/src/Python-3.8.3/Python/dtoa.c
Line | Count | Source (jump to first uncovered line) |
1 | | /**************************************************************** |
2 | | * |
3 | | * The author of this software is David M. Gay. |
4 | | * |
5 | | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
6 | | * |
7 | | * Permission to use, copy, modify, and distribute this software for any |
8 | | * purpose without fee is hereby granted, provided that this entire notice |
9 | | * is included in all copies of any software which is or includes a copy |
10 | | * or modification of this software and in all copies of the supporting |
11 | | * documentation for such software. |
12 | | * |
13 | | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
14 | | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
15 | | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
16 | | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
17 | | * |
18 | | ***************************************************************/ |
19 | | |
20 | | /**************************************************************** |
21 | | * This is dtoa.c by David M. Gay, downloaded from |
22 | | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
23 | | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
24 | | * |
25 | | * Please remember to check http://www.netlib.org/fp regularly (and especially |
26 | | * before any Python release) for bugfixes and updates. |
27 | | * |
28 | | * The major modifications from Gay's original code are as follows: |
29 | | * |
30 | | * 0. The original code has been specialized to Python's needs by removing |
31 | | * many of the #ifdef'd sections. In particular, code to support VAX and |
32 | | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
33 | | * treatment of the decimal point, and setting of the inexact flag have |
34 | | * been removed. |
35 | | * |
36 | | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
37 | | * |
38 | | * 2. The public functions strtod, dtoa and freedtoa all now have |
39 | | * a _Py_dg_ prefix. |
40 | | * |
41 | | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
42 | | * PyMem_Malloc failures through the code. The functions |
43 | | * |
44 | | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
45 | | * |
46 | | * of return type *Bigint all return NULL to indicate a malloc failure. |
47 | | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
48 | | * failure. bigcomp now has return type int (it used to be void) and |
49 | | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
50 | | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
51 | | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
52 | | * |
53 | | * 4. The static variable dtoa_result has been removed. Callers of |
54 | | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
55 | | * the memory allocated by _Py_dg_dtoa. |
56 | | * |
57 | | * 5. The code has been reformatted to better fit with Python's |
58 | | * C style guide (PEP 7). |
59 | | * |
60 | | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
61 | | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
62 | | * Kmax. |
63 | | * |
64 | | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
65 | | * leading whitespace. |
66 | | * |
67 | | ***************************************************************/ |
68 | | |
69 | | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
70 | | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
71 | | * Please report bugs for this modified version using the Python issue tracker |
72 | | * (http://bugs.python.org). */ |
73 | | |
74 | | /* On a machine with IEEE extended-precision registers, it is |
75 | | * necessary to specify double-precision (53-bit) rounding precision |
76 | | * before invoking strtod or dtoa. If the machine uses (the equivalent |
77 | | * of) Intel 80x87 arithmetic, the call |
78 | | * _control87(PC_53, MCW_PC); |
79 | | * does this with many compilers. Whether this or another call is |
80 | | * appropriate depends on the compiler; for this to work, it may be |
81 | | * necessary to #include "float.h" or another system-dependent header |
82 | | * file. |
83 | | */ |
84 | | |
85 | | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
86 | | * |
87 | | * This strtod returns a nearest machine number to the input decimal |
88 | | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
89 | | * broken by the IEEE round-even rule. Otherwise ties are broken by |
90 | | * biased rounding (add half and chop). |
91 | | * |
92 | | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
93 | | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
94 | | * |
95 | | * Modifications: |
96 | | * |
97 | | * 1. We only require IEEE, IBM, or VAX double-precision |
98 | | * arithmetic (not IEEE double-extended). |
99 | | * 2. We get by with floating-point arithmetic in a case that |
100 | | * Clinger missed -- when we're computing d * 10^n |
101 | | * for a small integer d and the integer n is not too |
102 | | * much larger than 22 (the maximum integer k for which |
103 | | * we can represent 10^k exactly), we may be able to |
104 | | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
105 | | * 3. Rather than a bit-at-a-time adjustment of the binary |
106 | | * result in the hard case, we use floating-point |
107 | | * arithmetic to determine the adjustment to within |
108 | | * one bit; only in really hard cases do we need to |
109 | | * compute a second residual. |
110 | | * 4. Because of 3., we don't need a large table of powers of 10 |
111 | | * for ten-to-e (just some small tables, e.g. of 10^k |
112 | | * for 0 <= k <= 22). |
113 | | */ |
114 | | |
115 | | /* Linking of Python's #defines to Gay's #defines starts here. */ |
116 | | |
117 | | #include "Python.h" |
118 | | |
119 | | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile |
120 | | the following code */ |
121 | | #ifndef PY_NO_SHORT_FLOAT_REPR |
122 | | |
123 | | #include "float.h" |
124 | | |
125 | 0 | #define MALLOC PyMem_Malloc |
126 | 0 | #define FREE PyMem_Free |
127 | | |
128 | | /* This code should also work for ARM mixed-endian format on little-endian |
129 | | machines, where doubles have byte order 45670123 (in increasing address |
130 | | order, 0 being the least significant byte). */ |
131 | | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
132 | | # define IEEE_8087 |
133 | | #endif |
134 | | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
135 | | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
136 | | # define IEEE_MC68k |
137 | | #endif |
138 | | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
139 | | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
140 | | #endif |
141 | | |
142 | | /* The code below assumes that the endianness of integers matches the |
143 | | endianness of the two 32-bit words of a double. Check this. */ |
144 | | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
145 | | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
146 | | #error "doubles and ints have incompatible endianness" |
147 | | #endif |
148 | | |
149 | | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
150 | | #error "doubles and ints have incompatible endianness" |
151 | | #endif |
152 | | |
153 | | |
154 | | typedef uint32_t ULong; |
155 | | typedef int32_t Long; |
156 | | typedef uint64_t ULLong; |
157 | | |
158 | | #undef DEBUG |
159 | | #ifdef Py_DEBUG |
160 | | #define DEBUG |
161 | | #endif |
162 | | |
163 | | /* End Python #define linking */ |
164 | | |
165 | | #ifdef DEBUG |
166 | | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
167 | | #endif |
168 | | |
169 | | #ifndef PRIVATE_MEM |
170 | 0 | #define PRIVATE_MEM 2304 |
171 | | #endif |
172 | 0 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
173 | | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
174 | | |
175 | | #ifdef __cplusplus |
176 | | extern "C" { |
177 | | #endif |
178 | | |
179 | | typedef union { double d; ULong L[2]; } U; |
180 | | |
181 | | #ifdef IEEE_8087 |
182 | 0 | #define word0(x) (x)->L[1] |
183 | 0 | #define word1(x) (x)->L[0] |
184 | | #else |
185 | | #define word0(x) (x)->L[0] |
186 | | #define word1(x) (x)->L[1] |
187 | | #endif |
188 | 10 | #define dval(x) (x)->d |
189 | | |
190 | | #ifndef STRTOD_DIGLIM |
191 | 0 | #define STRTOD_DIGLIM 40 |
192 | | #endif |
193 | | |
194 | | /* maximum permitted exponent value for strtod; exponents larger than |
195 | | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP |
196 | | should fit into an int. */ |
197 | | #ifndef MAX_ABS_EXP |
198 | 0 | #define MAX_ABS_EXP 1100000000U |
199 | | #endif |
200 | | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, |
201 | | this is used to bound the total number of digits ignoring leading zeros and |
202 | | the number of digits that follow the decimal point. Ideally, MAX_DIGITS |
203 | | should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the |
204 | | exponent clipping in _Py_dg_strtod can't affect the value of the output. */ |
205 | | #ifndef MAX_DIGITS |
206 | 6 | #define MAX_DIGITS 1000000000U |
207 | | #endif |
208 | | |
209 | | /* Guard against trying to use the above values on unusual platforms with ints |
210 | | * of width less than 32 bits. */ |
211 | | #if MAX_ABS_EXP > INT_MAX |
212 | | #error "MAX_ABS_EXP should fit in an int" |
213 | | #endif |
214 | | #if MAX_DIGITS > INT_MAX |
215 | | #error "MAX_DIGITS should fit in an int" |
216 | | #endif |
217 | | |
218 | | /* The following definition of Storeinc is appropriate for MIPS processors. |
219 | | * An alternative that might be better on some machines is |
220 | | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
221 | | */ |
222 | | #if defined(IEEE_8087) |
223 | | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
224 | | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
225 | | #else |
226 | | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
227 | | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
228 | | #endif |
229 | | |
230 | | /* #define P DBL_MANT_DIG */ |
231 | | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
232 | | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
233 | | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
234 | | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
235 | | |
236 | 0 | #define Exp_shift 20 |
237 | 0 | #define Exp_shift1 20 |
238 | 0 | #define Exp_msk1 0x100000 |
239 | | #define Exp_msk11 0x100000 |
240 | 0 | #define Exp_mask 0x7ff00000 |
241 | 0 | #define P 53 |
242 | | #define Nbits 53 |
243 | 0 | #define Bias 1023 |
244 | | #define Emax 1023 |
245 | | #define Emin (-1022) |
246 | 0 | #define Etiny (-1074) /* smallest denormal is 2**Etiny */ |
247 | 0 | #define Exp_1 0x3ff00000 |
248 | 0 | #define Exp_11 0x3ff00000 |
249 | 0 | #define Ebits 11 |
250 | 0 | #define Frac_mask 0xfffff |
251 | 0 | #define Frac_mask1 0xfffff |
252 | 2 | #define Ten_pmax 22 |
253 | 0 | #define Bletch 0x10 |
254 | 0 | #define Bndry_mask 0xfffff |
255 | 0 | #define Bndry_mask1 0xfffff |
256 | 0 | #define Sign_bit 0x80000000 |
257 | 0 | #define Log2P 1 |
258 | | #define Tiny0 0 |
259 | 0 | #define Tiny1 1 |
260 | 0 | #define Quick_max 14 |
261 | 0 | #define Int_max 14 |
262 | | |
263 | | #ifndef Flt_Rounds |
264 | | #ifdef FLT_ROUNDS |
265 | 2 | #define Flt_Rounds FLT_ROUNDS |
266 | | #else |
267 | | #define Flt_Rounds 1 |
268 | | #endif |
269 | | #endif /*Flt_Rounds*/ |
270 | | |
271 | | #define Rounding Flt_Rounds |
272 | | |
273 | 0 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
274 | 0 | #define Big1 0xffffffff |
275 | | |
276 | | /* Standard NaN used by _Py_dg_stdnan. */ |
277 | | |
278 | 0 | #define NAN_WORD0 0x7ff80000 |
279 | 0 | #define NAN_WORD1 0 |
280 | | |
281 | | /* Bits of the representation of positive infinity. */ |
282 | | |
283 | 0 | #define POSINF_WORD0 0x7ff00000 |
284 | 0 | #define POSINF_WORD1 0 |
285 | | |
286 | | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
287 | | |
288 | | typedef struct BCinfo BCinfo; |
289 | | struct |
290 | | BCinfo { |
291 | | int e0, nd, nd0, scale; |
292 | | }; |
293 | | |
294 | 0 | #define FFFFFFFF 0xffffffffUL |
295 | | |
296 | 0 | #define Kmax 7 |
297 | | |
298 | | /* struct Bigint is used to represent arbitrary-precision integers. These |
299 | | integers are stored in sign-magnitude format, with the magnitude stored as |
300 | | an array of base 2**32 digits. Bigints are always normalized: if x is a |
301 | | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
302 | | |
303 | | The Bigint fields are as follows: |
304 | | |
305 | | - next is a header used by Balloc and Bfree to keep track of lists |
306 | | of freed Bigints; it's also used for the linked list of |
307 | | powers of 5 of the form 5**2**i used by pow5mult. |
308 | | - k indicates which pool this Bigint was allocated from |
309 | | - maxwds is the maximum number of words space was allocated for |
310 | | (usually maxwds == 2**k) |
311 | | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
312 | | (ignored on inputs, set to 0 on outputs) in almost all operations |
313 | | involving Bigints: a notable exception is the diff function, which |
314 | | ignores signs on inputs but sets the sign of the output correctly. |
315 | | - wds is the actual number of significant words |
316 | | - x contains the vector of words (digits) for this Bigint, from least |
317 | | significant (x[0]) to most significant (x[wds-1]). |
318 | | */ |
319 | | |
320 | | struct |
321 | | Bigint { |
322 | | struct Bigint *next; |
323 | | int k, maxwds, sign, wds; |
324 | | ULong x[1]; |
325 | | }; |
326 | | |
327 | | typedef struct Bigint Bigint; |
328 | | |
329 | | #ifndef Py_USING_MEMORY_DEBUGGER |
330 | | |
331 | | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
332 | | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
333 | | 1 << k. These pools are maintained as linked lists, with freelist[k] |
334 | | pointing to the head of the list for pool k. |
335 | | |
336 | | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
337 | | called to get more memory. This memory is not returned to the system until |
338 | | Python quits. There's also a private memory pool that's allocated from |
339 | | in preference to using MALLOC. |
340 | | |
341 | | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
342 | | decimal digits), memory is directly allocated using MALLOC, and freed using |
343 | | FREE. |
344 | | |
345 | | XXX: it would be easy to bypass this memory-management system and |
346 | | translate each call to Balloc into a call to PyMem_Malloc, and each |
347 | | Bfree to PyMem_Free. Investigate whether this has any significant |
348 | | performance on impact. */ |
349 | | |
350 | | static Bigint *freelist[Kmax+1]; |
351 | | |
352 | | /* Allocate space for a Bigint with up to 1<<k digits */ |
353 | | |
354 | | static Bigint * |
355 | | Balloc(int k) |
356 | 0 | { |
357 | 0 | int x; |
358 | 0 | Bigint *rv; |
359 | 0 | unsigned int len; |
360 | |
|
361 | 0 | if (k <= Kmax && (rv = freelist[k])) |
362 | 0 | freelist[k] = rv->next; |
363 | 0 | else { |
364 | 0 | x = 1 << k; |
365 | 0 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
366 | 0 | /sizeof(double); |
367 | 0 | if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { |
368 | 0 | rv = (Bigint*)pmem_next; |
369 | 0 | pmem_next += len; |
370 | 0 | } |
371 | 0 | else { |
372 | 0 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
373 | 0 | if (rv == NULL) |
374 | 0 | return NULL; |
375 | 0 | } |
376 | 0 | rv->k = k; |
377 | 0 | rv->maxwds = x; |
378 | 0 | } |
379 | 0 | rv->sign = rv->wds = 0; |
380 | 0 | return rv; |
381 | 0 | } |
382 | | |
383 | | /* Free a Bigint allocated with Balloc */ |
384 | | |
385 | | static void |
386 | | Bfree(Bigint *v) |
387 | 10 | { |
388 | 10 | if (v) { |
389 | 0 | if (v->k > Kmax) |
390 | 0 | FREE((void*)v); |
391 | 0 | else { |
392 | 0 | v->next = freelist[v->k]; |
393 | 0 | freelist[v->k] = v; |
394 | 0 | } |
395 | 0 | } |
396 | 10 | } |
397 | | |
398 | | #else |
399 | | |
400 | | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and |
401 | | PyMem_Free directly in place of the custom memory allocation scheme above. |
402 | | These are provided for the benefit of memory debugging tools like |
403 | | Valgrind. */ |
404 | | |
405 | | /* Allocate space for a Bigint with up to 1<<k digits */ |
406 | | |
407 | | static Bigint * |
408 | | Balloc(int k) |
409 | | { |
410 | | int x; |
411 | | Bigint *rv; |
412 | | unsigned int len; |
413 | | |
414 | | x = 1 << k; |
415 | | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
416 | | /sizeof(double); |
417 | | |
418 | | rv = (Bigint*)MALLOC(len*sizeof(double)); |
419 | | if (rv == NULL) |
420 | | return NULL; |
421 | | |
422 | | rv->k = k; |
423 | | rv->maxwds = x; |
424 | | rv->sign = rv->wds = 0; |
425 | | return rv; |
426 | | } |
427 | | |
428 | | /* Free a Bigint allocated with Balloc */ |
429 | | |
430 | | static void |
431 | | Bfree(Bigint *v) |
432 | | { |
433 | | if (v) { |
434 | | FREE((void*)v); |
435 | | } |
436 | | } |
437 | | |
438 | | #endif /* Py_USING_MEMORY_DEBUGGER */ |
439 | | |
440 | 0 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
441 | 0 | y->wds*sizeof(Long) + 2*sizeof(int)) |
442 | | |
443 | | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
444 | | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
445 | | On failure, return NULL. In this case, b will have been already freed. */ |
446 | | |
447 | | static Bigint * |
448 | | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
449 | 0 | { |
450 | 0 | int i, wds; |
451 | 0 | ULong *x; |
452 | 0 | ULLong carry, y; |
453 | 0 | Bigint *b1; |
454 | |
|
455 | 0 | wds = b->wds; |
456 | 0 | x = b->x; |
457 | 0 | i = 0; |
458 | 0 | carry = a; |
459 | 0 | do { |
460 | 0 | y = *x * (ULLong)m + carry; |
461 | 0 | carry = y >> 32; |
462 | 0 | *x++ = (ULong)(y & FFFFFFFF); |
463 | 0 | } |
464 | 0 | while(++i < wds); |
465 | 0 | if (carry) { |
466 | 0 | if (wds >= b->maxwds) { |
467 | 0 | b1 = Balloc(b->k+1); |
468 | 0 | if (b1 == NULL){ |
469 | 0 | Bfree(b); |
470 | 0 | return NULL; |
471 | 0 | } |
472 | 0 | Bcopy(b1, b); |
473 | 0 | Bfree(b); |
474 | 0 | b = b1; |
475 | 0 | } |
476 | 0 | b->x[wds++] = (ULong)carry; |
477 | 0 | b->wds = wds; |
478 | 0 | } |
479 | 0 | return b; |
480 | 0 | } |
481 | | |
482 | | /* convert a string s containing nd decimal digits (possibly containing a |
483 | | decimal separator at position nd0, which is ignored) to a Bigint. This |
484 | | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
485 | | entry, y9 contains the result of converting the first 9 digits. Returns |
486 | | NULL on failure. */ |
487 | | |
488 | | static Bigint * |
489 | | s2b(const char *s, int nd0, int nd, ULong y9) |
490 | 0 | { |
491 | 0 | Bigint *b; |
492 | 0 | int i, k; |
493 | 0 | Long x, y; |
494 | |
|
495 | 0 | x = (nd + 8) / 9; |
496 | 0 | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
497 | 0 | b = Balloc(k); |
498 | 0 | if (b == NULL) |
499 | 0 | return NULL; |
500 | 0 | b->x[0] = y9; |
501 | 0 | b->wds = 1; |
502 | |
|
503 | 0 | if (nd <= 9) |
504 | 0 | return b; |
505 | | |
506 | 0 | s += 9; |
507 | 0 | for (i = 9; i < nd0; i++) { |
508 | 0 | b = multadd(b, 10, *s++ - '0'); |
509 | 0 | if (b == NULL) |
510 | 0 | return NULL; |
511 | 0 | } |
512 | 0 | s++; |
513 | 0 | for(; i < nd; i++) { |
514 | 0 | b = multadd(b, 10, *s++ - '0'); |
515 | 0 | if (b == NULL) |
516 | 0 | return NULL; |
517 | 0 | } |
518 | 0 | return b; |
519 | 0 | } |
520 | | |
521 | | /* count leading 0 bits in the 32-bit integer x. */ |
522 | | |
523 | | static int |
524 | | hi0bits(ULong x) |
525 | 0 | { |
526 | 0 | int k = 0; |
527 | |
|
528 | 0 | if (!(x & 0xffff0000)) { |
529 | 0 | k = 16; |
530 | 0 | x <<= 16; |
531 | 0 | } |
532 | 0 | if (!(x & 0xff000000)) { |
533 | 0 | k += 8; |
534 | 0 | x <<= 8; |
535 | 0 | } |
536 | 0 | if (!(x & 0xf0000000)) { |
537 | 0 | k += 4; |
538 | 0 | x <<= 4; |
539 | 0 | } |
540 | 0 | if (!(x & 0xc0000000)) { |
541 | 0 | k += 2; |
542 | 0 | x <<= 2; |
543 | 0 | } |
544 | 0 | if (!(x & 0x80000000)) { |
545 | 0 | k++; |
546 | 0 | if (!(x & 0x40000000)) |
547 | 0 | return 32; |
548 | 0 | } |
549 | 0 | return k; |
550 | 0 | } |
551 | | |
552 | | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
553 | | number of bits. */ |
554 | | |
555 | | static int |
556 | | lo0bits(ULong *y) |
557 | 0 | { |
558 | 0 | int k; |
559 | 0 | ULong x = *y; |
560 | |
|
561 | 0 | if (x & 7) { |
562 | 0 | if (x & 1) |
563 | 0 | return 0; |
564 | 0 | if (x & 2) { |
565 | 0 | *y = x >> 1; |
566 | 0 | return 1; |
567 | 0 | } |
568 | 0 | *y = x >> 2; |
569 | 0 | return 2; |
570 | 0 | } |
571 | 0 | k = 0; |
572 | 0 | if (!(x & 0xffff)) { |
573 | 0 | k = 16; |
574 | 0 | x >>= 16; |
575 | 0 | } |
576 | 0 | if (!(x & 0xff)) { |
577 | 0 | k += 8; |
578 | 0 | x >>= 8; |
579 | 0 | } |
580 | 0 | if (!(x & 0xf)) { |
581 | 0 | k += 4; |
582 | 0 | x >>= 4; |
583 | 0 | } |
584 | 0 | if (!(x & 0x3)) { |
585 | 0 | k += 2; |
586 | 0 | x >>= 2; |
587 | 0 | } |
588 | 0 | if (!(x & 1)) { |
589 | 0 | k++; |
590 | 0 | x >>= 1; |
591 | 0 | if (!x) |
592 | 0 | return 32; |
593 | 0 | } |
594 | 0 | *y = x; |
595 | 0 | return k; |
596 | 0 | } |
597 | | |
598 | | /* convert a small nonnegative integer to a Bigint */ |
599 | | |
600 | | static Bigint * |
601 | | i2b(int i) |
602 | 0 | { |
603 | 0 | Bigint *b; |
604 | |
|
605 | 0 | b = Balloc(1); |
606 | 0 | if (b == NULL) |
607 | 0 | return NULL; |
608 | 0 | b->x[0] = i; |
609 | 0 | b->wds = 1; |
610 | 0 | return b; |
611 | 0 | } |
612 | | |
613 | | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
614 | | the signs of a and b. */ |
615 | | |
616 | | static Bigint * |
617 | | mult(Bigint *a, Bigint *b) |
618 | 0 | { |
619 | 0 | Bigint *c; |
620 | 0 | int k, wa, wb, wc; |
621 | 0 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
622 | 0 | ULong y; |
623 | 0 | ULLong carry, z; |
624 | |
|
625 | 0 | if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { |
626 | 0 | c = Balloc(0); |
627 | 0 | if (c == NULL) |
628 | 0 | return NULL; |
629 | 0 | c->wds = 1; |
630 | 0 | c->x[0] = 0; |
631 | 0 | return c; |
632 | 0 | } |
633 | | |
634 | 0 | if (a->wds < b->wds) { |
635 | 0 | c = a; |
636 | 0 | a = b; |
637 | 0 | b = c; |
638 | 0 | } |
639 | 0 | k = a->k; |
640 | 0 | wa = a->wds; |
641 | 0 | wb = b->wds; |
642 | 0 | wc = wa + wb; |
643 | 0 | if (wc > a->maxwds) |
644 | 0 | k++; |
645 | 0 | c = Balloc(k); |
646 | 0 | if (c == NULL) |
647 | 0 | return NULL; |
648 | 0 | for(x = c->x, xa = x + wc; x < xa; x++) |
649 | 0 | *x = 0; |
650 | 0 | xa = a->x; |
651 | 0 | xae = xa + wa; |
652 | 0 | xb = b->x; |
653 | 0 | xbe = xb + wb; |
654 | 0 | xc0 = c->x; |
655 | 0 | for(; xb < xbe; xc0++) { |
656 | 0 | if ((y = *xb++)) { |
657 | 0 | x = xa; |
658 | 0 | xc = xc0; |
659 | 0 | carry = 0; |
660 | 0 | do { |
661 | 0 | z = *x++ * (ULLong)y + *xc + carry; |
662 | 0 | carry = z >> 32; |
663 | 0 | *xc++ = (ULong)(z & FFFFFFFF); |
664 | 0 | } |
665 | 0 | while(x < xae); |
666 | 0 | *xc = (ULong)carry; |
667 | 0 | } |
668 | 0 | } |
669 | 0 | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
670 | 0 | c->wds = wc; |
671 | 0 | return c; |
672 | 0 | } |
673 | | |
674 | | #ifndef Py_USING_MEMORY_DEBUGGER |
675 | | |
676 | | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ |
677 | | |
678 | | static Bigint *p5s; |
679 | | |
680 | | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
681 | | failure; if the returned pointer is distinct from b then the original |
682 | | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
683 | | |
684 | | static Bigint * |
685 | | pow5mult(Bigint *b, int k) |
686 | 0 | { |
687 | 0 | Bigint *b1, *p5, *p51; |
688 | 0 | int i; |
689 | 0 | static const int p05[3] = { 5, 25, 125 }; |
690 | |
|
691 | 0 | if ((i = k & 3)) { |
692 | 0 | b = multadd(b, p05[i-1], 0); |
693 | 0 | if (b == NULL) |
694 | 0 | return NULL; |
695 | 0 | } |
696 | | |
697 | 0 | if (!(k >>= 2)) |
698 | 0 | return b; |
699 | 0 | p5 = p5s; |
700 | 0 | if (!p5) { |
701 | | /* first time */ |
702 | 0 | p5 = i2b(625); |
703 | 0 | if (p5 == NULL) { |
704 | 0 | Bfree(b); |
705 | 0 | return NULL; |
706 | 0 | } |
707 | 0 | p5s = p5; |
708 | 0 | p5->next = 0; |
709 | 0 | } |
710 | 0 | for(;;) { |
711 | 0 | if (k & 1) { |
712 | 0 | b1 = mult(b, p5); |
713 | 0 | Bfree(b); |
714 | 0 | b = b1; |
715 | 0 | if (b == NULL) |
716 | 0 | return NULL; |
717 | 0 | } |
718 | 0 | if (!(k >>= 1)) |
719 | 0 | break; |
720 | 0 | p51 = p5->next; |
721 | 0 | if (!p51) { |
722 | 0 | p51 = mult(p5,p5); |
723 | 0 | if (p51 == NULL) { |
724 | 0 | Bfree(b); |
725 | 0 | return NULL; |
726 | 0 | } |
727 | 0 | p51->next = 0; |
728 | 0 | p5->next = p51; |
729 | 0 | } |
730 | 0 | p5 = p51; |
731 | 0 | } |
732 | 0 | return b; |
733 | 0 | } |
734 | | |
735 | | #else |
736 | | |
737 | | /* Version of pow5mult that doesn't cache powers of 5. Provided for |
738 | | the benefit of memory debugging tools like Valgrind. */ |
739 | | |
740 | | static Bigint * |
741 | | pow5mult(Bigint *b, int k) |
742 | | { |
743 | | Bigint *b1, *p5, *p51; |
744 | | int i; |
745 | | static const int p05[3] = { 5, 25, 125 }; |
746 | | |
747 | | if ((i = k & 3)) { |
748 | | b = multadd(b, p05[i-1], 0); |
749 | | if (b == NULL) |
750 | | return NULL; |
751 | | } |
752 | | |
753 | | if (!(k >>= 2)) |
754 | | return b; |
755 | | p5 = i2b(625); |
756 | | if (p5 == NULL) { |
757 | | Bfree(b); |
758 | | return NULL; |
759 | | } |
760 | | |
761 | | for(;;) { |
762 | | if (k & 1) { |
763 | | b1 = mult(b, p5); |
764 | | Bfree(b); |
765 | | b = b1; |
766 | | if (b == NULL) { |
767 | | Bfree(p5); |
768 | | return NULL; |
769 | | } |
770 | | } |
771 | | if (!(k >>= 1)) |
772 | | break; |
773 | | p51 = mult(p5, p5); |
774 | | Bfree(p5); |
775 | | p5 = p51; |
776 | | if (p5 == NULL) { |
777 | | Bfree(b); |
778 | | return NULL; |
779 | | } |
780 | | } |
781 | | Bfree(p5); |
782 | | return b; |
783 | | } |
784 | | |
785 | | #endif /* Py_USING_MEMORY_DEBUGGER */ |
786 | | |
787 | | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
788 | | or NULL on failure. If the returned pointer is distinct from b then the |
789 | | original b will have been Bfree'd. Ignores the sign of b. */ |
790 | | |
791 | | static Bigint * |
792 | | lshift(Bigint *b, int k) |
793 | 0 | { |
794 | 0 | int i, k1, n, n1; |
795 | 0 | Bigint *b1; |
796 | 0 | ULong *x, *x1, *xe, z; |
797 | |
|
798 | 0 | if (!k || (!b->x[0] && b->wds == 1)) |
799 | 0 | return b; |
800 | | |
801 | 0 | n = k >> 5; |
802 | 0 | k1 = b->k; |
803 | 0 | n1 = n + b->wds + 1; |
804 | 0 | for(i = b->maxwds; n1 > i; i <<= 1) |
805 | 0 | k1++; |
806 | 0 | b1 = Balloc(k1); |
807 | 0 | if (b1 == NULL) { |
808 | 0 | Bfree(b); |
809 | 0 | return NULL; |
810 | 0 | } |
811 | 0 | x1 = b1->x; |
812 | 0 | for(i = 0; i < n; i++) |
813 | 0 | *x1++ = 0; |
814 | 0 | x = b->x; |
815 | 0 | xe = x + b->wds; |
816 | 0 | if (k &= 0x1f) { |
817 | 0 | k1 = 32 - k; |
818 | 0 | z = 0; |
819 | 0 | do { |
820 | 0 | *x1++ = *x << k | z; |
821 | 0 | z = *x++ >> k1; |
822 | 0 | } |
823 | 0 | while(x < xe); |
824 | 0 | if ((*x1 = z)) |
825 | 0 | ++n1; |
826 | 0 | } |
827 | 0 | else do |
828 | 0 | *x1++ = *x++; |
829 | 0 | while(x < xe); |
830 | 0 | b1->wds = n1 - 1; |
831 | 0 | Bfree(b); |
832 | 0 | return b1; |
833 | 0 | } |
834 | | |
835 | | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
836 | | 1 if a > b. Ignores signs of a and b. */ |
837 | | |
838 | | static int |
839 | | cmp(Bigint *a, Bigint *b) |
840 | 0 | { |
841 | 0 | ULong *xa, *xa0, *xb, *xb0; |
842 | 0 | int i, j; |
843 | |
|
844 | 0 | i = a->wds; |
845 | 0 | j = b->wds; |
846 | | #ifdef DEBUG |
847 | | if (i > 1 && !a->x[i-1]) |
848 | | Bug("cmp called with a->x[a->wds-1] == 0"); |
849 | | if (j > 1 && !b->x[j-1]) |
850 | | Bug("cmp called with b->x[b->wds-1] == 0"); |
851 | | #endif |
852 | 0 | if (i -= j) |
853 | 0 | return i; |
854 | 0 | xa0 = a->x; |
855 | 0 | xa = xa0 + j; |
856 | 0 | xb0 = b->x; |
857 | 0 | xb = xb0 + j; |
858 | 0 | for(;;) { |
859 | 0 | if (*--xa != *--xb) |
860 | 0 | return *xa < *xb ? -1 : 1; |
861 | 0 | if (xa <= xa0) |
862 | 0 | break; |
863 | 0 | } |
864 | 0 | return 0; |
865 | 0 | } |
866 | | |
867 | | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
868 | | NULL on failure. The signs of a and b are ignored, but the sign of the |
869 | | result is set appropriately. */ |
870 | | |
871 | | static Bigint * |
872 | | diff(Bigint *a, Bigint *b) |
873 | 0 | { |
874 | 0 | Bigint *c; |
875 | 0 | int i, wa, wb; |
876 | 0 | ULong *xa, *xae, *xb, *xbe, *xc; |
877 | 0 | ULLong borrow, y; |
878 | |
|
879 | 0 | i = cmp(a,b); |
880 | 0 | if (!i) { |
881 | 0 | c = Balloc(0); |
882 | 0 | if (c == NULL) |
883 | 0 | return NULL; |
884 | 0 | c->wds = 1; |
885 | 0 | c->x[0] = 0; |
886 | 0 | return c; |
887 | 0 | } |
888 | 0 | if (i < 0) { |
889 | 0 | c = a; |
890 | 0 | a = b; |
891 | 0 | b = c; |
892 | 0 | i = 1; |
893 | 0 | } |
894 | 0 | else |
895 | 0 | i = 0; |
896 | 0 | c = Balloc(a->k); |
897 | 0 | if (c == NULL) |
898 | 0 | return NULL; |
899 | 0 | c->sign = i; |
900 | 0 | wa = a->wds; |
901 | 0 | xa = a->x; |
902 | 0 | xae = xa + wa; |
903 | 0 | wb = b->wds; |
904 | 0 | xb = b->x; |
905 | 0 | xbe = xb + wb; |
906 | 0 | xc = c->x; |
907 | 0 | borrow = 0; |
908 | 0 | do { |
909 | 0 | y = (ULLong)*xa++ - *xb++ - borrow; |
910 | 0 | borrow = y >> 32 & (ULong)1; |
911 | 0 | *xc++ = (ULong)(y & FFFFFFFF); |
912 | 0 | } |
913 | 0 | while(xb < xbe); |
914 | 0 | while(xa < xae) { |
915 | 0 | y = *xa++ - borrow; |
916 | 0 | borrow = y >> 32 & (ULong)1; |
917 | 0 | *xc++ = (ULong)(y & FFFFFFFF); |
918 | 0 | } |
919 | 0 | while(!*--xc) |
920 | 0 | wa--; |
921 | 0 | c->wds = wa; |
922 | 0 | return c; |
923 | 0 | } |
924 | | |
925 | | /* Given a positive normal double x, return the difference between x and the |
926 | | next double up. Doesn't give correct results for subnormals. */ |
927 | | |
928 | | static double |
929 | | ulp(U *x) |
930 | 0 | { |
931 | 0 | Long L; |
932 | 0 | U u; |
933 | |
|
934 | 0 | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
935 | 0 | word0(&u) = L; |
936 | 0 | word1(&u) = 0; |
937 | 0 | return dval(&u); |
938 | 0 | } |
939 | | |
940 | | /* Convert a Bigint to a double plus an exponent */ |
941 | | |
942 | | static double |
943 | | b2d(Bigint *a, int *e) |
944 | 0 | { |
945 | 0 | ULong *xa, *xa0, w, y, z; |
946 | 0 | int k; |
947 | 0 | U d; |
948 | |
|
949 | 0 | xa0 = a->x; |
950 | 0 | xa = xa0 + a->wds; |
951 | 0 | y = *--xa; |
952 | | #ifdef DEBUG |
953 | | if (!y) Bug("zero y in b2d"); |
954 | | #endif |
955 | 0 | k = hi0bits(y); |
956 | 0 | *e = 32 - k; |
957 | 0 | if (k < Ebits) { |
958 | 0 | word0(&d) = Exp_1 | y >> (Ebits - k); |
959 | 0 | w = xa > xa0 ? *--xa : 0; |
960 | 0 | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
961 | 0 | goto ret_d; |
962 | 0 | } |
963 | 0 | z = xa > xa0 ? *--xa : 0; |
964 | 0 | if (k -= Ebits) { |
965 | 0 | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
966 | 0 | y = xa > xa0 ? *--xa : 0; |
967 | 0 | word1(&d) = z << k | y >> (32 - k); |
968 | 0 | } |
969 | 0 | else { |
970 | 0 | word0(&d) = Exp_1 | y; |
971 | 0 | word1(&d) = z; |
972 | 0 | } |
973 | 0 | ret_d: |
974 | 0 | return dval(&d); |
975 | 0 | } |
976 | | |
977 | | /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b, |
978 | | except that it accepts the scale parameter used in _Py_dg_strtod (which |
979 | | should be either 0 or 2*P), and the normalization for the return value is |
980 | | different (see below). On input, d should be finite and nonnegative, and d |
981 | | / 2**scale should be exactly representable as an IEEE 754 double. |
982 | | |
983 | | Returns a Bigint b and an integer e such that |
984 | | |
985 | | dval(d) / 2**scale = b * 2**e. |
986 | | |
987 | | Unlike d2b, b is not necessarily odd: b and e are normalized so |
988 | | that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P |
989 | | and e == Etiny. This applies equally to an input of 0.0: in that |
990 | | case the return values are b = 0 and e = Etiny. |
991 | | |
992 | | The above normalization ensures that for all possible inputs d, |
993 | | 2**e gives ulp(d/2**scale). |
994 | | |
995 | | Returns NULL on failure. |
996 | | */ |
997 | | |
998 | | static Bigint * |
999 | | sd2b(U *d, int scale, int *e) |
1000 | 0 | { |
1001 | 0 | Bigint *b; |
1002 | |
|
1003 | 0 | b = Balloc(1); |
1004 | 0 | if (b == NULL) |
1005 | 0 | return NULL; |
1006 | | |
1007 | | /* First construct b and e assuming that scale == 0. */ |
1008 | 0 | b->wds = 2; |
1009 | 0 | b->x[0] = word1(d); |
1010 | 0 | b->x[1] = word0(d) & Frac_mask; |
1011 | 0 | *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); |
1012 | 0 | if (*e < Etiny) |
1013 | 0 | *e = Etiny; |
1014 | 0 | else |
1015 | 0 | b->x[1] |= Exp_msk1; |
1016 | | |
1017 | | /* Now adjust for scale, provided that b != 0. */ |
1018 | 0 | if (scale && (b->x[0] || b->x[1])) { |
1019 | 0 | *e -= scale; |
1020 | 0 | if (*e < Etiny) { |
1021 | 0 | scale = Etiny - *e; |
1022 | 0 | *e = Etiny; |
1023 | | /* We can't shift more than P-1 bits without shifting out a 1. */ |
1024 | 0 | assert(0 < scale && scale <= P - 1); |
1025 | 0 | if (scale >= 32) { |
1026 | | /* The bits shifted out should all be zero. */ |
1027 | 0 | assert(b->x[0] == 0); |
1028 | 0 | b->x[0] = b->x[1]; |
1029 | 0 | b->x[1] = 0; |
1030 | 0 | scale -= 32; |
1031 | 0 | } |
1032 | 0 | if (scale) { |
1033 | | /* The bits shifted out should all be zero. */ |
1034 | 0 | assert(b->x[0] << (32 - scale) == 0); |
1035 | 0 | b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); |
1036 | 0 | b->x[1] >>= scale; |
1037 | 0 | } |
1038 | 0 | } |
1039 | 0 | } |
1040 | | /* Ensure b is normalized. */ |
1041 | 0 | if (!b->x[1]) |
1042 | 0 | b->wds = 1; |
1043 | |
|
1044 | 0 | return b; |
1045 | 0 | } |
1046 | | |
1047 | | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
1048 | | |
1049 | | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
1050 | | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
1051 | | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
1052 | | |
1053 | | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
1054 | | */ |
1055 | | |
1056 | | static Bigint * |
1057 | | d2b(U *d, int *e, int *bits) |
1058 | 0 | { |
1059 | 0 | Bigint *b; |
1060 | 0 | int de, k; |
1061 | 0 | ULong *x, y, z; |
1062 | 0 | int i; |
1063 | |
|
1064 | 0 | b = Balloc(1); |
1065 | 0 | if (b == NULL) |
1066 | 0 | return NULL; |
1067 | 0 | x = b->x; |
1068 | |
|
1069 | 0 | z = word0(d) & Frac_mask; |
1070 | 0 | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
1071 | 0 | if ((de = (int)(word0(d) >> Exp_shift))) |
1072 | 0 | z |= Exp_msk1; |
1073 | 0 | if ((y = word1(d))) { |
1074 | 0 | if ((k = lo0bits(&y))) { |
1075 | 0 | x[0] = y | z << (32 - k); |
1076 | 0 | z >>= k; |
1077 | 0 | } |
1078 | 0 | else |
1079 | 0 | x[0] = y; |
1080 | 0 | i = |
1081 | 0 | b->wds = (x[1] = z) ? 2 : 1; |
1082 | 0 | } |
1083 | 0 | else { |
1084 | 0 | k = lo0bits(&z); |
1085 | 0 | x[0] = z; |
1086 | 0 | i = |
1087 | 0 | b->wds = 1; |
1088 | 0 | k += 32; |
1089 | 0 | } |
1090 | 0 | if (de) { |
1091 | 0 | *e = de - Bias - (P-1) + k; |
1092 | 0 | *bits = P - k; |
1093 | 0 | } |
1094 | 0 | else { |
1095 | 0 | *e = de - Bias - (P-1) + 1 + k; |
1096 | 0 | *bits = 32*i - hi0bits(x[i-1]); |
1097 | 0 | } |
1098 | 0 | return b; |
1099 | 0 | } |
1100 | | |
1101 | | /* Compute the ratio of two Bigints, as a double. The result may have an |
1102 | | error of up to 2.5 ulps. */ |
1103 | | |
1104 | | static double |
1105 | | ratio(Bigint *a, Bigint *b) |
1106 | 0 | { |
1107 | 0 | U da, db; |
1108 | 0 | int k, ka, kb; |
1109 | |
|
1110 | 0 | dval(&da) = b2d(a, &ka); |
1111 | 0 | dval(&db) = b2d(b, &kb); |
1112 | 0 | k = ka - kb + 32*(a->wds - b->wds); |
1113 | 0 | if (k > 0) |
1114 | 0 | word0(&da) += k*Exp_msk1; |
1115 | 0 | else { |
1116 | 0 | k = -k; |
1117 | 0 | word0(&db) += k*Exp_msk1; |
1118 | 0 | } |
1119 | 0 | return dval(&da) / dval(&db); |
1120 | 0 | } |
1121 | | |
1122 | | static const double |
1123 | | tens[] = { |
1124 | | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
1125 | | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
1126 | | 1e20, 1e21, 1e22 |
1127 | | }; |
1128 | | |
1129 | | static const double |
1130 | | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
1131 | | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
1132 | | 9007199254740992.*9007199254740992.e-256 |
1133 | | /* = 2^106 * 1e-256 */ |
1134 | | }; |
1135 | | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1136 | | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1137 | 0 | #define Scale_Bit 0x10 |
1138 | 0 | #define n_bigtens 5 |
1139 | | |
1140 | | #define ULbits 32 |
1141 | | #define kshift 5 |
1142 | 0 | #define kmask 31 |
1143 | | |
1144 | | |
1145 | | static int |
1146 | | dshift(Bigint *b, int p2) |
1147 | 0 | { |
1148 | 0 | int rv = hi0bits(b->x[b->wds-1]) - 4; |
1149 | 0 | if (p2 > 0) |
1150 | 0 | rv -= p2; |
1151 | 0 | return rv & kmask; |
1152 | 0 | } |
1153 | | |
1154 | | /* special case of Bigint division. The quotient is always in the range 0 <= |
1155 | | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
1156 | | bits (28--31) are zero and bit 27 is set. */ |
1157 | | |
1158 | | static int |
1159 | | quorem(Bigint *b, Bigint *S) |
1160 | 0 | { |
1161 | 0 | int n; |
1162 | 0 | ULong *bx, *bxe, q, *sx, *sxe; |
1163 | 0 | ULLong borrow, carry, y, ys; |
1164 | |
|
1165 | 0 | n = S->wds; |
1166 | | #ifdef DEBUG |
1167 | | /*debug*/ if (b->wds > n) |
1168 | | /*debug*/ Bug("oversize b in quorem"); |
1169 | | #endif |
1170 | 0 | if (b->wds < n) |
1171 | 0 | return 0; |
1172 | 0 | sx = S->x; |
1173 | 0 | sxe = sx + --n; |
1174 | 0 | bx = b->x; |
1175 | 0 | bxe = bx + n; |
1176 | 0 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
1177 | | #ifdef DEBUG |
1178 | | /*debug*/ if (q > 9) |
1179 | | /*debug*/ Bug("oversized quotient in quorem"); |
1180 | | #endif |
1181 | 0 | if (q) { |
1182 | 0 | borrow = 0; |
1183 | 0 | carry = 0; |
1184 | 0 | do { |
1185 | 0 | ys = *sx++ * (ULLong)q + carry; |
1186 | 0 | carry = ys >> 32; |
1187 | 0 | y = *bx - (ys & FFFFFFFF) - borrow; |
1188 | 0 | borrow = y >> 32 & (ULong)1; |
1189 | 0 | *bx++ = (ULong)(y & FFFFFFFF); |
1190 | 0 | } |
1191 | 0 | while(sx <= sxe); |
1192 | 0 | if (!*bxe) { |
1193 | 0 | bx = b->x; |
1194 | 0 | while(--bxe > bx && !*bxe) |
1195 | 0 | --n; |
1196 | 0 | b->wds = n; |
1197 | 0 | } |
1198 | 0 | } |
1199 | 0 | if (cmp(b, S) >= 0) { |
1200 | 0 | q++; |
1201 | 0 | borrow = 0; |
1202 | 0 | carry = 0; |
1203 | 0 | bx = b->x; |
1204 | 0 | sx = S->x; |
1205 | 0 | do { |
1206 | 0 | ys = *sx++ + carry; |
1207 | 0 | carry = ys >> 32; |
1208 | 0 | y = *bx - (ys & FFFFFFFF) - borrow; |
1209 | 0 | borrow = y >> 32 & (ULong)1; |
1210 | 0 | *bx++ = (ULong)(y & FFFFFFFF); |
1211 | 0 | } |
1212 | 0 | while(sx <= sxe); |
1213 | 0 | bx = b->x; |
1214 | 0 | bxe = bx + n; |
1215 | 0 | if (!*bxe) { |
1216 | 0 | while(--bxe > bx && !*bxe) |
1217 | 0 | --n; |
1218 | 0 | b->wds = n; |
1219 | 0 | } |
1220 | 0 | } |
1221 | 0 | return q; |
1222 | 0 | } |
1223 | | |
1224 | | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. |
1225 | | |
1226 | | Assuming that x is finite and nonnegative (positive zero is fine |
1227 | | here) and x / 2^bc.scale is exactly representable as a double, |
1228 | | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ |
1229 | | |
1230 | | static double |
1231 | | sulp(U *x, BCinfo *bc) |
1232 | 0 | { |
1233 | 0 | U u; |
1234 | |
|
1235 | 0 | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { |
1236 | | /* rv/2^bc->scale is subnormal */ |
1237 | 0 | word0(&u) = (P+2)*Exp_msk1; |
1238 | 0 | word1(&u) = 0; |
1239 | 0 | return u.d; |
1240 | 0 | } |
1241 | 0 | else { |
1242 | 0 | assert(word0(x) || word1(x)); /* x != 0.0 */ |
1243 | 0 | return ulp(x); |
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | | /* The bigcomp function handles some hard cases for strtod, for inputs |
1248 | | with more than STRTOD_DIGLIM digits. It's called once an initial |
1249 | | estimate for the double corresponding to the input string has |
1250 | | already been obtained by the code in _Py_dg_strtod. |
1251 | | |
1252 | | The bigcomp function is only called after _Py_dg_strtod has found a |
1253 | | double value rv such that either rv or rv + 1ulp represents the |
1254 | | correctly rounded value corresponding to the original string. It |
1255 | | determines which of these two values is the correct one by |
1256 | | computing the decimal digits of rv + 0.5ulp and comparing them with |
1257 | | the corresponding digits of s0. |
1258 | | |
1259 | | In the following, write dv for the absolute value of the number represented |
1260 | | by the input string. |
1261 | | |
1262 | | Inputs: |
1263 | | |
1264 | | s0 points to the first significant digit of the input string. |
1265 | | |
1266 | | rv is a (possibly scaled) estimate for the closest double value to the |
1267 | | value represented by the original input to _Py_dg_strtod. If |
1268 | | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to |
1269 | | the input value. |
1270 | | |
1271 | | bc is a struct containing information gathered during the parsing and |
1272 | | estimation steps of _Py_dg_strtod. Description of fields follows: |
1273 | | |
1274 | | bc->e0 gives the exponent of the input value, such that dv = (integer |
1275 | | given by the bd->nd digits of s0) * 10**e0 |
1276 | | |
1277 | | bc->nd gives the total number of significant digits of s0. It will |
1278 | | be at least 1. |
1279 | | |
1280 | | bc->nd0 gives the number of significant digits of s0 before the |
1281 | | decimal separator. If there's no decimal separator, bc->nd0 == |
1282 | | bc->nd. |
1283 | | |
1284 | | bc->scale is the value used to scale rv to avoid doing arithmetic with |
1285 | | subnormal values. It's either 0 or 2*P (=106). |
1286 | | |
1287 | | Outputs: |
1288 | | |
1289 | | On successful exit, rv/2^(bc->scale) is the closest double to dv. |
1290 | | |
1291 | | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ |
1292 | | |
1293 | | static int |
1294 | | bigcomp(U *rv, const char *s0, BCinfo *bc) |
1295 | 0 | { |
1296 | 0 | Bigint *b, *d; |
1297 | 0 | int b2, d2, dd, i, nd, nd0, odd, p2, p5; |
1298 | |
|
1299 | 0 | nd = bc->nd; |
1300 | 0 | nd0 = bc->nd0; |
1301 | 0 | p5 = nd + bc->e0; |
1302 | 0 | b = sd2b(rv, bc->scale, &p2); |
1303 | 0 | if (b == NULL) |
1304 | 0 | return -1; |
1305 | | |
1306 | | /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway |
1307 | | case, this is used for round to even. */ |
1308 | 0 | odd = b->x[0] & 1; |
1309 | | |
1310 | | /* left shift b by 1 bit and or a 1 into the least significant bit; |
1311 | | this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ |
1312 | 0 | b = lshift(b, 1); |
1313 | 0 | if (b == NULL) |
1314 | 0 | return -1; |
1315 | 0 | b->x[0] |= 1; |
1316 | 0 | p2--; |
1317 | |
|
1318 | 0 | p2 -= p5; |
1319 | 0 | d = i2b(1); |
1320 | 0 | if (d == NULL) { |
1321 | 0 | Bfree(b); |
1322 | 0 | return -1; |
1323 | 0 | } |
1324 | | /* Arrange for convenient computation of quotients: |
1325 | | * shift left if necessary so divisor has 4 leading 0 bits. |
1326 | | */ |
1327 | 0 | if (p5 > 0) { |
1328 | 0 | d = pow5mult(d, p5); |
1329 | 0 | if (d == NULL) { |
1330 | 0 | Bfree(b); |
1331 | 0 | return -1; |
1332 | 0 | } |
1333 | 0 | } |
1334 | 0 | else if (p5 < 0) { |
1335 | 0 | b = pow5mult(b, -p5); |
1336 | 0 | if (b == NULL) { |
1337 | 0 | Bfree(d); |
1338 | 0 | return -1; |
1339 | 0 | } |
1340 | 0 | } |
1341 | 0 | if (p2 > 0) { |
1342 | 0 | b2 = p2; |
1343 | 0 | d2 = 0; |
1344 | 0 | } |
1345 | 0 | else { |
1346 | 0 | b2 = 0; |
1347 | 0 | d2 = -p2; |
1348 | 0 | } |
1349 | 0 | i = dshift(d, d2); |
1350 | 0 | if ((b2 += i) > 0) { |
1351 | 0 | b = lshift(b, b2); |
1352 | 0 | if (b == NULL) { |
1353 | 0 | Bfree(d); |
1354 | 0 | return -1; |
1355 | 0 | } |
1356 | 0 | } |
1357 | 0 | if ((d2 += i) > 0) { |
1358 | 0 | d = lshift(d, d2); |
1359 | 0 | if (d == NULL) { |
1360 | 0 | Bfree(b); |
1361 | 0 | return -1; |
1362 | 0 | } |
1363 | 0 | } |
1364 | | |
1365 | | /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == |
1366 | | * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing |
1367 | | * a number in the range [0.1, 1). */ |
1368 | 0 | if (cmp(b, d) >= 0) |
1369 | | /* b/d >= 1 */ |
1370 | 0 | dd = -1; |
1371 | 0 | else { |
1372 | 0 | i = 0; |
1373 | 0 | for(;;) { |
1374 | 0 | b = multadd(b, 10, 0); |
1375 | 0 | if (b == NULL) { |
1376 | 0 | Bfree(d); |
1377 | 0 | return -1; |
1378 | 0 | } |
1379 | 0 | dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); |
1380 | 0 | i++; |
1381 | |
|
1382 | 0 | if (dd) |
1383 | 0 | break; |
1384 | 0 | if (!b->x[0] && b->wds == 1) { |
1385 | | /* b/d == 0 */ |
1386 | 0 | dd = i < nd; |
1387 | 0 | break; |
1388 | 0 | } |
1389 | 0 | if (!(i < nd)) { |
1390 | | /* b/d != 0, but digits of s0 exhausted */ |
1391 | 0 | dd = -1; |
1392 | 0 | break; |
1393 | 0 | } |
1394 | 0 | } |
1395 | 0 | } |
1396 | 0 | Bfree(b); |
1397 | 0 | Bfree(d); |
1398 | 0 | if (dd > 0 || (dd == 0 && odd)) |
1399 | 0 | dval(rv) += sulp(rv, bc); |
1400 | 0 | return 0; |
1401 | 0 | } |
1402 | | |
1403 | | /* Return a 'standard' NaN value. |
1404 | | |
1405 | | There are exactly two quiet NaNs that don't arise by 'quieting' signaling |
1406 | | NaNs (see IEEE 754-2008, section 6.2.1). If sign == 0, return the one whose |
1407 | | sign bit is cleared. Otherwise, return the one whose sign bit is set. |
1408 | | */ |
1409 | | |
1410 | | double |
1411 | | _Py_dg_stdnan(int sign) |
1412 | 0 | { |
1413 | 0 | U rv; |
1414 | 0 | word0(&rv) = NAN_WORD0; |
1415 | 0 | word1(&rv) = NAN_WORD1; |
1416 | 0 | if (sign) |
1417 | 0 | word0(&rv) |= Sign_bit; |
1418 | 0 | return dval(&rv); |
1419 | 0 | } |
1420 | | |
1421 | | /* Return positive or negative infinity, according to the given sign (0 for |
1422 | | * positive infinity, 1 for negative infinity). */ |
1423 | | |
1424 | | double |
1425 | | _Py_dg_infinity(int sign) |
1426 | 0 | { |
1427 | 0 | U rv; |
1428 | 0 | word0(&rv) = POSINF_WORD0; |
1429 | 0 | word1(&rv) = POSINF_WORD1; |
1430 | 0 | return sign ? -dval(&rv) : dval(&rv); |
1431 | 0 | } |
1432 | | |
1433 | | double |
1434 | | _Py_dg_strtod(const char *s00, char **se) |
1435 | 2 | { |
1436 | 2 | int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; |
1437 | 2 | int esign, i, j, k, lz, nd, nd0, odd, sign; |
1438 | 2 | const char *s, *s0, *s1; |
1439 | 2 | double aadj, aadj1; |
1440 | 2 | U aadj2, adj, rv, rv0; |
1441 | 2 | ULong y, z, abs_exp; |
1442 | 2 | Long L; |
1443 | 2 | BCinfo bc; |
1444 | 2 | Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL; |
1445 | 2 | size_t ndigits, fraclen; |
1446 | 2 | double result; |
1447 | | |
1448 | 2 | dval(&rv) = 0.; |
1449 | | |
1450 | | /* Start parsing. */ |
1451 | 2 | c = *(s = s00); |
1452 | | |
1453 | | /* Parse optional sign, if present. */ |
1454 | 2 | sign = 0; |
1455 | 2 | switch (c) { |
1456 | 0 | case '-': |
1457 | 0 | sign = 1; |
1458 | | /* fall through */ |
1459 | 0 | case '+': |
1460 | 0 | c = *++s; |
1461 | 2 | } |
1462 | | |
1463 | | /* Skip leading zeros: lz is true iff there were leading zeros. */ |
1464 | 2 | s1 = s; |
1465 | 4 | while (c == '0') |
1466 | 2 | c = *++s; |
1467 | 2 | lz = s != s1; |
1468 | | |
1469 | | /* Point s0 at the first nonzero digit (if any). fraclen will be the |
1470 | | number of digits between the decimal point and the end of the |
1471 | | digit string. ndigits will be the total number of digits ignoring |
1472 | | leading zeros. */ |
1473 | 2 | s0 = s1 = s; |
1474 | 2 | while ('0' <= c && c <= '9') |
1475 | 0 | c = *++s; |
1476 | 2 | ndigits = s - s1; |
1477 | 2 | fraclen = 0; |
1478 | | |
1479 | | /* Parse decimal point and following digits. */ |
1480 | 2 | if (c == '.') { |
1481 | 2 | c = *++s; |
1482 | 2 | if (!ndigits) { |
1483 | 2 | s1 = s; |
1484 | 2 | while (c == '0') |
1485 | 0 | c = *++s; |
1486 | 2 | lz = lz || s != s1; |
1487 | 2 | fraclen += (s - s1); |
1488 | 2 | s0 = s; |
1489 | 2 | } |
1490 | 2 | s1 = s; |
1491 | 4 | while ('0' <= c && c <= '9') |
1492 | 2 | c = *++s; |
1493 | 2 | ndigits += s - s1; |
1494 | 2 | fraclen += s - s1; |
1495 | 2 | } |
1496 | | |
1497 | | /* Now lz is true if and only if there were leading zero digits, and |
1498 | | ndigits gives the total number of digits ignoring leading zeros. A |
1499 | | valid input must have at least one digit. */ |
1500 | 2 | if (!ndigits && !lz) { |
1501 | 0 | if (se) |
1502 | 0 | *se = (char *)s00; |
1503 | 0 | goto parse_error; |
1504 | 0 | } |
1505 | | |
1506 | | /* Range check ndigits and fraclen to make sure that they, and values |
1507 | | computed with them, can safely fit in an int. */ |
1508 | 2 | if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { |
1509 | 0 | if (se) |
1510 | 0 | *se = (char *)s00; |
1511 | 0 | goto parse_error; |
1512 | 0 | } |
1513 | 2 | nd = (int)ndigits; |
1514 | 2 | nd0 = (int)ndigits - (int)fraclen; |
1515 | | |
1516 | | /* Parse exponent. */ |
1517 | 2 | e = 0; |
1518 | 2 | if (c == 'e' || c == 'E') { |
1519 | 0 | s00 = s; |
1520 | 0 | c = *++s; |
1521 | | |
1522 | | /* Exponent sign. */ |
1523 | 0 | esign = 0; |
1524 | 0 | switch (c) { |
1525 | 0 | case '-': |
1526 | 0 | esign = 1; |
1527 | | /* fall through */ |
1528 | 0 | case '+': |
1529 | 0 | c = *++s; |
1530 | 0 | } |
1531 | | |
1532 | | /* Skip zeros. lz is true iff there are leading zeros. */ |
1533 | 0 | s1 = s; |
1534 | 0 | while (c == '0') |
1535 | 0 | c = *++s; |
1536 | 0 | lz = s != s1; |
1537 | | |
1538 | | /* Get absolute value of the exponent. */ |
1539 | 0 | s1 = s; |
1540 | 0 | abs_exp = 0; |
1541 | 0 | while ('0' <= c && c <= '9') { |
1542 | 0 | abs_exp = 10*abs_exp + (c - '0'); |
1543 | 0 | c = *++s; |
1544 | 0 | } |
1545 | | |
1546 | | /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if |
1547 | | there are at most 9 significant exponent digits then overflow is |
1548 | | impossible. */ |
1549 | 0 | if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) |
1550 | 0 | e = (int)MAX_ABS_EXP; |
1551 | 0 | else |
1552 | 0 | e = (int)abs_exp; |
1553 | 0 | if (esign) |
1554 | 0 | e = -e; |
1555 | | |
1556 | | /* A valid exponent must have at least one digit. */ |
1557 | 0 | if (s == s1 && !lz) |
1558 | 0 | s = s00; |
1559 | 0 | } |
1560 | | |
1561 | | /* Adjust exponent to take into account position of the point. */ |
1562 | 2 | e -= nd - nd0; |
1563 | 2 | if (nd0 <= 0) |
1564 | 2 | nd0 = nd; |
1565 | | |
1566 | | /* Finished parsing. Set se to indicate how far we parsed */ |
1567 | 2 | if (se) |
1568 | 2 | *se = (char *)s; |
1569 | | |
1570 | | /* If all digits were zero, exit with return value +-0.0. Otherwise, |
1571 | | strip trailing zeros: scan back until we hit a nonzero digit. */ |
1572 | 2 | if (!nd) |
1573 | 0 | goto ret; |
1574 | 2 | for (i = nd; i > 0; ) { |
1575 | 2 | --i; |
1576 | 2 | if (s0[i < nd0 ? i : i+1] != '0') { |
1577 | 2 | ++i; |
1578 | 2 | break; |
1579 | 2 | } |
1580 | 2 | } |
1581 | 2 | e += nd - i; |
1582 | 2 | nd = i; |
1583 | 2 | if (nd0 > nd) |
1584 | 0 | nd0 = nd; |
1585 | | |
1586 | | /* Summary of parsing results. After parsing, and dealing with zero |
1587 | | * inputs, we have values s0, nd0, nd, e, sign, where: |
1588 | | * |
1589 | | * - s0 points to the first significant digit of the input string |
1590 | | * |
1591 | | * - nd is the total number of significant digits (here, and |
1592 | | * below, 'significant digits' means the set of digits of the |
1593 | | * significand of the input that remain after ignoring leading |
1594 | | * and trailing zeros). |
1595 | | * |
1596 | | * - nd0 indicates the position of the decimal point, if present; it |
1597 | | * satisfies 1 <= nd0 <= nd. The nd significant digits are in |
1598 | | * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice |
1599 | | * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if |
1600 | | * nd0 == nd, then s0[nd0] could be any non-digit character.) |
1601 | | * |
1602 | | * - e is the adjusted exponent: the absolute value of the number |
1603 | | * represented by the original input string is n * 10**e, where |
1604 | | * n is the integer represented by the concatenation of |
1605 | | * s0[0:nd0] and s0[nd0+1:nd+1] |
1606 | | * |
1607 | | * - sign gives the sign of the input: 1 for negative, 0 for positive |
1608 | | * |
1609 | | * - the first and last significant digits are nonzero |
1610 | | */ |
1611 | | |
1612 | | /* put first DBL_DIG+1 digits into integer y and z. |
1613 | | * |
1614 | | * - y contains the value represented by the first min(9, nd) |
1615 | | * significant digits |
1616 | | * |
1617 | | * - if nd > 9, z contains the value represented by significant digits |
1618 | | * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z |
1619 | | * gives the value represented by the first min(16, nd) sig. digits. |
1620 | | */ |
1621 | | |
1622 | 2 | bc.e0 = e1 = e; |
1623 | 2 | y = z = 0; |
1624 | 4 | for (i = 0; i < nd; i++) { |
1625 | 2 | if (i < 9) |
1626 | 2 | y = 10*y + s0[i < nd0 ? i : i+1] - '0'; |
1627 | 0 | else if (i < DBL_DIG+1) |
1628 | 0 | z = 10*z + s0[i < nd0 ? i : i+1] - '0'; |
1629 | 0 | else |
1630 | 0 | break; |
1631 | 2 | } |
1632 | | |
1633 | 2 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
1634 | 2 | dval(&rv) = y; |
1635 | 2 | if (k > 9) { |
1636 | 0 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
1637 | 0 | } |
1638 | 2 | if (nd <= DBL_DIG |
1639 | 2 | && Flt_Rounds == 1 |
1640 | 2 | ) { |
1641 | 2 | if (!e) |
1642 | 0 | goto ret; |
1643 | 2 | if (e > 0) { |
1644 | 0 | if (e <= Ten_pmax) { |
1645 | 0 | dval(&rv) *= tens[e]; |
1646 | 0 | goto ret; |
1647 | 0 | } |
1648 | 0 | i = DBL_DIG - nd; |
1649 | 0 | if (e <= Ten_pmax + i) { |
1650 | | /* A fancier test would sometimes let us do |
1651 | | * this for larger i values. |
1652 | | */ |
1653 | 0 | e -= i; |
1654 | 0 | dval(&rv) *= tens[i]; |
1655 | 0 | dval(&rv) *= tens[e]; |
1656 | 0 | goto ret; |
1657 | 0 | } |
1658 | 0 | } |
1659 | 2 | else if (e >= -Ten_pmax) { |
1660 | 2 | dval(&rv) /= tens[-e]; |
1661 | 2 | goto ret; |
1662 | 2 | } |
1663 | 2 | } |
1664 | 0 | e1 += nd - k; |
1665 | |
|
1666 | 0 | bc.scale = 0; |
1667 | | |
1668 | | /* Get starting approximation = rv * 10**e1 */ |
1669 | |
|
1670 | 0 | if (e1 > 0) { |
1671 | 0 | if ((i = e1 & 15)) |
1672 | 0 | dval(&rv) *= tens[i]; |
1673 | 0 | if (e1 &= ~15) { |
1674 | 0 | if (e1 > DBL_MAX_10_EXP) |
1675 | 0 | goto ovfl; |
1676 | 0 | e1 >>= 4; |
1677 | 0 | for(j = 0; e1 > 1; j++, e1 >>= 1) |
1678 | 0 | if (e1 & 1) |
1679 | 0 | dval(&rv) *= bigtens[j]; |
1680 | | /* The last multiplication could overflow. */ |
1681 | 0 | word0(&rv) -= P*Exp_msk1; |
1682 | 0 | dval(&rv) *= bigtens[j]; |
1683 | 0 | if ((z = word0(&rv) & Exp_mask) |
1684 | 0 | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
1685 | 0 | goto ovfl; |
1686 | 0 | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
1687 | | /* set to largest number */ |
1688 | | /* (Can't trust DBL_MAX) */ |
1689 | 0 | word0(&rv) = Big0; |
1690 | 0 | word1(&rv) = Big1; |
1691 | 0 | } |
1692 | 0 | else |
1693 | 0 | word0(&rv) += P*Exp_msk1; |
1694 | 0 | } |
1695 | 0 | } |
1696 | 0 | else if (e1 < 0) { |
1697 | | /* The input decimal value lies in [10**e1, 10**(e1+16)). |
1698 | | |
1699 | | If e1 <= -512, underflow immediately. |
1700 | | If e1 <= -256, set bc.scale to 2*P. |
1701 | | |
1702 | | So for input value < 1e-256, bc.scale is always set; |
1703 | | for input value >= 1e-240, bc.scale is never set. |
1704 | | For input values in [1e-256, 1e-240), bc.scale may or may |
1705 | | not be set. */ |
1706 | |
|
1707 | 0 | e1 = -e1; |
1708 | 0 | if ((i = e1 & 15)) |
1709 | 0 | dval(&rv) /= tens[i]; |
1710 | 0 | if (e1 >>= 4) { |
1711 | 0 | if (e1 >= 1 << n_bigtens) |
1712 | 0 | goto undfl; |
1713 | 0 | if (e1 & Scale_Bit) |
1714 | 0 | bc.scale = 2*P; |
1715 | 0 | for(j = 0; e1 > 0; j++, e1 >>= 1) |
1716 | 0 | if (e1 & 1) |
1717 | 0 | dval(&rv) *= tinytens[j]; |
1718 | 0 | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
1719 | 0 | >> Exp_shift)) > 0) { |
1720 | | /* scaled rv is denormal; clear j low bits */ |
1721 | 0 | if (j >= 32) { |
1722 | 0 | word1(&rv) = 0; |
1723 | 0 | if (j >= 53) |
1724 | 0 | word0(&rv) = (P+2)*Exp_msk1; |
1725 | 0 | else |
1726 | 0 | word0(&rv) &= 0xffffffff << (j-32); |
1727 | 0 | } |
1728 | 0 | else |
1729 | 0 | word1(&rv) &= 0xffffffff << j; |
1730 | 0 | } |
1731 | 0 | if (!dval(&rv)) |
1732 | 0 | goto undfl; |
1733 | 0 | } |
1734 | 0 | } |
1735 | | |
1736 | | /* Now the hard part -- adjusting rv to the correct value.*/ |
1737 | | |
1738 | | /* Put digits into bd: true value = bd * 10^e */ |
1739 | | |
1740 | 0 | bc.nd = nd; |
1741 | 0 | bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ |
1742 | | /* to silence an erroneous warning about bc.nd0 */ |
1743 | | /* possibly not being initialized. */ |
1744 | 0 | if (nd > STRTOD_DIGLIM) { |
1745 | | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ |
1746 | | /* minimum number of decimal digits to distinguish double values */ |
1747 | | /* in IEEE arithmetic. */ |
1748 | | |
1749 | | /* Truncate input to 18 significant digits, then discard any trailing |
1750 | | zeros on the result by updating nd, nd0, e and y suitably. (There's |
1751 | | no need to update z; it's not reused beyond this point.) */ |
1752 | 0 | for (i = 18; i > 0; ) { |
1753 | | /* scan back until we hit a nonzero digit. significant digit 'i' |
1754 | | is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ |
1755 | 0 | --i; |
1756 | 0 | if (s0[i < nd0 ? i : i+1] != '0') { |
1757 | 0 | ++i; |
1758 | 0 | break; |
1759 | 0 | } |
1760 | 0 | } |
1761 | 0 | e += nd - i; |
1762 | 0 | nd = i; |
1763 | 0 | if (nd0 > nd) |
1764 | 0 | nd0 = nd; |
1765 | 0 | if (nd < 9) { /* must recompute y */ |
1766 | 0 | y = 0; |
1767 | 0 | for(i = 0; i < nd0; ++i) |
1768 | 0 | y = 10*y + s0[i] - '0'; |
1769 | 0 | for(; i < nd; ++i) |
1770 | 0 | y = 10*y + s0[i+1] - '0'; |
1771 | 0 | } |
1772 | 0 | } |
1773 | 0 | bd0 = s2b(s0, nd0, nd, y); |
1774 | 0 | if (bd0 == NULL) |
1775 | 0 | goto failed_malloc; |
1776 | | |
1777 | | /* Notation for the comments below. Write: |
1778 | | |
1779 | | - dv for the absolute value of the number represented by the original |
1780 | | decimal input string. |
1781 | | |
1782 | | - if we've truncated dv, write tdv for the truncated value. |
1783 | | Otherwise, set tdv == dv. |
1784 | | |
1785 | | - srv for the quantity rv/2^bc.scale; so srv is the current binary |
1786 | | approximation to tdv (and dv). It should be exactly representable |
1787 | | in an IEEE 754 double. |
1788 | | */ |
1789 | | |
1790 | 0 | for(;;) { |
1791 | | |
1792 | | /* This is the main correction loop for _Py_dg_strtod. |
1793 | | |
1794 | | We've got a decimal value tdv, and a floating-point approximation |
1795 | | srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is |
1796 | | close enough (i.e., within 0.5 ulps) to tdv, and to compute a new |
1797 | | approximation if not. |
1798 | | |
1799 | | To determine whether srv is close enough to tdv, compute integers |
1800 | | bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) |
1801 | | respectively, and then use integer arithmetic to determine whether |
1802 | | |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). |
1803 | | */ |
1804 | |
|
1805 | 0 | bd = Balloc(bd0->k); |
1806 | 0 | if (bd == NULL) { |
1807 | 0 | goto failed_malloc; |
1808 | 0 | } |
1809 | 0 | Bcopy(bd, bd0); |
1810 | 0 | bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */ |
1811 | 0 | if (bb == NULL) { |
1812 | 0 | goto failed_malloc; |
1813 | 0 | } |
1814 | | /* Record whether lsb of bb is odd, in case we need this |
1815 | | for the round-to-even step later. */ |
1816 | 0 | odd = bb->x[0] & 1; |
1817 | | |
1818 | | /* tdv = bd * 10**e; srv = bb * 2**bbe */ |
1819 | 0 | bs = i2b(1); |
1820 | 0 | if (bs == NULL) { |
1821 | 0 | goto failed_malloc; |
1822 | 0 | } |
1823 | | |
1824 | 0 | if (e >= 0) { |
1825 | 0 | bb2 = bb5 = 0; |
1826 | 0 | bd2 = bd5 = e; |
1827 | 0 | } |
1828 | 0 | else { |
1829 | 0 | bb2 = bb5 = -e; |
1830 | 0 | bd2 = bd5 = 0; |
1831 | 0 | } |
1832 | 0 | if (bbe >= 0) |
1833 | 0 | bb2 += bbe; |
1834 | 0 | else |
1835 | 0 | bd2 -= bbe; |
1836 | 0 | bs2 = bb2; |
1837 | 0 | bb2++; |
1838 | 0 | bd2++; |
1839 | | |
1840 | | /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, |
1841 | | and bs == 1, so: |
1842 | | |
1843 | | tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) |
1844 | | srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) |
1845 | | 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) |
1846 | | |
1847 | | It follows that: |
1848 | | |
1849 | | M * tdv = bd * 2**bd2 * 5**bd5 |
1850 | | M * srv = bb * 2**bb2 * 5**bb5 |
1851 | | M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 |
1852 | | |
1853 | | for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but |
1854 | | this fact is not needed below.) |
1855 | | */ |
1856 | | |
1857 | | /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ |
1858 | 0 | i = bb2 < bd2 ? bb2 : bd2; |
1859 | 0 | if (i > bs2) |
1860 | 0 | i = bs2; |
1861 | 0 | if (i > 0) { |
1862 | 0 | bb2 -= i; |
1863 | 0 | bd2 -= i; |
1864 | 0 | bs2 -= i; |
1865 | 0 | } |
1866 | | |
1867 | | /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ |
1868 | 0 | if (bb5 > 0) { |
1869 | 0 | bs = pow5mult(bs, bb5); |
1870 | 0 | if (bs == NULL) { |
1871 | 0 | goto failed_malloc; |
1872 | 0 | } |
1873 | 0 | Bigint *bb1 = mult(bs, bb); |
1874 | 0 | Bfree(bb); |
1875 | 0 | bb = bb1; |
1876 | 0 | if (bb == NULL) { |
1877 | 0 | goto failed_malloc; |
1878 | 0 | } |
1879 | 0 | } |
1880 | 0 | if (bb2 > 0) { |
1881 | 0 | bb = lshift(bb, bb2); |
1882 | 0 | if (bb == NULL) { |
1883 | 0 | goto failed_malloc; |
1884 | 0 | } |
1885 | 0 | } |
1886 | 0 | if (bd5 > 0) { |
1887 | 0 | bd = pow5mult(bd, bd5); |
1888 | 0 | if (bd == NULL) { |
1889 | 0 | goto failed_malloc; |
1890 | 0 | } |
1891 | 0 | } |
1892 | 0 | if (bd2 > 0) { |
1893 | 0 | bd = lshift(bd, bd2); |
1894 | 0 | if (bd == NULL) { |
1895 | 0 | goto failed_malloc; |
1896 | 0 | } |
1897 | 0 | } |
1898 | 0 | if (bs2 > 0) { |
1899 | 0 | bs = lshift(bs, bs2); |
1900 | 0 | if (bs == NULL) { |
1901 | 0 | goto failed_malloc; |
1902 | 0 | } |
1903 | 0 | } |
1904 | | |
1905 | | /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), |
1906 | | respectively. Compute the difference |tdv - srv|, and compare |
1907 | | with 0.5 ulp(srv). */ |
1908 | | |
1909 | 0 | delta = diff(bb, bd); |
1910 | 0 | if (delta == NULL) { |
1911 | 0 | goto failed_malloc; |
1912 | 0 | } |
1913 | 0 | dsign = delta->sign; |
1914 | 0 | delta->sign = 0; |
1915 | 0 | i = cmp(delta, bs); |
1916 | 0 | if (bc.nd > nd && i <= 0) { |
1917 | 0 | if (dsign) |
1918 | 0 | break; /* Must use bigcomp(). */ |
1919 | | |
1920 | | /* Here rv overestimates the truncated decimal value by at most |
1921 | | 0.5 ulp(rv). Hence rv either overestimates the true decimal |
1922 | | value by <= 0.5 ulp(rv), or underestimates it by some small |
1923 | | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of |
1924 | | the true decimal value, so it's possible to exit. |
1925 | | |
1926 | | Exception: if scaled rv is a normal exact power of 2, but not |
1927 | | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the |
1928 | | next double, so the correctly rounded result is either rv - 0.5 |
1929 | | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ |
1930 | | |
1931 | 0 | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { |
1932 | | /* rv can't be 0, since it's an overestimate for some |
1933 | | nonzero value. So rv is a normal power of 2. */ |
1934 | 0 | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; |
1935 | | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if |
1936 | | rv / 2^bc.scale >= 2^-1021. */ |
1937 | 0 | if (j - bc.scale >= 2) { |
1938 | 0 | dval(&rv) -= 0.5 * sulp(&rv, &bc); |
1939 | 0 | break; /* Use bigcomp. */ |
1940 | 0 | } |
1941 | 0 | } |
1942 | | |
1943 | 0 | { |
1944 | 0 | bc.nd = nd; |
1945 | 0 | i = -1; /* Discarded digits make delta smaller. */ |
1946 | 0 | } |
1947 | 0 | } |
1948 | | |
1949 | 0 | if (i < 0) { |
1950 | | /* Error is less than half an ulp -- check for |
1951 | | * special case of mantissa a power of two. |
1952 | | */ |
1953 | 0 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
1954 | 0 | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
1955 | 0 | ) { |
1956 | 0 | break; |
1957 | 0 | } |
1958 | 0 | if (!delta->x[0] && delta->wds <= 1) { |
1959 | | /* exact result */ |
1960 | 0 | break; |
1961 | 0 | } |
1962 | 0 | delta = lshift(delta,Log2P); |
1963 | 0 | if (delta == NULL) { |
1964 | 0 | goto failed_malloc; |
1965 | 0 | } |
1966 | 0 | if (cmp(delta, bs) > 0) |
1967 | 0 | goto drop_down; |
1968 | 0 | break; |
1969 | 0 | } |
1970 | 0 | if (i == 0) { |
1971 | | /* exactly half-way between */ |
1972 | 0 | if (dsign) { |
1973 | 0 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
1974 | 0 | && word1(&rv) == ( |
1975 | 0 | (bc.scale && |
1976 | 0 | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
1977 | 0 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
1978 | 0 | 0xffffffff)) { |
1979 | | /*boundary case -- increment exponent*/ |
1980 | 0 | word0(&rv) = (word0(&rv) & Exp_mask) |
1981 | 0 | + Exp_msk1 |
1982 | 0 | ; |
1983 | 0 | word1(&rv) = 0; |
1984 | | /* dsign = 0; */ |
1985 | 0 | break; |
1986 | 0 | } |
1987 | 0 | } |
1988 | 0 | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
1989 | 0 | drop_down: |
1990 | | /* boundary case -- decrement exponent */ |
1991 | 0 | if (bc.scale) { |
1992 | 0 | L = word0(&rv) & Exp_mask; |
1993 | 0 | if (L <= (2*P+1)*Exp_msk1) { |
1994 | 0 | if (L > (P+2)*Exp_msk1) |
1995 | | /* round even ==> */ |
1996 | | /* accept rv */ |
1997 | 0 | break; |
1998 | | /* rv = smallest denormal */ |
1999 | 0 | if (bc.nd > nd) |
2000 | 0 | break; |
2001 | 0 | goto undfl; |
2002 | 0 | } |
2003 | 0 | } |
2004 | 0 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
2005 | 0 | word0(&rv) = L | Bndry_mask1; |
2006 | 0 | word1(&rv) = 0xffffffff; |
2007 | 0 | break; |
2008 | 0 | } |
2009 | 0 | if (!odd) |
2010 | 0 | break; |
2011 | 0 | if (dsign) |
2012 | 0 | dval(&rv) += sulp(&rv, &bc); |
2013 | 0 | else { |
2014 | 0 | dval(&rv) -= sulp(&rv, &bc); |
2015 | 0 | if (!dval(&rv)) { |
2016 | 0 | if (bc.nd >nd) |
2017 | 0 | break; |
2018 | 0 | goto undfl; |
2019 | 0 | } |
2020 | 0 | } |
2021 | | /* dsign = 1 - dsign; */ |
2022 | 0 | break; |
2023 | 0 | } |
2024 | 0 | if ((aadj = ratio(delta, bs)) <= 2.) { |
2025 | 0 | if (dsign) |
2026 | 0 | aadj = aadj1 = 1.; |
2027 | 0 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
2028 | 0 | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
2029 | 0 | if (bc.nd >nd) |
2030 | 0 | break; |
2031 | 0 | goto undfl; |
2032 | 0 | } |
2033 | 0 | aadj = 1.; |
2034 | 0 | aadj1 = -1.; |
2035 | 0 | } |
2036 | 0 | else { |
2037 | | /* special case -- power of FLT_RADIX to be */ |
2038 | | /* rounded down... */ |
2039 | |
|
2040 | 0 | if (aadj < 2./FLT_RADIX) |
2041 | 0 | aadj = 1./FLT_RADIX; |
2042 | 0 | else |
2043 | 0 | aadj *= 0.5; |
2044 | 0 | aadj1 = -aadj; |
2045 | 0 | } |
2046 | 0 | } |
2047 | 0 | else { |
2048 | 0 | aadj *= 0.5; |
2049 | 0 | aadj1 = dsign ? aadj : -aadj; |
2050 | 0 | if (Flt_Rounds == 0) |
2051 | 0 | aadj1 += 0.5; |
2052 | 0 | } |
2053 | 0 | y = word0(&rv) & Exp_mask; |
2054 | | |
2055 | | /* Check for overflow */ |
2056 | |
|
2057 | 0 | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
2058 | 0 | dval(&rv0) = dval(&rv); |
2059 | 0 | word0(&rv) -= P*Exp_msk1; |
2060 | 0 | adj.d = aadj1 * ulp(&rv); |
2061 | 0 | dval(&rv) += adj.d; |
2062 | 0 | if ((word0(&rv) & Exp_mask) >= |
2063 | 0 | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
2064 | 0 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { |
2065 | 0 | goto ovfl; |
2066 | 0 | } |
2067 | 0 | word0(&rv) = Big0; |
2068 | 0 | word1(&rv) = Big1; |
2069 | 0 | goto cont; |
2070 | 0 | } |
2071 | 0 | else |
2072 | 0 | word0(&rv) += P*Exp_msk1; |
2073 | 0 | } |
2074 | 0 | else { |
2075 | 0 | if (bc.scale && y <= 2*P*Exp_msk1) { |
2076 | 0 | if (aadj <= 0x7fffffff) { |
2077 | 0 | if ((z = (ULong)aadj) <= 0) |
2078 | 0 | z = 1; |
2079 | 0 | aadj = z; |
2080 | 0 | aadj1 = dsign ? aadj : -aadj; |
2081 | 0 | } |
2082 | 0 | dval(&aadj2) = aadj1; |
2083 | 0 | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
2084 | 0 | aadj1 = dval(&aadj2); |
2085 | 0 | } |
2086 | 0 | adj.d = aadj1 * ulp(&rv); |
2087 | 0 | dval(&rv) += adj.d; |
2088 | 0 | } |
2089 | 0 | z = word0(&rv) & Exp_mask; |
2090 | 0 | if (bc.nd == nd) { |
2091 | 0 | if (!bc.scale) |
2092 | 0 | if (y == z) { |
2093 | | /* Can we stop now? */ |
2094 | 0 | L = (Long)aadj; |
2095 | 0 | aadj -= L; |
2096 | | /* The tolerances below are conservative. */ |
2097 | 0 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
2098 | 0 | if (aadj < .4999999 || aadj > .5000001) |
2099 | 0 | break; |
2100 | 0 | } |
2101 | 0 | else if (aadj < .4999999/FLT_RADIX) |
2102 | 0 | break; |
2103 | 0 | } |
2104 | 0 | } |
2105 | 0 | cont: |
2106 | 0 | Bfree(bb); bb = NULL; |
2107 | 0 | Bfree(bd); bd = NULL; |
2108 | 0 | Bfree(bs); bs = NULL; |
2109 | 0 | Bfree(delta); delta = NULL; |
2110 | 0 | } |
2111 | 0 | if (bc.nd > nd) { |
2112 | 0 | error = bigcomp(&rv, s0, &bc); |
2113 | 0 | if (error) |
2114 | 0 | goto failed_malloc; |
2115 | 0 | } |
2116 | | |
2117 | 0 | if (bc.scale) { |
2118 | 0 | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
2119 | 0 | word1(&rv0) = 0; |
2120 | 0 | dval(&rv) *= dval(&rv0); |
2121 | 0 | } |
2122 | |
|
2123 | 2 | ret: |
2124 | 2 | result = sign ? -dval(&rv) : dval(&rv); |
2125 | 2 | goto done; |
2126 | | |
2127 | 0 | parse_error: |
2128 | 0 | result = 0.0; |
2129 | 0 | goto done; |
2130 | | |
2131 | 0 | failed_malloc: |
2132 | 0 | errno = ENOMEM; |
2133 | 0 | result = -1.0; |
2134 | 0 | goto done; |
2135 | | |
2136 | 0 | undfl: |
2137 | 0 | result = sign ? -0.0 : 0.0; |
2138 | 0 | goto done; |
2139 | | |
2140 | 0 | ovfl: |
2141 | 0 | errno = ERANGE; |
2142 | | /* Can't trust HUGE_VAL */ |
2143 | 0 | word0(&rv) = Exp_mask; |
2144 | 0 | word1(&rv) = 0; |
2145 | 0 | result = sign ? -dval(&rv) : dval(&rv); |
2146 | 0 | goto done; |
2147 | | |
2148 | 2 | done: |
2149 | 2 | Bfree(bb); |
2150 | 2 | Bfree(bd); |
2151 | 2 | Bfree(bs); |
2152 | 2 | Bfree(bd0); |
2153 | 2 | Bfree(delta); |
2154 | 2 | return result; |
2155 | |
|
2156 | 0 | } |
2157 | | |
2158 | | static char * |
2159 | | rv_alloc(int i) |
2160 | 0 | { |
2161 | 0 | int j, k, *r; |
2162 | |
|
2163 | 0 | j = sizeof(ULong); |
2164 | 0 | for(k = 0; |
2165 | 0 | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
2166 | 0 | j <<= 1) |
2167 | 0 | k++; |
2168 | 0 | r = (int*)Balloc(k); |
2169 | 0 | if (r == NULL) |
2170 | 0 | return NULL; |
2171 | 0 | *r = k; |
2172 | 0 | return (char *)(r+1); |
2173 | 0 | } |
2174 | | |
2175 | | static char * |
2176 | | nrv_alloc(const char *s, char **rve, int n) |
2177 | 0 | { |
2178 | 0 | char *rv, *t; |
2179 | |
|
2180 | 0 | rv = rv_alloc(n); |
2181 | 0 | if (rv == NULL) |
2182 | 0 | return NULL; |
2183 | 0 | t = rv; |
2184 | 0 | while((*t = *s++)) t++; |
2185 | 0 | if (rve) |
2186 | 0 | *rve = t; |
2187 | 0 | return rv; |
2188 | 0 | } |
2189 | | |
2190 | | /* freedtoa(s) must be used to free values s returned by dtoa |
2191 | | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
2192 | | * but for consistency with earlier versions of dtoa, it is optional |
2193 | | * when MULTIPLE_THREADS is not defined. |
2194 | | */ |
2195 | | |
2196 | | void |
2197 | | _Py_dg_freedtoa(char *s) |
2198 | 0 | { |
2199 | 0 | Bigint *b = (Bigint *)((int *)s - 1); |
2200 | 0 | b->maxwds = 1 << (b->k = *(int*)b); |
2201 | 0 | Bfree(b); |
2202 | 0 | } |
2203 | | |
2204 | | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
2205 | | * |
2206 | | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
2207 | | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
2208 | | * |
2209 | | * Modifications: |
2210 | | * 1. Rather than iterating, we use a simple numeric overestimate |
2211 | | * to determine k = floor(log10(d)). We scale relevant |
2212 | | * quantities using O(log2(k)) rather than O(k) multiplications. |
2213 | | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
2214 | | * try to generate digits strictly left to right. Instead, we |
2215 | | * compute with fewer bits and propagate the carry if necessary |
2216 | | * when rounding the final digit up. This is often faster. |
2217 | | * 3. Under the assumption that input will be rounded nearest, |
2218 | | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
2219 | | * That is, we allow equality in stopping tests when the |
2220 | | * round-nearest rule will give the same floating-point value |
2221 | | * as would satisfaction of the stopping test with strict |
2222 | | * inequality. |
2223 | | * 4. We remove common factors of powers of 2 from relevant |
2224 | | * quantities. |
2225 | | * 5. When converting floating-point integers less than 1e16, |
2226 | | * we use floating-point arithmetic rather than resorting |
2227 | | * to multiple-precision integers. |
2228 | | * 6. When asked to produce fewer than 15 digits, we first try |
2229 | | * to get by with floating-point arithmetic; we resort to |
2230 | | * multiple-precision integer arithmetic only if we cannot |
2231 | | * guarantee that the floating-point calculation has given |
2232 | | * the correctly rounded result. For k requested digits and |
2233 | | * "uniformly" distributed input, the probability is |
2234 | | * something like 10^(k-15) that we must resort to the Long |
2235 | | * calculation. |
2236 | | */ |
2237 | | |
2238 | | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
2239 | | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
2240 | | call to _Py_dg_freedtoa. */ |
2241 | | |
2242 | | char * |
2243 | | _Py_dg_dtoa(double dd, int mode, int ndigits, |
2244 | | int *decpt, int *sign, char **rve) |
2245 | 0 | { |
2246 | | /* Arguments ndigits, decpt, sign are similar to those |
2247 | | of ecvt and fcvt; trailing zeros are suppressed from |
2248 | | the returned string. If not null, *rve is set to point |
2249 | | to the end of the return value. If d is +-Infinity or NaN, |
2250 | | then *decpt is set to 9999. |
2251 | | |
2252 | | mode: |
2253 | | 0 ==> shortest string that yields d when read in |
2254 | | and rounded to nearest. |
2255 | | 1 ==> like 0, but with Steele & White stopping rule; |
2256 | | e.g. with IEEE P754 arithmetic , mode 0 gives |
2257 | | 1e23 whereas mode 1 gives 9.999999999999999e22. |
2258 | | 2 ==> max(1,ndigits) significant digits. This gives a |
2259 | | return value similar to that of ecvt, except |
2260 | | that trailing zeros are suppressed. |
2261 | | 3 ==> through ndigits past the decimal point. This |
2262 | | gives a return value similar to that from fcvt, |
2263 | | except that trailing zeros are suppressed, and |
2264 | | ndigits can be negative. |
2265 | | 4,5 ==> similar to 2 and 3, respectively, but (in |
2266 | | round-nearest mode) with the tests of mode 0 to |
2267 | | possibly return a shorter string that rounds to d. |
2268 | | With IEEE arithmetic and compilation with |
2269 | | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
2270 | | as modes 2 and 3 when FLT_ROUNDS != 1. |
2271 | | 6-9 ==> Debugging modes similar to mode - 4: don't try |
2272 | | fast floating-point estimate (if applicable). |
2273 | | |
2274 | | Values of mode other than 0-9 are treated as mode 0. |
2275 | | |
2276 | | Sufficient space is allocated to the return value |
2277 | | to hold the suppressed trailing zeros. |
2278 | | */ |
2279 | |
|
2280 | 0 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
2281 | 0 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
2282 | 0 | spec_case, try_quick; |
2283 | 0 | Long L; |
2284 | 0 | int denorm; |
2285 | 0 | ULong x; |
2286 | 0 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
2287 | 0 | U d2, eps, u; |
2288 | 0 | double ds; |
2289 | 0 | char *s, *s0; |
2290 | | |
2291 | | /* set pointers to NULL, to silence gcc compiler warnings and make |
2292 | | cleanup easier on error */ |
2293 | 0 | mlo = mhi = S = 0; |
2294 | 0 | s0 = 0; |
2295 | |
|
2296 | 0 | u.d = dd; |
2297 | 0 | if (word0(&u) & Sign_bit) { |
2298 | | /* set sign for everything, including 0's and NaNs */ |
2299 | 0 | *sign = 1; |
2300 | 0 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
2301 | 0 | } |
2302 | 0 | else |
2303 | 0 | *sign = 0; |
2304 | | |
2305 | | /* quick return for Infinities, NaNs and zeros */ |
2306 | 0 | if ((word0(&u) & Exp_mask) == Exp_mask) |
2307 | 0 | { |
2308 | | /* Infinity or NaN */ |
2309 | 0 | *decpt = 9999; |
2310 | 0 | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
2311 | 0 | return nrv_alloc("Infinity", rve, 8); |
2312 | 0 | return nrv_alloc("NaN", rve, 3); |
2313 | 0 | } |
2314 | 0 | if (!dval(&u)) { |
2315 | 0 | *decpt = 1; |
2316 | 0 | return nrv_alloc("0", rve, 1); |
2317 | 0 | } |
2318 | | |
2319 | | /* compute k = floor(log10(d)). The computation may leave k |
2320 | | one too large, but should never leave k too small. */ |
2321 | 0 | b = d2b(&u, &be, &bbits); |
2322 | 0 | if (b == NULL) |
2323 | 0 | goto failed_malloc; |
2324 | 0 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
2325 | 0 | dval(&d2) = dval(&u); |
2326 | 0 | word0(&d2) &= Frac_mask1; |
2327 | 0 | word0(&d2) |= Exp_11; |
2328 | | |
2329 | | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
2330 | | * log10(x) = log(x) / log(10) |
2331 | | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
2332 | | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
2333 | | * |
2334 | | * This suggests computing an approximation k to log10(d) by |
2335 | | * |
2336 | | * k = (i - Bias)*0.301029995663981 |
2337 | | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
2338 | | * |
2339 | | * We want k to be too large rather than too small. |
2340 | | * The error in the first-order Taylor series approximation |
2341 | | * is in our favor, so we just round up the constant enough |
2342 | | * to compensate for any error in the multiplication of |
2343 | | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
2344 | | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
2345 | | * adding 1e-13 to the constant term more than suffices. |
2346 | | * Hence we adjust the constant term to 0.1760912590558. |
2347 | | * (We could get a more accurate k by invoking log10, |
2348 | | * but this is probably not worthwhile.) |
2349 | | */ |
2350 | |
|
2351 | 0 | i -= Bias; |
2352 | 0 | denorm = 0; |
2353 | 0 | } |
2354 | 0 | else { |
2355 | | /* d is denormalized */ |
2356 | |
|
2357 | 0 | i = bbits + be + (Bias + (P-1) - 1); |
2358 | 0 | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
2359 | 0 | : word1(&u) << (32 - i); |
2360 | 0 | dval(&d2) = x; |
2361 | 0 | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
2362 | 0 | i -= (Bias + (P-1) - 1) + 1; |
2363 | 0 | denorm = 1; |
2364 | 0 | } |
2365 | 0 | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
2366 | 0 | i*0.301029995663981; |
2367 | 0 | k = (int)ds; |
2368 | 0 | if (ds < 0. && ds != k) |
2369 | 0 | k--; /* want k = floor(ds) */ |
2370 | 0 | k_check = 1; |
2371 | 0 | if (k >= 0 && k <= Ten_pmax) { |
2372 | 0 | if (dval(&u) < tens[k]) |
2373 | 0 | k--; |
2374 | 0 | k_check = 0; |
2375 | 0 | } |
2376 | 0 | j = bbits - i - 1; |
2377 | 0 | if (j >= 0) { |
2378 | 0 | b2 = 0; |
2379 | 0 | s2 = j; |
2380 | 0 | } |
2381 | 0 | else { |
2382 | 0 | b2 = -j; |
2383 | 0 | s2 = 0; |
2384 | 0 | } |
2385 | 0 | if (k >= 0) { |
2386 | 0 | b5 = 0; |
2387 | 0 | s5 = k; |
2388 | 0 | s2 += k; |
2389 | 0 | } |
2390 | 0 | else { |
2391 | 0 | b2 -= k; |
2392 | 0 | b5 = -k; |
2393 | 0 | s5 = 0; |
2394 | 0 | } |
2395 | 0 | if (mode < 0 || mode > 9) |
2396 | 0 | mode = 0; |
2397 | |
|
2398 | 0 | try_quick = 1; |
2399 | |
|
2400 | 0 | if (mode > 5) { |
2401 | 0 | mode -= 4; |
2402 | 0 | try_quick = 0; |
2403 | 0 | } |
2404 | 0 | leftright = 1; |
2405 | 0 | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
2406 | | /* silence erroneous "gcc -Wall" warning. */ |
2407 | 0 | switch(mode) { |
2408 | 0 | case 0: |
2409 | 0 | case 1: |
2410 | 0 | i = 18; |
2411 | 0 | ndigits = 0; |
2412 | 0 | break; |
2413 | 0 | case 2: |
2414 | 0 | leftright = 0; |
2415 | | /* fall through */ |
2416 | 0 | case 4: |
2417 | 0 | if (ndigits <= 0) |
2418 | 0 | ndigits = 1; |
2419 | 0 | ilim = ilim1 = i = ndigits; |
2420 | 0 | break; |
2421 | 0 | case 3: |
2422 | 0 | leftright = 0; |
2423 | | /* fall through */ |
2424 | 0 | case 5: |
2425 | 0 | i = ndigits + k + 1; |
2426 | 0 | ilim = i; |
2427 | 0 | ilim1 = i - 1; |
2428 | 0 | if (i <= 0) |
2429 | 0 | i = 1; |
2430 | 0 | } |
2431 | 0 | s0 = rv_alloc(i); |
2432 | 0 | if (s0 == NULL) |
2433 | 0 | goto failed_malloc; |
2434 | 0 | s = s0; |
2435 | | |
2436 | |
|
2437 | 0 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
2438 | | |
2439 | | /* Try to get by with floating-point arithmetic. */ |
2440 | |
|
2441 | 0 | i = 0; |
2442 | 0 | dval(&d2) = dval(&u); |
2443 | 0 | k0 = k; |
2444 | 0 | ilim0 = ilim; |
2445 | 0 | ieps = 2; /* conservative */ |
2446 | 0 | if (k > 0) { |
2447 | 0 | ds = tens[k&0xf]; |
2448 | 0 | j = k >> 4; |
2449 | 0 | if (j & Bletch) { |
2450 | | /* prevent overflows */ |
2451 | 0 | j &= Bletch - 1; |
2452 | 0 | dval(&u) /= bigtens[n_bigtens-1]; |
2453 | 0 | ieps++; |
2454 | 0 | } |
2455 | 0 | for(; j; j >>= 1, i++) |
2456 | 0 | if (j & 1) { |
2457 | 0 | ieps++; |
2458 | 0 | ds *= bigtens[i]; |
2459 | 0 | } |
2460 | 0 | dval(&u) /= ds; |
2461 | 0 | } |
2462 | 0 | else if ((j1 = -k)) { |
2463 | 0 | dval(&u) *= tens[j1 & 0xf]; |
2464 | 0 | for(j = j1 >> 4; j; j >>= 1, i++) |
2465 | 0 | if (j & 1) { |
2466 | 0 | ieps++; |
2467 | 0 | dval(&u) *= bigtens[i]; |
2468 | 0 | } |
2469 | 0 | } |
2470 | 0 | if (k_check && dval(&u) < 1. && ilim > 0) { |
2471 | 0 | if (ilim1 <= 0) |
2472 | 0 | goto fast_failed; |
2473 | 0 | ilim = ilim1; |
2474 | 0 | k--; |
2475 | 0 | dval(&u) *= 10.; |
2476 | 0 | ieps++; |
2477 | 0 | } |
2478 | 0 | dval(&eps) = ieps*dval(&u) + 7.; |
2479 | 0 | word0(&eps) -= (P-1)*Exp_msk1; |
2480 | 0 | if (ilim == 0) { |
2481 | 0 | S = mhi = 0; |
2482 | 0 | dval(&u) -= 5.; |
2483 | 0 | if (dval(&u) > dval(&eps)) |
2484 | 0 | goto one_digit; |
2485 | 0 | if (dval(&u) < -dval(&eps)) |
2486 | 0 | goto no_digits; |
2487 | 0 | goto fast_failed; |
2488 | 0 | } |
2489 | 0 | if (leftright) { |
2490 | | /* Use Steele & White method of only |
2491 | | * generating digits needed. |
2492 | | */ |
2493 | 0 | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
2494 | 0 | for(i = 0;;) { |
2495 | 0 | L = (Long)dval(&u); |
2496 | 0 | dval(&u) -= L; |
2497 | 0 | *s++ = '0' + (int)L; |
2498 | 0 | if (dval(&u) < dval(&eps)) |
2499 | 0 | goto ret1; |
2500 | 0 | if (1. - dval(&u) < dval(&eps)) |
2501 | 0 | goto bump_up; |
2502 | 0 | if (++i >= ilim) |
2503 | 0 | break; |
2504 | 0 | dval(&eps) *= 10.; |
2505 | 0 | dval(&u) *= 10.; |
2506 | 0 | } |
2507 | 0 | } |
2508 | 0 | else { |
2509 | | /* Generate ilim digits, then fix them up. */ |
2510 | 0 | dval(&eps) *= tens[ilim-1]; |
2511 | 0 | for(i = 1;; i++, dval(&u) *= 10.) { |
2512 | 0 | L = (Long)(dval(&u)); |
2513 | 0 | if (!(dval(&u) -= L)) |
2514 | 0 | ilim = i; |
2515 | 0 | *s++ = '0' + (int)L; |
2516 | 0 | if (i == ilim) { |
2517 | 0 | if (dval(&u) > 0.5 + dval(&eps)) |
2518 | 0 | goto bump_up; |
2519 | 0 | else if (dval(&u) < 0.5 - dval(&eps)) { |
2520 | 0 | while(*--s == '0'); |
2521 | 0 | s++; |
2522 | 0 | goto ret1; |
2523 | 0 | } |
2524 | 0 | break; |
2525 | 0 | } |
2526 | 0 | } |
2527 | 0 | } |
2528 | 0 | fast_failed: |
2529 | 0 | s = s0; |
2530 | 0 | dval(&u) = dval(&d2); |
2531 | 0 | k = k0; |
2532 | 0 | ilim = ilim0; |
2533 | 0 | } |
2534 | | |
2535 | | /* Do we have a "small" integer? */ |
2536 | | |
2537 | 0 | if (be >= 0 && k <= Int_max) { |
2538 | | /* Yes. */ |
2539 | 0 | ds = tens[k]; |
2540 | 0 | if (ndigits < 0 && ilim <= 0) { |
2541 | 0 | S = mhi = 0; |
2542 | 0 | if (ilim < 0 || dval(&u) <= 5*ds) |
2543 | 0 | goto no_digits; |
2544 | 0 | goto one_digit; |
2545 | 0 | } |
2546 | 0 | for(i = 1;; i++, dval(&u) *= 10.) { |
2547 | 0 | L = (Long)(dval(&u) / ds); |
2548 | 0 | dval(&u) -= L*ds; |
2549 | 0 | *s++ = '0' + (int)L; |
2550 | 0 | if (!dval(&u)) { |
2551 | 0 | break; |
2552 | 0 | } |
2553 | 0 | if (i == ilim) { |
2554 | 0 | dval(&u) += dval(&u); |
2555 | 0 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
2556 | 0 | bump_up: |
2557 | 0 | while(*--s == '9') |
2558 | 0 | if (s == s0) { |
2559 | 0 | k++; |
2560 | 0 | *s = '0'; |
2561 | 0 | break; |
2562 | 0 | } |
2563 | 0 | ++*s++; |
2564 | 0 | } |
2565 | 0 | break; |
2566 | 0 | } |
2567 | 0 | } |
2568 | 0 | goto ret1; |
2569 | 0 | } |
2570 | | |
2571 | 0 | m2 = b2; |
2572 | 0 | m5 = b5; |
2573 | 0 | if (leftright) { |
2574 | 0 | i = |
2575 | 0 | denorm ? be + (Bias + (P-1) - 1 + 1) : |
2576 | 0 | 1 + P - bbits; |
2577 | 0 | b2 += i; |
2578 | 0 | s2 += i; |
2579 | 0 | mhi = i2b(1); |
2580 | 0 | if (mhi == NULL) |
2581 | 0 | goto failed_malloc; |
2582 | 0 | } |
2583 | 0 | if (m2 > 0 && s2 > 0) { |
2584 | 0 | i = m2 < s2 ? m2 : s2; |
2585 | 0 | b2 -= i; |
2586 | 0 | m2 -= i; |
2587 | 0 | s2 -= i; |
2588 | 0 | } |
2589 | 0 | if (b5 > 0) { |
2590 | 0 | if (leftright) { |
2591 | 0 | if (m5 > 0) { |
2592 | 0 | mhi = pow5mult(mhi, m5); |
2593 | 0 | if (mhi == NULL) |
2594 | 0 | goto failed_malloc; |
2595 | 0 | b1 = mult(mhi, b); |
2596 | 0 | Bfree(b); |
2597 | 0 | b = b1; |
2598 | 0 | if (b == NULL) |
2599 | 0 | goto failed_malloc; |
2600 | 0 | } |
2601 | 0 | if ((j = b5 - m5)) { |
2602 | 0 | b = pow5mult(b, j); |
2603 | 0 | if (b == NULL) |
2604 | 0 | goto failed_malloc; |
2605 | 0 | } |
2606 | 0 | } |
2607 | 0 | else { |
2608 | 0 | b = pow5mult(b, b5); |
2609 | 0 | if (b == NULL) |
2610 | 0 | goto failed_malloc; |
2611 | 0 | } |
2612 | 0 | } |
2613 | 0 | S = i2b(1); |
2614 | 0 | if (S == NULL) |
2615 | 0 | goto failed_malloc; |
2616 | 0 | if (s5 > 0) { |
2617 | 0 | S = pow5mult(S, s5); |
2618 | 0 | if (S == NULL) |
2619 | 0 | goto failed_malloc; |
2620 | 0 | } |
2621 | | |
2622 | | /* Check for special case that d is a normalized power of 2. */ |
2623 | | |
2624 | 0 | spec_case = 0; |
2625 | 0 | if ((mode < 2 || leftright) |
2626 | 0 | ) { |
2627 | 0 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
2628 | 0 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
2629 | 0 | ) { |
2630 | | /* The special case */ |
2631 | 0 | b2 += Log2P; |
2632 | 0 | s2 += Log2P; |
2633 | 0 | spec_case = 1; |
2634 | 0 | } |
2635 | 0 | } |
2636 | | |
2637 | | /* Arrange for convenient computation of quotients: |
2638 | | * shift left if necessary so divisor has 4 leading 0 bits. |
2639 | | * |
2640 | | * Perhaps we should just compute leading 28 bits of S once |
2641 | | * and for all and pass them and a shift to quorem, so it |
2642 | | * can do shifts and ors to compute the numerator for q. |
2643 | | */ |
2644 | 0 | #define iInc 28 |
2645 | 0 | i = dshift(S, s2); |
2646 | 0 | b2 += i; |
2647 | 0 | m2 += i; |
2648 | 0 | s2 += i; |
2649 | 0 | if (b2 > 0) { |
2650 | 0 | b = lshift(b, b2); |
2651 | 0 | if (b == NULL) |
2652 | 0 | goto failed_malloc; |
2653 | 0 | } |
2654 | 0 | if (s2 > 0) { |
2655 | 0 | S = lshift(S, s2); |
2656 | 0 | if (S == NULL) |
2657 | 0 | goto failed_malloc; |
2658 | 0 | } |
2659 | 0 | if (k_check) { |
2660 | 0 | if (cmp(b,S) < 0) { |
2661 | 0 | k--; |
2662 | 0 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
2663 | 0 | if (b == NULL) |
2664 | 0 | goto failed_malloc; |
2665 | 0 | if (leftright) { |
2666 | 0 | mhi = multadd(mhi, 10, 0); |
2667 | 0 | if (mhi == NULL) |
2668 | 0 | goto failed_malloc; |
2669 | 0 | } |
2670 | 0 | ilim = ilim1; |
2671 | 0 | } |
2672 | 0 | } |
2673 | 0 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
2674 | 0 | if (ilim < 0) { |
2675 | | /* no digits, fcvt style */ |
2676 | 0 | no_digits: |
2677 | 0 | k = -1 - ndigits; |
2678 | 0 | goto ret; |
2679 | 0 | } |
2680 | 0 | else { |
2681 | 0 | S = multadd(S, 5, 0); |
2682 | 0 | if (S == NULL) |
2683 | 0 | goto failed_malloc; |
2684 | 0 | if (cmp(b, S) <= 0) |
2685 | 0 | goto no_digits; |
2686 | 0 | } |
2687 | 0 | one_digit: |
2688 | 0 | *s++ = '1'; |
2689 | 0 | k++; |
2690 | 0 | goto ret; |
2691 | 0 | } |
2692 | 0 | if (leftright) { |
2693 | 0 | if (m2 > 0) { |
2694 | 0 | mhi = lshift(mhi, m2); |
2695 | 0 | if (mhi == NULL) |
2696 | 0 | goto failed_malloc; |
2697 | 0 | } |
2698 | | |
2699 | | /* Compute mlo -- check for special case |
2700 | | * that d is a normalized power of 2. |
2701 | | */ |
2702 | | |
2703 | 0 | mlo = mhi; |
2704 | 0 | if (spec_case) { |
2705 | 0 | mhi = Balloc(mhi->k); |
2706 | 0 | if (mhi == NULL) |
2707 | 0 | goto failed_malloc; |
2708 | 0 | Bcopy(mhi, mlo); |
2709 | 0 | mhi = lshift(mhi, Log2P); |
2710 | 0 | if (mhi == NULL) |
2711 | 0 | goto failed_malloc; |
2712 | 0 | } |
2713 | | |
2714 | 0 | for(i = 1;;i++) { |
2715 | 0 | dig = quorem(b,S) + '0'; |
2716 | | /* Do we yet have the shortest decimal string |
2717 | | * that will round to d? |
2718 | | */ |
2719 | 0 | j = cmp(b, mlo); |
2720 | 0 | delta = diff(S, mhi); |
2721 | 0 | if (delta == NULL) |
2722 | 0 | goto failed_malloc; |
2723 | 0 | j1 = delta->sign ? 1 : cmp(b, delta); |
2724 | 0 | Bfree(delta); |
2725 | 0 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
2726 | 0 | ) { |
2727 | 0 | if (dig == '9') |
2728 | 0 | goto round_9_up; |
2729 | 0 | if (j > 0) |
2730 | 0 | dig++; |
2731 | 0 | *s++ = dig; |
2732 | 0 | goto ret; |
2733 | 0 | } |
2734 | 0 | if (j < 0 || (j == 0 && mode != 1 |
2735 | 0 | && !(word1(&u) & 1) |
2736 | 0 | )) { |
2737 | 0 | if (!b->x[0] && b->wds <= 1) { |
2738 | 0 | goto accept_dig; |
2739 | 0 | } |
2740 | 0 | if (j1 > 0) { |
2741 | 0 | b = lshift(b, 1); |
2742 | 0 | if (b == NULL) |
2743 | 0 | goto failed_malloc; |
2744 | 0 | j1 = cmp(b, S); |
2745 | 0 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
2746 | 0 | && dig++ == '9') |
2747 | 0 | goto round_9_up; |
2748 | 0 | } |
2749 | 0 | accept_dig: |
2750 | 0 | *s++ = dig; |
2751 | 0 | goto ret; |
2752 | 0 | } |
2753 | 0 | if (j1 > 0) { |
2754 | 0 | if (dig == '9') { /* possible if i == 1 */ |
2755 | 0 | round_9_up: |
2756 | 0 | *s++ = '9'; |
2757 | 0 | goto roundoff; |
2758 | 0 | } |
2759 | 0 | *s++ = dig + 1; |
2760 | 0 | goto ret; |
2761 | 0 | } |
2762 | 0 | *s++ = dig; |
2763 | 0 | if (i == ilim) |
2764 | 0 | break; |
2765 | 0 | b = multadd(b, 10, 0); |
2766 | 0 | if (b == NULL) |
2767 | 0 | goto failed_malloc; |
2768 | 0 | if (mlo == mhi) { |
2769 | 0 | mlo = mhi = multadd(mhi, 10, 0); |
2770 | 0 | if (mlo == NULL) |
2771 | 0 | goto failed_malloc; |
2772 | 0 | } |
2773 | 0 | else { |
2774 | 0 | mlo = multadd(mlo, 10, 0); |
2775 | 0 | if (mlo == NULL) |
2776 | 0 | goto failed_malloc; |
2777 | 0 | mhi = multadd(mhi, 10, 0); |
2778 | 0 | if (mhi == NULL) |
2779 | 0 | goto failed_malloc; |
2780 | 0 | } |
2781 | 0 | } |
2782 | 0 | } |
2783 | 0 | else |
2784 | 0 | for(i = 1;; i++) { |
2785 | 0 | *s++ = dig = quorem(b,S) + '0'; |
2786 | 0 | if (!b->x[0] && b->wds <= 1) { |
2787 | 0 | goto ret; |
2788 | 0 | } |
2789 | 0 | if (i >= ilim) |
2790 | 0 | break; |
2791 | 0 | b = multadd(b, 10, 0); |
2792 | 0 | if (b == NULL) |
2793 | 0 | goto failed_malloc; |
2794 | 0 | } |
2795 | | |
2796 | | /* Round off last digit */ |
2797 | | |
2798 | 0 | b = lshift(b, 1); |
2799 | 0 | if (b == NULL) |
2800 | 0 | goto failed_malloc; |
2801 | 0 | j = cmp(b, S); |
2802 | 0 | if (j > 0 || (j == 0 && dig & 1)) { |
2803 | 0 | roundoff: |
2804 | 0 | while(*--s == '9') |
2805 | 0 | if (s == s0) { |
2806 | 0 | k++; |
2807 | 0 | *s++ = '1'; |
2808 | 0 | goto ret; |
2809 | 0 | } |
2810 | 0 | ++*s++; |
2811 | 0 | } |
2812 | 0 | else { |
2813 | 0 | while(*--s == '0'); |
2814 | 0 | s++; |
2815 | 0 | } |
2816 | 0 | ret: |
2817 | 0 | Bfree(S); |
2818 | 0 | if (mhi) { |
2819 | 0 | if (mlo && mlo != mhi) |
2820 | 0 | Bfree(mlo); |
2821 | 0 | Bfree(mhi); |
2822 | 0 | } |
2823 | 0 | ret1: |
2824 | 0 | Bfree(b); |
2825 | 0 | *s = 0; |
2826 | 0 | *decpt = k + 1; |
2827 | 0 | if (rve) |
2828 | 0 | *rve = s; |
2829 | 0 | return s0; |
2830 | 0 | failed_malloc: |
2831 | 0 | if (S) |
2832 | 0 | Bfree(S); |
2833 | 0 | if (mlo && mlo != mhi) |
2834 | 0 | Bfree(mlo); |
2835 | 0 | if (mhi) |
2836 | 0 | Bfree(mhi); |
2837 | 0 | if (b) |
2838 | 0 | Bfree(b); |
2839 | 0 | if (s0) |
2840 | 0 | _Py_dg_freedtoa(s0); |
2841 | 0 | return NULL; |
2842 | 0 | } |
2843 | | #ifdef __cplusplus |
2844 | | } |
2845 | | #endif |
2846 | | |
2847 | | #endif /* PY_NO_SHORT_FLOAT_REPR */ |