5580 | | int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj, |
5581 | | PyObject *byteorder, int is_signed) |
5582 | | /*[clinic end generated code: output=efc5d68e31f9314f input=cdf98332b6a821b0]*/ |
5583 | 719 | { |
5584 | 719 | int little_endian; |
5585 | 719 | PyObject *long_obj, *bytes; |
5586 | | |
5587 | 719 | if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_little)) |
5588 | 719 | little_endian = 1; |
5589 | 0 | else if (_PyUnicode_EqualToASCIIId(byteorder, &PyId_big)) |
5590 | 0 | little_endian = 0; |
5591 | 0 | else { |
5592 | 0 | PyErr_SetString(PyExc_ValueError, |
5593 | 0 | "byteorder must be either 'little' or 'big'"); |
5594 | 0 | return NULL; |
5595 | 0 | } |
5596 | | |
5597 | 719 | bytes = PyObject_Bytes(bytes_obj); |
5598 | 719 | if (bytes == NULL) |
5599 | 0 | return NULL; |
5600 | | |
5601 | 719 | long_obj = _PyLong_FromByteArray( |
5602 | 719 | (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes), |
5603 | 719 | little_endian, is_signed); |
5604 | 719 | Py_DECREF(bytes); |
5605 | | |
5606 | 719 | if (long_obj != NULL && type != &PyLong_Type) { |
5607 | 0 | Py_SETREF(long_obj, PyObject_CallFunctionObjArgs((PyObject *)type, |
5608 | 0 | long_obj, NULL)); |
5609 | 0 | } |
5610 | | |
5611 | 719 | return long_obj; |
5612 | 719 | } |
5613 | | |
5614 | | static PyObject * |
5615 | | long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored)) |
5616 | 0 | { |
5617 | 0 | return long_long(self); |
5618 | 0 | } |
5619 | | |
5620 | | static PyMethodDef long_methods[] = { |
5621 | | {"conjugate", long_long_meth, METH_NOARGS, |
5622 | | "Returns self, the complex conjugate of any int."}, |
5623 | | INT_BIT_LENGTH_METHODDEF |
5624 | | INT_TO_BYTES_METHODDEF |
5625 | | INT_FROM_BYTES_METHODDEF |
5626 | | INT_AS_INTEGER_RATIO_METHODDEF |
5627 | | {"__trunc__", long_long_meth, METH_NOARGS, |
5628 | | "Truncating an Integral returns itself."}, |
5629 | | {"__floor__", long_long_meth, METH_NOARGS, |
5630 | | "Flooring an Integral returns itself."}, |
5631 | | {"__ceil__", long_long_meth, METH_NOARGS, |
5632 | | "Ceiling of an Integral returns itself."}, |
5633 | | {"__round__", (PyCFunction)long_round, METH_VARARGS, |
5634 | | "Rounding an Integral returns itself.\n" |
5635 | | "Rounding with an ndigits argument also returns an integer."}, |
5636 | | INT___GETNEWARGS___METHODDEF |
5637 | | INT___FORMAT___METHODDEF |
5638 | | INT___SIZEOF___METHODDEF |
5639 | | {NULL, NULL} /* sentinel */ |
5640 | | }; |
5641 | | |
5642 | | static PyGetSetDef long_getset[] = { |
5643 | | {"real", |
5644 | | (getter)long_long_meth, (setter)NULL, |
5645 | | "the real part of a complex number", |
5646 | | NULL}, |
5647 | | {"imag", |
5648 | | long_get0, (setter)NULL, |
5649 | | "the imaginary part of a complex number", |
5650 | | NULL}, |
5651 | | {"numerator", |
5652 | | (getter)long_long_meth, (setter)NULL, |
5653 | | "the numerator of a rational number in lowest terms", |
5654 | | NULL}, |
5655 | | {"denominator", |
5656 | | long_get1, (setter)NULL, |
5657 | | "the denominator of a rational number in lowest terms", |
5658 | | NULL}, |
5659 | | {NULL} /* Sentinel */ |
5660 | | }; |
5661 | | |
5662 | | PyDoc_STRVAR(long_doc, |
5663 | | "int([x]) -> integer\n\ |
5664 | | int(x, base=10) -> integer\n\ |
5665 | | \n\ |
5666 | | Convert a number or string to an integer, or return 0 if no arguments\n\ |
5667 | | are given. If x is a number, return x.__int__(). For floating point\n\ |
5668 | | numbers, this truncates towards zero.\n\ |
5669 | | \n\ |
5670 | | If x is not a number or if base is given, then x must be a string,\n\ |
5671 | | bytes, or bytearray instance representing an integer literal in the\n\ |
5672 | | given base. The literal can be preceded by '+' or '-' and be surrounded\n\ |
5673 | | by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\ |
5674 | | Base 0 means to interpret the base from the string as an integer literal.\n\ |
5675 | | >>> int('0b100', base=0)\n\ |
5676 | | 4"); |
5677 | | |
5678 | | static PyNumberMethods long_as_number = { |
5679 | | (binaryfunc)long_add, /*nb_add*/ |
5680 | | (binaryfunc)long_sub, /*nb_subtract*/ |
5681 | | (binaryfunc)long_mul, /*nb_multiply*/ |
5682 | | long_mod, /*nb_remainder*/ |
5683 | | long_divmod, /*nb_divmod*/ |
5684 | | long_pow, /*nb_power*/ |
5685 | | (unaryfunc)long_neg, /*nb_negative*/ |
5686 | | long_long, /*tp_positive*/ |
5687 | | (unaryfunc)long_abs, /*tp_absolute*/ |
5688 | | (inquiry)long_bool, /*tp_bool*/ |
5689 | | (unaryfunc)long_invert, /*nb_invert*/ |
5690 | | long_lshift, /*nb_lshift*/ |
5691 | | long_rshift, /*nb_rshift*/ |
5692 | | long_and, /*nb_and*/ |
5693 | | long_xor, /*nb_xor*/ |
5694 | | long_or, /*nb_or*/ |
5695 | | long_long, /*nb_int*/ |
5696 | | 0, /*nb_reserved*/ |
5697 | | long_float, /*nb_float*/ |
5698 | | 0, /* nb_inplace_add */ |
5699 | | 0, /* nb_inplace_subtract */ |
5700 | | 0, /* nb_inplace_multiply */ |
5701 | | 0, /* nb_inplace_remainder */ |
5702 | | 0, /* nb_inplace_power */ |
5703 | | 0, /* nb_inplace_lshift */ |
5704 | | 0, /* nb_inplace_rshift */ |
5705 | | 0, /* nb_inplace_and */ |
5706 | | 0, /* nb_inplace_xor */ |
5707 | | 0, /* nb_inplace_or */ |
5708 | | long_div, /* nb_floor_divide */ |
5709 | | long_true_divide, /* nb_true_divide */ |
5710 | | 0, /* nb_inplace_floor_divide */ |
5711 | | 0, /* nb_inplace_true_divide */ |
5712 | | long_long, /* nb_index */ |
5713 | | }; |
5714 | | |
5715 | | PyTypeObject PyLong_Type = { |
5716 | | PyVarObject_HEAD_INIT(&PyType_Type, 0) |
5717 | | "int", /* tp_name */ |
5718 | | offsetof(PyLongObject, ob_digit), /* tp_basicsize */ |
5719 | | sizeof(digit), /* tp_itemsize */ |
5720 | | 0, /* tp_dealloc */ |
5721 | | 0, /* tp_vectorcall_offset */ |
5722 | | 0, /* tp_getattr */ |
5723 | | 0, /* tp_setattr */ |
5724 | | 0, /* tp_as_async */ |
5725 | | long_to_decimal_string, /* tp_repr */ |
5726 | | &long_as_number, /* tp_as_number */ |
5727 | | 0, /* tp_as_sequence */ |
5728 | | 0, /* tp_as_mapping */ |
5729 | | (hashfunc)long_hash, /* tp_hash */ |
5730 | | 0, /* tp_call */ |
5731 | | 0, /* tp_str */ |
5732 | | PyObject_GenericGetAttr, /* tp_getattro */ |
5733 | | 0, /* tp_setattro */ |
5734 | | 0, /* tp_as_buffer */ |
5735 | | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | |
5736 | | Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */ |
5737 | | long_doc, /* tp_doc */ |
5738 | | 0, /* tp_traverse */ |
5739 | | 0, /* tp_clear */ |
5740 | | long_richcompare, /* tp_richcompare */ |
5741 | | 0, /* tp_weaklistoffset */ |
5742 | | 0, /* tp_iter */ |
5743 | | 0, /* tp_iternext */ |
5744 | | long_methods, /* tp_methods */ |
5745 | | 0, /* tp_members */ |
5746 | | long_getset, /* tp_getset */ |
5747 | | 0, /* tp_base */ |
5748 | | 0, /* tp_dict */ |
5749 | | 0, /* tp_descr_get */ |
5750 | | 0, /* tp_descr_set */ |
5751 | | 0, /* tp_dictoffset */ |
5752 | | 0, /* tp_init */ |
5753 | | 0, /* tp_alloc */ |
5754 | | long_new, /* tp_new */ |
5755 | | PyObject_Del, /* tp_free */ |
5756 | | }; |
5757 | | |
5758 | | static PyTypeObject Int_InfoType; |
5759 | | |
5760 | | PyDoc_STRVAR(int_info__doc__, |
5761 | | "sys.int_info\n\ |
5762 | | \n\ |
5763 | | A named tuple that holds information about Python's\n\ |
5764 | | internal representation of integers. The attributes are read only."); |
5765 | | |
5766 | | static PyStructSequence_Field int_info_fields[] = { |
5767 | | {"bits_per_digit", "size of a digit in bits"}, |
5768 | | {"sizeof_digit", "size in bytes of the C type used to represent a digit"}, |
5769 | | {NULL, NULL} |
5770 | | }; |
5771 | | |
5772 | | static PyStructSequence_Desc int_info_desc = { |
5773 | | "sys.int_info", /* name */ |
5774 | | int_info__doc__, /* doc */ |
5775 | | int_info_fields, /* fields */ |
5776 | | 2 /* number of fields */ |
5777 | | }; |
5778 | | |
5779 | | PyObject * |
5780 | | PyLong_GetInfo(void) |
5781 | 14 | { |
5782 | 14 | PyObject* int_info; |
5783 | 14 | int field = 0; |
5784 | 14 | int_info = PyStructSequence_New(&Int_InfoType); |
5785 | 14 | if (int_info == NULL) |
5786 | 0 | return NULL; |
5787 | 14 | PyStructSequence_SET_ITEM(int_info, field++, |
5788 | 14 | PyLong_FromLong(PyLong_SHIFT)); |
5789 | 14 | PyStructSequence_SET_ITEM(int_info, field++, |
5790 | 14 | PyLong_FromLong(sizeof(digit))); |
5791 | 14 | if (PyErr_Occurred()) { |
5792 | 0 | Py_CLEAR(int_info); |
5793 | 0 | return NULL; |
5794 | 0 | } |
5795 | 14 | return int_info; |
5796 | 14 | } |
5797 | | |
5798 | | int |
5799 | | _PyLong_Init(void) |
5800 | 14 | { |
5801 | 14 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
5802 | 14 | int ival, size; |
5803 | 14 | PyLongObject *v = small_ints; |
5804 | | |
5805 | 3.68k | for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) { |
5806 | 3.66k | size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1); |
5807 | 3.66k | if (Py_TYPE(v) == &PyLong_Type) { |
5808 | | /* The element is already initialized, most likely |
5809 | | * the Python interpreter was initialized before. |
5810 | | */ |
5811 | 0 | Py_ssize_t refcnt; |
5812 | 0 | PyObject* op = (PyObject*)v; |
5813 | |
|
5814 | 0 | refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op); |
5815 | 0 | _Py_NewReference(op); |
5816 | | /* _Py_NewReference sets the ref count to 1 but |
5817 | | * the ref count might be larger. Set the refcnt |
5818 | | * to the original refcnt + 1 */ |
5819 | 0 | Py_REFCNT(op) = refcnt + 1; |
5820 | 0 | assert(Py_SIZE(op) == size); |
5821 | 0 | assert(v->ob_digit[0] == (digit)abs(ival)); |
5822 | 0 | } |
5823 | 3.66k | else { |
5824 | 3.66k | (void)PyObject_INIT(v, &PyLong_Type); |
5825 | 3.66k | } |
5826 | 3.66k | Py_SIZE(v) = size; |
5827 | 3.66k | v->ob_digit[0] = (digit)abs(ival); |
5828 | 3.66k | } |
5829 | 14 | #endif |
5830 | 14 | _PyLong_Zero = PyLong_FromLong(0); |
5831 | 14 | if (_PyLong_Zero == NULL) |
5832 | 0 | return 0; |
5833 | 14 | _PyLong_One = PyLong_FromLong(1); |
5834 | 14 | if (_PyLong_One == NULL) |
5835 | 0 | return 0; |
5836 | | |
5837 | | /* initialize int_info */ |
5838 | 14 | if (Int_InfoType.tp_name == NULL) { |
5839 | 14 | if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0) { |
5840 | 0 | return 0; |
5841 | 0 | } |
5842 | 14 | } |
5843 | | |
5844 | 14 | return 1; |
5845 | 14 | } |
5846 | | |
5847 | | void |
5848 | | PyLong_Fini(void) |
5849 | 0 | { |
5850 | | /* Integers are currently statically allocated. Py_DECREF is not |
5851 | | needed, but Python must forget about the reference or multiple |
5852 | | reinitializations will fail. */ |
5853 | 0 | Py_CLEAR(_PyLong_One); |
5854 | 0 | Py_CLEAR(_PyLong_Zero); |
5855 | 0 | #if NSMALLNEGINTS + NSMALLPOSINTS > 0 |
5856 | 0 | int i; |
5857 | 0 | PyLongObject *v = small_ints; |
5858 | 0 | for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) { |
5859 | 0 | _Py_DEC_REFTOTAL; |
5860 | 0 | _Py_ForgetReference((PyObject*)v); |
5861 | 0 | } |
5862 | 0 | #endif |
5863 | 0 | } |