/src/Python-3.8.3/Objects/complexobject.c
Line  | Count  | Source  | 
1  |  |  | 
2  |  | /* Complex object implementation */  | 
3  |  |  | 
4  |  | /* Borrows heavily from floatobject.c */  | 
5  |  |  | 
6  |  | /* Submitted by Jim Hugunin */  | 
7  |  |  | 
8  |  | #include "Python.h"  | 
9  |  | #include "structmember.h"  | 
10  |  |  | 
11  |  | /*[clinic input]  | 
12  |  | class complex "PyComplexObject *" "&PyComplex_Type"  | 
13  |  | [clinic start generated code]*/  | 
14  |  | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/  | 
15  |  |  | 
16  |  | #include "clinic/complexobject.c.h"  | 
17  |  |  | 
18  |  | /* elementary operations on complex numbers */  | 
19  |  |  | 
20  |  | static Py_complex c_1 = {1., 0.}; | 
21  |  |  | 
22  |  | Py_complex  | 
23  |  | _Py_c_sum(Py_complex a, Py_complex b)  | 
24  | 0  | { | 
25  | 0  |     Py_complex r;  | 
26  | 0  |     r.real = a.real + b.real;  | 
27  | 0  |     r.imag = a.imag + b.imag;  | 
28  | 0  |     return r;  | 
29  | 0  | }  | 
30  |  |  | 
31  |  | Py_complex  | 
32  |  | _Py_c_diff(Py_complex a, Py_complex b)  | 
33  | 0  | { | 
34  | 0  |     Py_complex r;  | 
35  | 0  |     r.real = a.real - b.real;  | 
36  | 0  |     r.imag = a.imag - b.imag;  | 
37  | 0  |     return r;  | 
38  | 0  | }  | 
39  |  |  | 
40  |  | Py_complex  | 
41  |  | _Py_c_neg(Py_complex a)  | 
42  | 0  | { | 
43  | 0  |     Py_complex r;  | 
44  | 0  |     r.real = -a.real;  | 
45  | 0  |     r.imag = -a.imag;  | 
46  | 0  |     return r;  | 
47  | 0  | }  | 
48  |  |  | 
49  |  | Py_complex  | 
50  |  | _Py_c_prod(Py_complex a, Py_complex b)  | 
51  | 0  | { | 
52  | 0  |     Py_complex r;  | 
53  | 0  |     r.real = a.real*b.real - a.imag*b.imag;  | 
54  | 0  |     r.imag = a.real*b.imag + a.imag*b.real;  | 
55  | 0  |     return r;  | 
56  | 0  | }  | 
57  |  |  | 
58  |  | /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */  | 
59  |  | #ifdef _M_ARM64  | 
60  |  | #pragma optimize("", off) | 
61  |  | #endif  | 
62  |  | Py_complex  | 
63  |  | _Py_c_quot(Py_complex a, Py_complex b)  | 
64  | 0  | { | 
65  |  |     /******************************************************************  | 
66  |  |     This was the original algorithm.  It's grossly prone to spurious  | 
67  |  |     overflow and underflow errors.  It also merrily divides by 0 despite  | 
68  |  |     checking for that(!).  The code still serves a doc purpose here, as  | 
69  |  |     the algorithm following is a simple by-cases transformation of this  | 
70  |  |     one:  | 
71  |  |  | 
72  |  |     Py_complex r;  | 
73  |  |     double d = b.real*b.real + b.imag*b.imag;  | 
74  |  |     if (d == 0.)  | 
75  |  |         errno = EDOM;  | 
76  |  |     r.real = (a.real*b.real + a.imag*b.imag)/d;  | 
77  |  |     r.imag = (a.imag*b.real - a.real*b.imag)/d;  | 
78  |  |     return r;  | 
79  |  |     ******************************************************************/  | 
80  |  |  | 
81  |  |     /* This algorithm is better, and is pretty obvious:  first divide the  | 
82  |  |      * numerators and denominator by whichever of {b.real, b.imag} has | 
83  |  |      * larger magnitude.  The earliest reference I found was to CACM  | 
84  |  |      * Algorithm 116 (Complex Division, Robert L. Smith, Stanford  | 
85  |  |      * University).  As usual, though, we're still ignoring all IEEE  | 
86  |  |      * endcases.  | 
87  |  |      */  | 
88  | 0  |      Py_complex r;      /* the result */  | 
89  | 0  |      const double abs_breal = b.real < 0 ? -b.real : b.real;  | 
90  | 0  |      const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;  | 
91  |  | 
  | 
92  | 0  |     if (abs_breal >= abs_bimag) { | 
93  |  |         /* divide tops and bottom by b.real */  | 
94  | 0  |         if (abs_breal == 0.0) { | 
95  | 0  |             errno = EDOM;  | 
96  | 0  |             r.real = r.imag = 0.0;  | 
97  | 0  |         }  | 
98  | 0  |         else { | 
99  | 0  |             const double ratio = b.imag / b.real;  | 
100  | 0  |             const double denom = b.real + b.imag * ratio;  | 
101  | 0  |             r.real = (a.real + a.imag * ratio) / denom;  | 
102  | 0  |             r.imag = (a.imag - a.real * ratio) / denom;  | 
103  | 0  |         }  | 
104  | 0  |     }  | 
105  | 0  |     else if (abs_bimag >= abs_breal) { | 
106  |  |         /* divide tops and bottom by b.imag */  | 
107  | 0  |         const double ratio = b.real / b.imag;  | 
108  | 0  |         const double denom = b.real * ratio + b.imag;  | 
109  | 0  |         assert(b.imag != 0.0);  | 
110  | 0  |         r.real = (a.real * ratio + a.imag) / denom;  | 
111  | 0  |         r.imag = (a.imag * ratio - a.real) / denom;  | 
112  | 0  |     }  | 
113  | 0  |     else { | 
114  |  |         /* At least one of b.real or b.imag is a NaN */  | 
115  | 0  |         r.real = r.imag = Py_NAN;  | 
116  | 0  |     }  | 
117  | 0  |     return r;  | 
118  | 0  | }  | 
119  |  | #ifdef _M_ARM64  | 
120  |  | #pragma optimize("", on) | 
121  |  | #endif  | 
122  |  |  | 
123  |  | Py_complex  | 
124  |  | _Py_c_pow(Py_complex a, Py_complex b)  | 
125  | 0  | { | 
126  | 0  |     Py_complex r;  | 
127  | 0  |     double vabs,len,at,phase;  | 
128  | 0  |     if (b.real == 0. && b.imag == 0.) { | 
129  | 0  |         r.real = 1.;  | 
130  | 0  |         r.imag = 0.;  | 
131  | 0  |     }  | 
132  | 0  |     else if (a.real == 0. && a.imag == 0.) { | 
133  | 0  |         if (b.imag != 0. || b.real < 0.)  | 
134  | 0  |             errno = EDOM;  | 
135  | 0  |         r.real = 0.;  | 
136  | 0  |         r.imag = 0.;  | 
137  | 0  |     }  | 
138  | 0  |     else { | 
139  | 0  |         vabs = hypot(a.real,a.imag);  | 
140  | 0  |         len = pow(vabs,b.real);  | 
141  | 0  |         at = atan2(a.imag, a.real);  | 
142  | 0  |         phase = at*b.real;  | 
143  | 0  |         if (b.imag != 0.0) { | 
144  | 0  |             len /= exp(at*b.imag);  | 
145  | 0  |             phase += b.imag*log(vabs);  | 
146  | 0  |         }  | 
147  | 0  |         r.real = len*cos(phase);  | 
148  | 0  |         r.imag = len*sin(phase);  | 
149  | 0  |     }  | 
150  | 0  |     return r;  | 
151  | 0  | }  | 
152  |  |  | 
153  |  | static Py_complex  | 
154  |  | c_powu(Py_complex x, long n)  | 
155  | 0  | { | 
156  | 0  |     Py_complex r, p;  | 
157  | 0  |     long mask = 1;  | 
158  | 0  |     r = c_1;  | 
159  | 0  |     p = x;  | 
160  | 0  |     while (mask > 0 && n >= mask) { | 
161  | 0  |         if (n & mask)  | 
162  | 0  |             r = _Py_c_prod(r,p);  | 
163  | 0  |         mask <<= 1;  | 
164  | 0  |         p = _Py_c_prod(p,p);  | 
165  | 0  |     }  | 
166  | 0  |     return r;  | 
167  | 0  | }  | 
168  |  |  | 
169  |  | static Py_complex  | 
170  |  | c_powi(Py_complex x, long n)  | 
171  | 0  | { | 
172  | 0  |     Py_complex cn;  | 
173  |  | 
  | 
174  | 0  |     if (n > 100 || n < -100) { | 
175  | 0  |         cn.real = (double) n;  | 
176  | 0  |         cn.imag = 0.;  | 
177  | 0  |         return _Py_c_pow(x,cn);  | 
178  | 0  |     }  | 
179  | 0  |     else if (n > 0)  | 
180  | 0  |         return c_powu(x,n);  | 
181  | 0  |     else  | 
182  | 0  |         return _Py_c_quot(c_1, c_powu(x,-n));  | 
183  |  | 
  | 
184  | 0  | }  | 
185  |  |  | 
186  |  | double  | 
187  |  | _Py_c_abs(Py_complex z)  | 
188  | 0  | { | 
189  |  |     /* sets errno = ERANGE on overflow;  otherwise errno = 0 */  | 
190  | 0  |     double result;  | 
191  |  | 
  | 
192  | 0  |     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { | 
193  |  |         /* C99 rules: if either the real or the imaginary part is an  | 
194  |  |            infinity, return infinity, even if the other part is a  | 
195  |  |            NaN. */  | 
196  | 0  |         if (Py_IS_INFINITY(z.real)) { | 
197  | 0  |             result = fabs(z.real);  | 
198  | 0  |             errno = 0;  | 
199  | 0  |             return result;  | 
200  | 0  |         }  | 
201  | 0  |         if (Py_IS_INFINITY(z.imag)) { | 
202  | 0  |             result = fabs(z.imag);  | 
203  | 0  |             errno = 0;  | 
204  | 0  |             return result;  | 
205  | 0  |         }  | 
206  |  |         /* either the real or imaginary part is a NaN,  | 
207  |  |            and neither is infinite. Result should be NaN. */  | 
208  | 0  |         return Py_NAN;  | 
209  | 0  |     }  | 
210  | 0  |     result = hypot(z.real, z.imag);  | 
211  | 0  |     if (!Py_IS_FINITE(result))  | 
212  | 0  |         errno = ERANGE;  | 
213  | 0  |     else  | 
214  | 0  |         errno = 0;  | 
215  | 0  |     return result;  | 
216  | 0  | }  | 
217  |  |  | 
218  |  | static PyObject *  | 
219  |  | complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)  | 
220  | 0  | { | 
221  | 0  |     PyObject *op;  | 
222  |  | 
  | 
223  | 0  |     op = type->tp_alloc(type, 0);  | 
224  | 0  |     if (op != NULL)  | 
225  | 0  |         ((PyComplexObject *)op)->cval = cval;  | 
226  | 0  |     return op;  | 
227  | 0  | }  | 
228  |  |  | 
229  |  | PyObject *  | 
230  |  | PyComplex_FromCComplex(Py_complex cval)  | 
231  | 0  | { | 
232  | 0  |     PyComplexObject *op;  | 
233  |  |  | 
234  |  |     /* Inline PyObject_New */  | 
235  | 0  |     op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));  | 
236  | 0  |     if (op == NULL)  | 
237  | 0  |         return PyErr_NoMemory();  | 
238  | 0  |     (void)PyObject_INIT(op, &PyComplex_Type);  | 
239  | 0  |     op->cval = cval;  | 
240  | 0  |     return (PyObject *) op;  | 
241  | 0  | }  | 
242  |  |  | 
243  |  | static PyObject *  | 
244  |  | complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)  | 
245  | 0  | { | 
246  | 0  |     Py_complex c;  | 
247  | 0  |     c.real = real;  | 
248  | 0  |     c.imag = imag;  | 
249  | 0  |     return complex_subtype_from_c_complex(type, c);  | 
250  | 0  | }  | 
251  |  |  | 
252  |  | PyObject *  | 
253  |  | PyComplex_FromDoubles(double real, double imag)  | 
254  | 0  | { | 
255  | 0  |     Py_complex c;  | 
256  | 0  |     c.real = real;  | 
257  | 0  |     c.imag = imag;  | 
258  | 0  |     return PyComplex_FromCComplex(c);  | 
259  | 0  | }  | 
260  |  |  | 
261  |  | double  | 
262  |  | PyComplex_RealAsDouble(PyObject *op)  | 
263  | 0  | { | 
264  | 0  |     if (PyComplex_Check(op)) { | 
265  | 0  |         return ((PyComplexObject *)op)->cval.real;  | 
266  | 0  |     }  | 
267  | 0  |     else { | 
268  | 0  |         return PyFloat_AsDouble(op);  | 
269  | 0  |     }  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | double  | 
273  |  | PyComplex_ImagAsDouble(PyObject *op)  | 
274  | 0  | { | 
275  | 0  |     if (PyComplex_Check(op)) { | 
276  | 0  |         return ((PyComplexObject *)op)->cval.imag;  | 
277  | 0  |     }  | 
278  | 0  |     else { | 
279  | 0  |         return 0.0;  | 
280  | 0  |     }  | 
281  | 0  | }  | 
282  |  |  | 
283  |  | static PyObject *  | 
284  |  | try_complex_special_method(PyObject *op)  | 
285  | 0  | { | 
286  | 0  |     PyObject *f;  | 
287  | 0  |     _Py_IDENTIFIER(__complex__);  | 
288  |  | 
  | 
289  | 0  |     f = _PyObject_LookupSpecial(op, &PyId___complex__);  | 
290  | 0  |     if (f) { | 
291  | 0  |         PyObject *res = _PyObject_CallNoArg(f);  | 
292  | 0  |         Py_DECREF(f);  | 
293  | 0  |         if (!res || PyComplex_CheckExact(res)) { | 
294  | 0  |             return res;  | 
295  | 0  |         }  | 
296  | 0  |         if (!PyComplex_Check(res)) { | 
297  | 0  |             PyErr_Format(PyExc_TypeError,  | 
298  | 0  |                 "__complex__ returned non-complex (type %.200s)",  | 
299  | 0  |                 res->ob_type->tp_name);  | 
300  | 0  |             Py_DECREF(res);  | 
301  | 0  |             return NULL;  | 
302  | 0  |         }  | 
303  |  |         /* Issue #29894: warn if 'res' not of exact type complex. */  | 
304  | 0  |         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,  | 
305  | 0  |                 "__complex__ returned non-complex (type %.200s).  "  | 
306  | 0  |                 "The ability to return an instance of a strict subclass of complex "  | 
307  | 0  |                 "is deprecated, and may be removed in a future version of Python.",  | 
308  | 0  |                 res->ob_type->tp_name)) { | 
309  | 0  |             Py_DECREF(res);  | 
310  | 0  |             return NULL;  | 
311  | 0  |         }  | 
312  | 0  |         return res;  | 
313  | 0  |     }  | 
314  | 0  |     return NULL;  | 
315  | 0  | }  | 
316  |  |  | 
317  |  | Py_complex  | 
318  |  | PyComplex_AsCComplex(PyObject *op)  | 
319  | 0  | { | 
320  | 0  |     Py_complex cv;  | 
321  | 0  |     PyObject *newop = NULL;  | 
322  |  | 
  | 
323  | 0  |     assert(op);  | 
324  |  |     /* If op is already of type PyComplex_Type, return its value */  | 
325  | 0  |     if (PyComplex_Check(op)) { | 
326  | 0  |         return ((PyComplexObject *)op)->cval;  | 
327  | 0  |     }  | 
328  |  |     /* If not, use op's __complex__  method, if it exists */  | 
329  |  |  | 
330  |  |     /* return -1 on failure */  | 
331  | 0  |     cv.real = -1.;  | 
332  | 0  |     cv.imag = 0.;  | 
333  |  | 
  | 
334  | 0  |     newop = try_complex_special_method(op);  | 
335  |  | 
  | 
336  | 0  |     if (newop) { | 
337  | 0  |         cv = ((PyComplexObject *)newop)->cval;  | 
338  | 0  |         Py_DECREF(newop);  | 
339  | 0  |         return cv;  | 
340  | 0  |     }  | 
341  | 0  |     else if (PyErr_Occurred()) { | 
342  | 0  |         return cv;  | 
343  | 0  |     }  | 
344  |  |     /* If neither of the above works, interpret op as a float giving the  | 
345  |  |        real part of the result, and fill in the imaginary part as 0. */  | 
346  | 0  |     else { | 
347  |  |         /* PyFloat_AsDouble will return -1 on failure */  | 
348  | 0  |         cv.real = PyFloat_AsDouble(op);  | 
349  | 0  |         return cv;  | 
350  | 0  |     }  | 
351  | 0  | }  | 
352  |  |  | 
353  |  | static PyObject *  | 
354  |  | complex_repr(PyComplexObject *v)  | 
355  | 0  | { | 
356  | 0  |     int precision = 0;  | 
357  | 0  |     char format_code = 'r';  | 
358  | 0  |     PyObject *result = NULL;  | 
359  |  |  | 
360  |  |     /* If these are non-NULL, they'll need to be freed. */  | 
361  | 0  |     char *pre = NULL;  | 
362  | 0  |     char *im = NULL;  | 
363  |  |  | 
364  |  |     /* These do not need to be freed. re is either an alias  | 
365  |  |        for pre or a pointer to a constant.  lead and tail  | 
366  |  |        are pointers to constants. */  | 
367  | 0  |     const char *re = NULL;  | 
368  | 0  |     const char *lead = "";  | 
369  | 0  |     const char *tail = "";  | 
370  |  | 
  | 
371  | 0  |     if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) { | 
372  |  |         /* Real part is +0: just output the imaginary part and do not  | 
373  |  |            include parens. */  | 
374  | 0  |         re = "";  | 
375  | 0  |         im = PyOS_double_to_string(v->cval.imag, format_code,  | 
376  | 0  |                                    precision, 0, NULL);  | 
377  | 0  |         if (!im) { | 
378  | 0  |             PyErr_NoMemory();  | 
379  | 0  |             goto done;  | 
380  | 0  |         }  | 
381  | 0  |     } else { | 
382  |  |         /* Format imaginary part with sign, real part without. Include  | 
383  |  |            parens in the result. */  | 
384  | 0  |         pre = PyOS_double_to_string(v->cval.real, format_code,  | 
385  | 0  |                                     precision, 0, NULL);  | 
386  | 0  |         if (!pre) { | 
387  | 0  |             PyErr_NoMemory();  | 
388  | 0  |             goto done;  | 
389  | 0  |         }  | 
390  | 0  |         re = pre;  | 
391  |  | 
  | 
392  | 0  |         im = PyOS_double_to_string(v->cval.imag, format_code,  | 
393  | 0  |                                    precision, Py_DTSF_SIGN, NULL);  | 
394  | 0  |         if (!im) { | 
395  | 0  |             PyErr_NoMemory();  | 
396  | 0  |             goto done;  | 
397  | 0  |         }  | 
398  | 0  |         lead = "("; | 
399  | 0  |         tail = ")";  | 
400  | 0  |     }  | 
401  | 0  |     result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail); | 
402  | 0  |   done:  | 
403  | 0  |     PyMem_Free(im);  | 
404  | 0  |     PyMem_Free(pre);  | 
405  |  | 
  | 
406  | 0  |     return result;  | 
407  | 0  | }  | 
408  |  |  | 
409  |  | static Py_hash_t  | 
410  |  | complex_hash(PyComplexObject *v)  | 
411  | 0  | { | 
412  | 0  |     Py_uhash_t hashreal, hashimag, combined;  | 
413  | 0  |     hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real);  | 
414  | 0  |     if (hashreal == (Py_uhash_t)-1)  | 
415  | 0  |         return -1;  | 
416  | 0  |     hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag);  | 
417  | 0  |     if (hashimag == (Py_uhash_t)-1)  | 
418  | 0  |         return -1;  | 
419  |  |     /* Note:  if the imaginary part is 0, hashimag is 0 now,  | 
420  |  |      * so the following returns hashreal unchanged.  This is  | 
421  |  |      * important because numbers of different types that  | 
422  |  |      * compare equal must have the same hash value, so that  | 
423  |  |      * hash(x + 0*j) must equal hash(x).  | 
424  |  |      */  | 
425  | 0  |     combined = hashreal + _PyHASH_IMAG * hashimag;  | 
426  | 0  |     if (combined == (Py_uhash_t)-1)  | 
427  | 0  |         combined = (Py_uhash_t)-2;  | 
428  | 0  |     return (Py_hash_t)combined;  | 
429  | 0  | }  | 
430  |  |  | 
431  |  | /* This macro may return! */  | 
432  |  | #define TO_COMPLEX(obj, c) \  | 
433  | 0  |     if (PyComplex_Check(obj)) \  | 
434  | 0  |         c = ((PyComplexObject *)(obj))->cval; \  | 
435  | 0  |     else if (to_complex(&(obj), &(c)) < 0) \  | 
436  | 0  |         return (obj)  | 
437  |  |  | 
438  |  | static int  | 
439  |  | to_complex(PyObject **pobj, Py_complex *pc)  | 
440  | 0  | { | 
441  | 0  |     PyObject *obj = *pobj;  | 
442  |  | 
  | 
443  | 0  |     pc->real = pc->imag = 0.0;  | 
444  | 0  |     if (PyLong_Check(obj)) { | 
445  | 0  |         pc->real = PyLong_AsDouble(obj);  | 
446  | 0  |         if (pc->real == -1.0 && PyErr_Occurred()) { | 
447  | 0  |             *pobj = NULL;  | 
448  | 0  |             return -1;  | 
449  | 0  |         }  | 
450  | 0  |         return 0;  | 
451  | 0  |     }  | 
452  | 0  |     if (PyFloat_Check(obj)) { | 
453  | 0  |         pc->real = PyFloat_AsDouble(obj);  | 
454  | 0  |         return 0;  | 
455  | 0  |     }  | 
456  | 0  |     Py_INCREF(Py_NotImplemented);  | 
457  | 0  |     *pobj = Py_NotImplemented;  | 
458  | 0  |     return -1;  | 
459  | 0  | }  | 
460  |  |  | 
461  |  |  | 
462  |  | static PyObject *  | 
463  |  | complex_add(PyObject *v, PyObject *w)  | 
464  | 0  | { | 
465  | 0  |     Py_complex result;  | 
466  | 0  |     Py_complex a, b;  | 
467  | 0  |     TO_COMPLEX(v, a);  | 
468  | 0  |     TO_COMPLEX(w, b);  | 
469  | 0  |     PyFPE_START_PROTECT("complex_add", return 0) | 
470  | 0  |     result = _Py_c_sum(a, b);  | 
471  | 0  |     PyFPE_END_PROTECT(result)  | 
472  | 0  |     return PyComplex_FromCComplex(result);  | 
473  | 0  | }  | 
474  |  |  | 
475  |  | static PyObject *  | 
476  |  | complex_sub(PyObject *v, PyObject *w)  | 
477  | 0  | { | 
478  | 0  |     Py_complex result;  | 
479  | 0  |     Py_complex a, b;  | 
480  | 0  |     TO_COMPLEX(v, a);  | 
481  | 0  |     TO_COMPLEX(w, b);  | 
482  | 0  |     PyFPE_START_PROTECT("complex_sub", return 0) | 
483  | 0  |     result = _Py_c_diff(a, b);  | 
484  | 0  |     PyFPE_END_PROTECT(result)  | 
485  | 0  |     return PyComplex_FromCComplex(result);  | 
486  | 0  | }  | 
487  |  |  | 
488  |  | static PyObject *  | 
489  |  | complex_mul(PyObject *v, PyObject *w)  | 
490  | 0  | { | 
491  | 0  |     Py_complex result;  | 
492  | 0  |     Py_complex a, b;  | 
493  | 0  |     TO_COMPLEX(v, a);  | 
494  | 0  |     TO_COMPLEX(w, b);  | 
495  | 0  |     PyFPE_START_PROTECT("complex_mul", return 0) | 
496  | 0  |     result = _Py_c_prod(a, b);  | 
497  | 0  |     PyFPE_END_PROTECT(result)  | 
498  | 0  |     return PyComplex_FromCComplex(result);  | 
499  | 0  | }  | 
500  |  |  | 
501  |  | static PyObject *  | 
502  |  | complex_div(PyObject *v, PyObject *w)  | 
503  | 0  | { | 
504  | 0  |     Py_complex quot;  | 
505  | 0  |     Py_complex a, b;  | 
506  | 0  |     TO_COMPLEX(v, a);  | 
507  | 0  |     TO_COMPLEX(w, b);  | 
508  | 0  |     PyFPE_START_PROTECT("complex_div", return 0) | 
509  | 0  |     errno = 0;  | 
510  | 0  |     quot = _Py_c_quot(a, b);  | 
511  | 0  |     PyFPE_END_PROTECT(quot)  | 
512  | 0  |     if (errno == EDOM) { | 
513  | 0  |         PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");  | 
514  | 0  |         return NULL;  | 
515  | 0  |     }  | 
516  | 0  |     return PyComplex_FromCComplex(quot);  | 
517  | 0  | }  | 
518  |  |  | 
519  |  | static PyObject *  | 
520  |  | complex_remainder(PyObject *v, PyObject *w)  | 
521  | 0  | { | 
522  | 0  |     PyErr_SetString(PyExc_TypeError,  | 
523  | 0  |                     "can't mod complex numbers.");  | 
524  | 0  |     return NULL;  | 
525  | 0  | }  | 
526  |  |  | 
527  |  |  | 
528  |  | static PyObject *  | 
529  |  | complex_divmod(PyObject *v, PyObject *w)  | 
530  | 0  | { | 
531  | 0  |     PyErr_SetString(PyExc_TypeError,  | 
532  | 0  |                     "can't take floor or mod of complex number.");  | 
533  | 0  |     return NULL;  | 
534  | 0  | }  | 
535  |  |  | 
536  |  | static PyObject *  | 
537  |  | complex_pow(PyObject *v, PyObject *w, PyObject *z)  | 
538  | 0  | { | 
539  | 0  |     Py_complex p;  | 
540  | 0  |     Py_complex exponent;  | 
541  | 0  |     long int_exponent;  | 
542  | 0  |     Py_complex a, b;  | 
543  | 0  |     TO_COMPLEX(v, a);  | 
544  | 0  |     TO_COMPLEX(w, b);  | 
545  |  |  | 
546  | 0  |     if (z != Py_None) { | 
547  | 0  |         PyErr_SetString(PyExc_ValueError, "complex modulo");  | 
548  | 0  |         return NULL;  | 
549  | 0  |     }  | 
550  | 0  |     PyFPE_START_PROTECT("complex_pow", return 0) | 
551  | 0  |     errno = 0;  | 
552  | 0  |     exponent = b;  | 
553  | 0  |     int_exponent = (long)exponent.real;  | 
554  | 0  |     if (exponent.imag == 0. && exponent.real == int_exponent)  | 
555  | 0  |         p = c_powi(a, int_exponent);  | 
556  | 0  |     else  | 
557  | 0  |         p = _Py_c_pow(a, exponent);  | 
558  |  | 
  | 
559  | 0  |     PyFPE_END_PROTECT(p)  | 
560  | 0  |     Py_ADJUST_ERANGE2(p.real, p.imag);  | 
561  | 0  |     if (errno == EDOM) { | 
562  | 0  |         PyErr_SetString(PyExc_ZeroDivisionError,  | 
563  | 0  |                         "0.0 to a negative or complex power");  | 
564  | 0  |         return NULL;  | 
565  | 0  |     }  | 
566  | 0  |     else if (errno == ERANGE) { | 
567  | 0  |         PyErr_SetString(PyExc_OverflowError,  | 
568  | 0  |                         "complex exponentiation");  | 
569  | 0  |         return NULL;  | 
570  | 0  |     }  | 
571  | 0  |     return PyComplex_FromCComplex(p);  | 
572  | 0  | }  | 
573  |  |  | 
574  |  | static PyObject *  | 
575  |  | complex_int_div(PyObject *v, PyObject *w)  | 
576  | 0  | { | 
577  | 0  |     PyErr_SetString(PyExc_TypeError,  | 
578  | 0  |                     "can't take floor of complex number.");  | 
579  | 0  |     return NULL;  | 
580  | 0  | }  | 
581  |  |  | 
582  |  | static PyObject *  | 
583  |  | complex_neg(PyComplexObject *v)  | 
584  | 0  | { | 
585  | 0  |     Py_complex neg;  | 
586  | 0  |     neg.real = -v->cval.real;  | 
587  | 0  |     neg.imag = -v->cval.imag;  | 
588  | 0  |     return PyComplex_FromCComplex(neg);  | 
589  | 0  | }  | 
590  |  |  | 
591  |  | static PyObject *  | 
592  |  | complex_pos(PyComplexObject *v)  | 
593  | 0  | { | 
594  | 0  |     if (PyComplex_CheckExact(v)) { | 
595  | 0  |         Py_INCREF(v);  | 
596  | 0  |         return (PyObject *)v;  | 
597  | 0  |     }  | 
598  | 0  |     else  | 
599  | 0  |         return PyComplex_FromCComplex(v->cval);  | 
600  | 0  | }  | 
601  |  |  | 
602  |  | static PyObject *  | 
603  |  | complex_abs(PyComplexObject *v)  | 
604  | 0  | { | 
605  | 0  |     double result;  | 
606  |  | 
  | 
607  | 0  |     PyFPE_START_PROTECT("complex_abs", return 0) | 
608  | 0  |     result = _Py_c_abs(v->cval);  | 
609  | 0  |     PyFPE_END_PROTECT(result)  | 
610  |  | 
  | 
611  | 0  |     if (errno == ERANGE) { | 
612  | 0  |         PyErr_SetString(PyExc_OverflowError,  | 
613  | 0  |                         "absolute value too large");  | 
614  | 0  |         return NULL;  | 
615  | 0  |     }  | 
616  | 0  |     return PyFloat_FromDouble(result);  | 
617  | 0  | }  | 
618  |  |  | 
619  |  | static int  | 
620  |  | complex_bool(PyComplexObject *v)  | 
621  | 0  | { | 
622  | 0  |     return v->cval.real != 0.0 || v->cval.imag != 0.0;  | 
623  | 0  | }  | 
624  |  |  | 
625  |  | static PyObject *  | 
626  |  | complex_richcompare(PyObject *v, PyObject *w, int op)  | 
627  | 0  | { | 
628  | 0  |     PyObject *res;  | 
629  | 0  |     Py_complex i;  | 
630  | 0  |     int equal;  | 
631  |  | 
  | 
632  | 0  |     if (op != Py_EQ && op != Py_NE) { | 
633  | 0  |         goto Unimplemented;  | 
634  | 0  |     }  | 
635  |  |  | 
636  | 0  |     assert(PyComplex_Check(v));  | 
637  | 0  |     TO_COMPLEX(v, i);  | 
638  |  |  | 
639  | 0  |     if (PyLong_Check(w)) { | 
640  |  |         /* Check for 0.0 imaginary part first to avoid the rich  | 
641  |  |          * comparison when possible.  | 
642  |  |          */  | 
643  | 0  |         if (i.imag == 0.0) { | 
644  | 0  |             PyObject *j, *sub_res;  | 
645  | 0  |             j = PyFloat_FromDouble(i.real);  | 
646  | 0  |             if (j == NULL)  | 
647  | 0  |                 return NULL;  | 
648  |  |  | 
649  | 0  |             sub_res = PyObject_RichCompare(j, w, op);  | 
650  | 0  |             Py_DECREF(j);  | 
651  | 0  |             return sub_res;  | 
652  | 0  |         }  | 
653  | 0  |         else { | 
654  | 0  |             equal = 0;  | 
655  | 0  |         }  | 
656  | 0  |     }  | 
657  | 0  |     else if (PyFloat_Check(w)) { | 
658  | 0  |         equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);  | 
659  | 0  |     }  | 
660  | 0  |     else if (PyComplex_Check(w)) { | 
661  | 0  |         Py_complex j;  | 
662  |  | 
  | 
663  | 0  |         TO_COMPLEX(w, j);  | 
664  | 0  |         equal = (i.real == j.real && i.imag == j.imag);  | 
665  | 0  |     }  | 
666  | 0  |     else { | 
667  | 0  |         goto Unimplemented;  | 
668  | 0  |     }  | 
669  |  |  | 
670  | 0  |     if (equal == (op == Py_EQ))  | 
671  | 0  |          res = Py_True;  | 
672  | 0  |     else  | 
673  | 0  |          res = Py_False;  | 
674  |  | 
  | 
675  | 0  |     Py_INCREF(res);  | 
676  | 0  |     return res;  | 
677  |  |  | 
678  | 0  | Unimplemented:  | 
679  | 0  |     Py_RETURN_NOTIMPLEMENTED;  | 
680  | 0  | }  | 
681  |  |  | 
682  |  | static PyObject *  | 
683  |  | complex_int(PyObject *v)  | 
684  | 0  | { | 
685  | 0  |     PyErr_SetString(PyExc_TypeError,  | 
686  | 0  |                "can't convert complex to int");  | 
687  | 0  |     return NULL;  | 
688  | 0  | }  | 
689  |  |  | 
690  |  | static PyObject *  | 
691  |  | complex_float(PyObject *v)  | 
692  | 0  | { | 
693  | 0  |     PyErr_SetString(PyExc_TypeError,  | 
694  | 0  |                "can't convert complex to float");  | 
695  | 0  |     return NULL;  | 
696  | 0  | }  | 
697  |  |  | 
698  |  | static PyObject *  | 
699  |  | complex_conjugate(PyObject *self, PyObject *Py_UNUSED(ignored))  | 
700  | 0  | { | 
701  | 0  |     Py_complex c;  | 
702  | 0  |     c = ((PyComplexObject *)self)->cval;  | 
703  | 0  |     c.imag = -c.imag;  | 
704  | 0  |     return PyComplex_FromCComplex(c);  | 
705  | 0  | }  | 
706  |  |  | 
707  |  | PyDoc_STRVAR(complex_conjugate_doc,  | 
708  |  | "complex.conjugate() -> complex\n"  | 
709  |  | "\n"  | 
710  |  | "Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");  | 
711  |  |  | 
712  |  | static PyObject *  | 
713  |  | complex_getnewargs(PyComplexObject *v, PyObject *Py_UNUSED(ignored))  | 
714  | 0  | { | 
715  | 0  |     Py_complex c = v->cval;  | 
716  | 0  |     return Py_BuildValue("(dd)", c.real, c.imag); | 
717  | 0  | }  | 
718  |  |  | 
719  |  | PyDoc_STRVAR(complex__format__doc,  | 
720  |  | "complex.__format__() -> str\n"  | 
721  |  | "\n"  | 
722  |  | "Convert to a string according to format_spec.");  | 
723  |  |  | 
724  |  | static PyObject *  | 
725  |  | complex__format__(PyObject* self, PyObject* args)  | 
726  | 0  | { | 
727  | 0  |     PyObject *format_spec;  | 
728  | 0  |     _PyUnicodeWriter writer;  | 
729  | 0  |     int ret;  | 
730  |  | 
  | 
731  | 0  |     if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))  | 
732  | 0  |         return NULL;  | 
733  |  |  | 
734  | 0  |     _PyUnicodeWriter_Init(&writer);  | 
735  | 0  |     ret = _PyComplex_FormatAdvancedWriter(  | 
736  | 0  |         &writer,  | 
737  | 0  |         self,  | 
738  | 0  |         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));  | 
739  | 0  |     if (ret == -1) { | 
740  | 0  |         _PyUnicodeWriter_Dealloc(&writer);  | 
741  | 0  |         return NULL;  | 
742  | 0  |     }  | 
743  | 0  |     return _PyUnicodeWriter_Finish(&writer);  | 
744  | 0  | }  | 
745  |  |  | 
746  |  | static PyMethodDef complex_methods[] = { | 
747  |  |     {"conjugate",       (PyCFunction)complex_conjugate, METH_NOARGS, | 
748  |  |      complex_conjugate_doc},  | 
749  |  |     {"__getnewargs__",          (PyCFunction)complex_getnewargs,        METH_NOARGS}, | 
750  |  |     {"__format__",          (PyCFunction)complex__format__, | 
751  |  |                                        METH_VARARGS, complex__format__doc},  | 
752  |  |     {NULL,              NULL}           /* sentinel */ | 
753  |  | };  | 
754  |  |  | 
755  |  | static PyMemberDef complex_members[] = { | 
756  |  |     {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, | 
757  |  |      "the real part of a complex number"},  | 
758  |  |     {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, | 
759  |  |      "the imaginary part of a complex number"},  | 
760  |  |     {0}, | 
761  |  | };  | 
762  |  |  | 
763  |  | static PyObject *  | 
764  |  | complex_from_string_inner(const char *s, Py_ssize_t len, void *type)  | 
765  | 0  | { | 
766  | 0  |     double x=0.0, y=0.0, z;  | 
767  | 0  |     int got_bracket=0;  | 
768  | 0  |     const char *start;  | 
769  | 0  |     char *end;  | 
770  |  |  | 
771  |  |     /* position on first nonblank */  | 
772  | 0  |     start = s;  | 
773  | 0  |     while (Py_ISSPACE(*s))  | 
774  | 0  |         s++;  | 
775  | 0  |     if (*s == '(') { | 
776  |  |         /* Skip over possible bracket from repr(). */  | 
777  | 0  |         got_bracket = 1;  | 
778  | 0  |         s++;  | 
779  | 0  |         while (Py_ISSPACE(*s))  | 
780  | 0  |             s++;  | 
781  | 0  |     }  | 
782  |  |  | 
783  |  |     /* a valid complex string usually takes one of the three forms:  | 
784  |  |  | 
785  |  |          <float>                  - real part only  | 
786  |  |          <float>j                 - imaginary part only  | 
787  |  |          <float><signed-float>j   - real and imaginary parts  | 
788  |  |  | 
789  |  |        where <float> represents any numeric string that's accepted by the  | 
790  |  |        float constructor (including 'nan', 'inf', 'infinity', etc.), and  | 
791  |  |        <signed-float> is any string of the form <float> whose first  | 
792  |  |        character is '+' or '-'.  | 
793  |  |  | 
794  |  |        For backwards compatibility, the extra forms  | 
795  |  |  | 
796  |  |          <float><sign>j  | 
797  |  |          <sign>j  | 
798  |  |          j  | 
799  |  |  | 
800  |  |        are also accepted, though support for these forms may be removed from  | 
801  |  |        a future version of Python.  | 
802  |  |     */  | 
803  |  |  | 
804  |  |     /* first look for forms starting with <float> */  | 
805  | 0  |     z = PyOS_string_to_double(s, &end, NULL);  | 
806  | 0  |     if (z == -1.0 && PyErr_Occurred()) { | 
807  | 0  |         if (PyErr_ExceptionMatches(PyExc_ValueError))  | 
808  | 0  |             PyErr_Clear();  | 
809  | 0  |         else  | 
810  | 0  |             return NULL;  | 
811  | 0  |     }  | 
812  | 0  |     if (end != s) { | 
813  |  |         /* all 4 forms starting with <float> land here */  | 
814  | 0  |         s = end;  | 
815  | 0  |         if (*s == '+' || *s == '-') { | 
816  |  |             /* <float><signed-float>j | <float><sign>j */  | 
817  | 0  |             x = z;  | 
818  | 0  |             y = PyOS_string_to_double(s, &end, NULL);  | 
819  | 0  |             if (y == -1.0 && PyErr_Occurred()) { | 
820  | 0  |                 if (PyErr_ExceptionMatches(PyExc_ValueError))  | 
821  | 0  |                     PyErr_Clear();  | 
822  | 0  |                 else  | 
823  | 0  |                     return NULL;  | 
824  | 0  |             }  | 
825  | 0  |             if (end != s)  | 
826  |  |                 /* <float><signed-float>j */  | 
827  | 0  |                 s = end;  | 
828  | 0  |             else { | 
829  |  |                 /* <float><sign>j */  | 
830  | 0  |                 y = *s == '+' ? 1.0 : -1.0;  | 
831  | 0  |                 s++;  | 
832  | 0  |             }  | 
833  | 0  |             if (!(*s == 'j' || *s == 'J'))  | 
834  | 0  |                 goto parse_error;  | 
835  | 0  |             s++;  | 
836  | 0  |         }  | 
837  | 0  |         else if (*s == 'j' || *s == 'J') { | 
838  |  |             /* <float>j */  | 
839  | 0  |             s++;  | 
840  | 0  |             y = z;  | 
841  | 0  |         }  | 
842  | 0  |         else  | 
843  |  |             /* <float> */  | 
844  | 0  |             x = z;  | 
845  | 0  |     }  | 
846  | 0  |     else { | 
847  |  |         /* not starting with <float>; must be <sign>j or j */  | 
848  | 0  |         if (*s == '+' || *s == '-') { | 
849  |  |             /* <sign>j */  | 
850  | 0  |             y = *s == '+' ? 1.0 : -1.0;  | 
851  | 0  |             s++;  | 
852  | 0  |         }  | 
853  | 0  |         else  | 
854  |  |             /* j */  | 
855  | 0  |             y = 1.0;  | 
856  | 0  |         if (!(*s == 'j' || *s == 'J'))  | 
857  | 0  |             goto parse_error;  | 
858  | 0  |         s++;  | 
859  | 0  |     }  | 
860  |  |  | 
861  |  |     /* trailing whitespace and closing bracket */  | 
862  | 0  |     while (Py_ISSPACE(*s))  | 
863  | 0  |         s++;  | 
864  | 0  |     if (got_bracket) { | 
865  |  |         /* if there was an opening parenthesis, then the corresponding  | 
866  |  |            closing parenthesis should be right here */  | 
867  | 0  |         if (*s != ')')  | 
868  | 0  |             goto parse_error;  | 
869  | 0  |         s++;  | 
870  | 0  |         while (Py_ISSPACE(*s))  | 
871  | 0  |             s++;  | 
872  | 0  |     }  | 
873  |  |  | 
874  |  |     /* we should now be at the end of the string */  | 
875  | 0  |     if (s-start != len)  | 
876  | 0  |         goto parse_error;  | 
877  |  |  | 
878  | 0  |     return complex_subtype_from_doubles((PyTypeObject *)type, x, y);  | 
879  |  |  | 
880  | 0  |   parse_error:  | 
881  | 0  |     PyErr_SetString(PyExc_ValueError,  | 
882  | 0  |                     "complex() arg is a malformed string");  | 
883  | 0  |     return NULL;  | 
884  | 0  | }  | 
885  |  |  | 
886  |  | static PyObject *  | 
887  |  | complex_subtype_from_string(PyTypeObject *type, PyObject *v)  | 
888  | 0  | { | 
889  | 0  |     const char *s;  | 
890  | 0  |     PyObject *s_buffer = NULL, *result = NULL;  | 
891  | 0  |     Py_ssize_t len;  | 
892  |  | 
  | 
893  | 0  |     if (PyUnicode_Check(v)) { | 
894  | 0  |         s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);  | 
895  | 0  |         if (s_buffer == NULL) { | 
896  | 0  |             return NULL;  | 
897  | 0  |         }  | 
898  | 0  |         assert(PyUnicode_IS_ASCII(s_buffer));  | 
899  |  |         /* Simply get a pointer to existing ASCII characters. */  | 
900  | 0  |         s = PyUnicode_AsUTF8AndSize(s_buffer, &len);  | 
901  | 0  |         assert(s != NULL);  | 
902  | 0  |     }  | 
903  | 0  |     else { | 
904  | 0  |         PyErr_Format(PyExc_TypeError,  | 
905  | 0  |             "complex() argument must be a string or a number, not '%.200s'",  | 
906  | 0  |             Py_TYPE(v)->tp_name);  | 
907  | 0  |         return NULL;  | 
908  | 0  |     }  | 
909  |  |  | 
910  | 0  |     result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,  | 
911  | 0  |                                                    complex_from_string_inner);  | 
912  | 0  |     Py_DECREF(s_buffer);  | 
913  | 0  |     return result;  | 
914  | 0  | }  | 
915  |  |  | 
916  |  | /*[clinic input]  | 
917  |  | @classmethod  | 
918  |  | complex.__new__ as complex_new  | 
919  |  |     real as r: object(c_default="_PyLong_Zero") = 0  | 
920  |  |     imag as i: object(c_default="NULL") = 0  | 
921  |  |  | 
922  |  | Create a complex number from a real part and an optional imaginary part.  | 
923  |  |  | 
924  |  | This is equivalent to (real + imag*1j) where imag defaults to 0.  | 
925  |  | [clinic start generated code]*/  | 
926  |  |  | 
927  |  | static PyObject *  | 
928  |  | complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)  | 
929  |  | /*[clinic end generated code: output=b6c7dd577b537dc1 input=6f6b0bedba29bcb5]*/  | 
930  | 0  | { | 
931  | 0  |     PyObject *tmp;  | 
932  | 0  |     PyNumberMethods *nbr, *nbi = NULL;  | 
933  | 0  |     Py_complex cr, ci;  | 
934  | 0  |     int own_r = 0;  | 
935  | 0  |     int cr_is_complex = 0;  | 
936  | 0  |     int ci_is_complex = 0;  | 
937  |  |  | 
938  |  |     /* Special-case for a single argument when type(arg) is complex. */  | 
939  | 0  |     if (PyComplex_CheckExact(r) && i == NULL &&  | 
940  | 0  |         type == &PyComplex_Type) { | 
941  |  |         /* Note that we can't know whether it's safe to return  | 
942  |  |            a complex *subclass* instance as-is, hence the restriction  | 
943  |  |            to exact complexes here.  If either the input or the  | 
944  |  |            output is a complex subclass, it will be handled below  | 
945  |  |            as a non-orthogonal vector.  */  | 
946  | 0  |         Py_INCREF(r);  | 
947  | 0  |         return r;  | 
948  | 0  |     }  | 
949  | 0  |     if (PyUnicode_Check(r)) { | 
950  | 0  |         if (i != NULL) { | 
951  | 0  |             PyErr_SetString(PyExc_TypeError,  | 
952  | 0  |                             "complex() can't take second arg"  | 
953  | 0  |                             " if first is a string");  | 
954  | 0  |             return NULL;  | 
955  | 0  |         }  | 
956  | 0  |         return complex_subtype_from_string(type, r);  | 
957  | 0  |     }  | 
958  | 0  |     if (i != NULL && PyUnicode_Check(i)) { | 
959  | 0  |         PyErr_SetString(PyExc_TypeError,  | 
960  | 0  |                         "complex() second arg can't be a string");  | 
961  | 0  |         return NULL;  | 
962  | 0  |     }  | 
963  |  |  | 
964  | 0  |     tmp = try_complex_special_method(r);  | 
965  | 0  |     if (tmp) { | 
966  | 0  |         r = tmp;  | 
967  | 0  |         own_r = 1;  | 
968  | 0  |     }  | 
969  | 0  |     else if (PyErr_Occurred()) { | 
970  | 0  |         return NULL;  | 
971  | 0  |     }  | 
972  |  |  | 
973  | 0  |     nbr = r->ob_type->tp_as_number;  | 
974  | 0  |     if (nbr == NULL || (nbr->nb_float == NULL && nbr->nb_index == NULL)) { | 
975  | 0  |         PyErr_Format(PyExc_TypeError,  | 
976  | 0  |                      "complex() first argument must be a string or a number, "  | 
977  | 0  |                      "not '%.200s'",  | 
978  | 0  |                      Py_TYPE(r)->tp_name);  | 
979  | 0  |         if (own_r) { | 
980  | 0  |             Py_DECREF(r);  | 
981  | 0  |         }  | 
982  | 0  |         return NULL;  | 
983  | 0  |     }  | 
984  | 0  |     if (i != NULL) { | 
985  | 0  |         nbi = i->ob_type->tp_as_number;  | 
986  | 0  |         if (nbi == NULL || (nbi->nb_float == NULL && nbi->nb_index == NULL)) { | 
987  | 0  |             PyErr_Format(PyExc_TypeError,  | 
988  | 0  |                          "complex() second argument must be a number, "  | 
989  | 0  |                          "not '%.200s'",  | 
990  | 0  |                          Py_TYPE(i)->tp_name);  | 
991  | 0  |             if (own_r) { | 
992  | 0  |                 Py_DECREF(r);  | 
993  | 0  |             }  | 
994  | 0  |             return NULL;  | 
995  | 0  |         }  | 
996  | 0  |     }  | 
997  |  |  | 
998  |  |     /* If we get this far, then the "real" and "imag" parts should  | 
999  |  |        both be treated as numbers, and the constructor should return a  | 
1000  |  |        complex number equal to (real + imag*1j).  | 
1001  |  |  | 
1002  |  |        Note that we do NOT assume the input to already be in canonical  | 
1003  |  |        form; the "real" and "imag" parts might themselves be complex  | 
1004  |  |        numbers, which slightly complicates the code below. */  | 
1005  | 0  |     if (PyComplex_Check(r)) { | 
1006  |  |         /* Note that if r is of a complex subtype, we're only  | 
1007  |  |            retaining its real & imag parts here, and the return  | 
1008  |  |            value is (properly) of the builtin complex type. */  | 
1009  | 0  |         cr = ((PyComplexObject*)r)->cval;  | 
1010  | 0  |         cr_is_complex = 1;  | 
1011  | 0  |         if (own_r) { | 
1012  | 0  |             Py_DECREF(r);  | 
1013  | 0  |         }  | 
1014  | 0  |     }  | 
1015  | 0  |     else { | 
1016  |  |         /* The "real" part really is entirely real, and contributes  | 
1017  |  |            nothing in the imaginary direction.  | 
1018  |  |            Just treat it as a double. */  | 
1019  | 0  |         tmp = PyNumber_Float(r);  | 
1020  | 0  |         if (own_r) { | 
1021  |  |             /* r was a newly created complex number, rather  | 
1022  |  |                than the original "real" argument. */  | 
1023  | 0  |             Py_DECREF(r);  | 
1024  | 0  |         }  | 
1025  | 0  |         if (tmp == NULL)  | 
1026  | 0  |             return NULL;  | 
1027  | 0  |         assert(PyFloat_Check(tmp));  | 
1028  | 0  |         cr.real = PyFloat_AsDouble(tmp);  | 
1029  | 0  |         cr.imag = 0.0;  | 
1030  | 0  |         Py_DECREF(tmp);  | 
1031  | 0  |     }  | 
1032  | 0  |     if (i == NULL) { | 
1033  | 0  |         ci.real = cr.imag;  | 
1034  | 0  |     }  | 
1035  | 0  |     else if (PyComplex_Check(i)) { | 
1036  | 0  |         ci = ((PyComplexObject*)i)->cval;  | 
1037  | 0  |         ci_is_complex = 1;  | 
1038  | 0  |     } else { | 
1039  |  |         /* The "imag" part really is entirely imaginary, and  | 
1040  |  |            contributes nothing in the real direction.  | 
1041  |  |            Just treat it as a double. */  | 
1042  | 0  |         tmp = PyNumber_Float(i);  | 
1043  | 0  |         if (tmp == NULL)  | 
1044  | 0  |             return NULL;  | 
1045  | 0  |         ci.real = PyFloat_AsDouble(tmp);  | 
1046  | 0  |         Py_DECREF(tmp);  | 
1047  | 0  |     }  | 
1048  |  |     /*  If the input was in canonical form, then the "real" and "imag"  | 
1049  |  |         parts are real numbers, so that ci.imag and cr.imag are zero.  | 
1050  |  |         We need this correction in case they were not real numbers. */  | 
1051  |  |  | 
1052  | 0  |     if (ci_is_complex) { | 
1053  | 0  |         cr.real -= ci.imag;  | 
1054  | 0  |     }  | 
1055  | 0  |     if (cr_is_complex && i != NULL) { | 
1056  | 0  |         ci.real += cr.imag;  | 
1057  | 0  |     }  | 
1058  | 0  |     return complex_subtype_from_doubles(type, cr.real, ci.real);  | 
1059  | 0  | }  | 
1060  |  |  | 
1061  |  | static PyNumberMethods complex_as_number = { | 
1062  |  |     (binaryfunc)complex_add,                    /* nb_add */  | 
1063  |  |     (binaryfunc)complex_sub,                    /* nb_subtract */  | 
1064  |  |     (binaryfunc)complex_mul,                    /* nb_multiply */  | 
1065  |  |     (binaryfunc)complex_remainder,              /* nb_remainder */  | 
1066  |  |     (binaryfunc)complex_divmod,                 /* nb_divmod */  | 
1067  |  |     (ternaryfunc)complex_pow,                   /* nb_power */  | 
1068  |  |     (unaryfunc)complex_neg,                     /* nb_negative */  | 
1069  |  |     (unaryfunc)complex_pos,                     /* nb_positive */  | 
1070  |  |     (unaryfunc)complex_abs,                     /* nb_absolute */  | 
1071  |  |     (inquiry)complex_bool,                      /* nb_bool */  | 
1072  |  |     0,                                          /* nb_invert */  | 
1073  |  |     0,                                          /* nb_lshift */  | 
1074  |  |     0,                                          /* nb_rshift */  | 
1075  |  |     0,                                          /* nb_and */  | 
1076  |  |     0,                                          /* nb_xor */  | 
1077  |  |     0,                                          /* nb_or */  | 
1078  |  |     complex_int,                                /* nb_int */  | 
1079  |  |     0,                                          /* nb_reserved */  | 
1080  |  |     complex_float,                              /* nb_float */  | 
1081  |  |     0,                                          /* nb_inplace_add */  | 
1082  |  |     0,                                          /* nb_inplace_subtract */  | 
1083  |  |     0,                                          /* nb_inplace_multiply*/  | 
1084  |  |     0,                                          /* nb_inplace_remainder */  | 
1085  |  |     0,                                          /* nb_inplace_power */  | 
1086  |  |     0,                                          /* nb_inplace_lshift */  | 
1087  |  |     0,                                          /* nb_inplace_rshift */  | 
1088  |  |     0,                                          /* nb_inplace_and */  | 
1089  |  |     0,                                          /* nb_inplace_xor */  | 
1090  |  |     0,                                          /* nb_inplace_or */  | 
1091  |  |     (binaryfunc)complex_int_div,                /* nb_floor_divide */  | 
1092  |  |     (binaryfunc)complex_div,                    /* nb_true_divide */  | 
1093  |  |     0,                                          /* nb_inplace_floor_divide */  | 
1094  |  |     0,                                          /* nb_inplace_true_divide */  | 
1095  |  | };  | 
1096  |  |  | 
1097  |  | PyTypeObject PyComplex_Type = { | 
1098  |  |     PyVarObject_HEAD_INIT(&PyType_Type, 0)  | 
1099  |  |     "complex",  | 
1100  |  |     sizeof(PyComplexObject),  | 
1101  |  |     0,  | 
1102  |  |     0,                                          /* tp_dealloc */  | 
1103  |  |     0,                                          /* tp_vectorcall_offset */  | 
1104  |  |     0,                                          /* tp_getattr */  | 
1105  |  |     0,                                          /* tp_setattr */  | 
1106  |  |     0,                                          /* tp_as_async */  | 
1107  |  |     (reprfunc)complex_repr,                     /* tp_repr */  | 
1108  |  |     &complex_as_number,                         /* tp_as_number */  | 
1109  |  |     0,                                          /* tp_as_sequence */  | 
1110  |  |     0,                                          /* tp_as_mapping */  | 
1111  |  |     (hashfunc)complex_hash,                     /* tp_hash */  | 
1112  |  |     0,                                          /* tp_call */  | 
1113  |  |     0,                                          /* tp_str */  | 
1114  |  |     PyObject_GenericGetAttr,                    /* tp_getattro */  | 
1115  |  |     0,                                          /* tp_setattro */  | 
1116  |  |     0,                                          /* tp_as_buffer */  | 
1117  |  |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */  | 
1118  |  |     complex_new__doc__,                         /* tp_doc */  | 
1119  |  |     0,                                          /* tp_traverse */  | 
1120  |  |     0,                                          /* tp_clear */  | 
1121  |  |     complex_richcompare,                        /* tp_richcompare */  | 
1122  |  |     0,                                          /* tp_weaklistoffset */  | 
1123  |  |     0,                                          /* tp_iter */  | 
1124  |  |     0,                                          /* tp_iternext */  | 
1125  |  |     complex_methods,                            /* tp_methods */  | 
1126  |  |     complex_members,                            /* tp_members */  | 
1127  |  |     0,                                          /* tp_getset */  | 
1128  |  |     0,                                          /* tp_base */  | 
1129  |  |     0,                                          /* tp_dict */  | 
1130  |  |     0,                                          /* tp_descr_get */  | 
1131  |  |     0,                                          /* tp_descr_set */  | 
1132  |  |     0,                                          /* tp_dictoffset */  | 
1133  |  |     0,                                          /* tp_init */  | 
1134  |  |     PyType_GenericAlloc,                        /* tp_alloc */  | 
1135  |  |     complex_new,                                /* tp_new */  | 
1136  |  |     PyObject_Del,                               /* tp_free */  | 
1137  |  | };  |