/src/Python-3.8.3/Objects/floatobject.c
Line  | Count  | Source  | 
1  |  | /* Float object implementation */  | 
2  |  |  | 
3  |  | /* XXX There should be overflow checks here, but it's hard to check  | 
4  |  |    for any kind of float exception without losing portability. */  | 
5  |  |  | 
6  |  | #include "Python.h"  | 
7  |  |  | 
8  |  | #include <ctype.h>  | 
9  |  | #include <float.h>  | 
10  |  |  | 
11  |  | /*[clinic input]  | 
12  |  | class float "PyObject *" "&PyFloat_Type"  | 
13  |  | [clinic start generated code]*/  | 
14  |  | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/  | 
15  |  |  | 
16  |  | #include "clinic/floatobject.c.h"  | 
17  |  |  | 
18  |  | /* Special free list  | 
19  |  |    free_list is a singly-linked list of available PyFloatObjects, linked  | 
20  |  |    via abuse of their ob_type members.  | 
21  |  | */  | 
22  |  |  | 
23  |  | #ifndef PyFloat_MAXFREELIST  | 
24  | 2.60k  | #define PyFloat_MAXFREELIST    100  | 
25  |  | #endif  | 
26  |  | static int numfree = 0;  | 
27  |  | static PyFloatObject *free_list = NULL;  | 
28  |  |  | 
29  |  | double  | 
30  |  | PyFloat_GetMax(void)  | 
31  | 0  | { | 
32  | 0  |     return DBL_MAX;  | 
33  | 0  | }  | 
34  |  |  | 
35  |  | double  | 
36  |  | PyFloat_GetMin(void)  | 
37  | 0  | { | 
38  | 0  |     return DBL_MIN;  | 
39  | 0  | }  | 
40  |  |  | 
41  |  | static PyTypeObject FloatInfoType;  | 
42  |  |  | 
43  |  | PyDoc_STRVAR(floatinfo__doc__,  | 
44  |  | "sys.float_info\n\  | 
45  |  | \n\  | 
46  |  | A named tuple holding information about the float type. It contains low level\n\  | 
47  |  | information about the precision and internal representation. Please study\n\  | 
48  |  | your system's :file:`float.h` for more information.");  | 
49  |  |  | 
50  |  | static PyStructSequence_Field floatinfo_fields[] = { | 
51  |  |     {"max",             "DBL_MAX -- maximum representable finite float"}, | 
52  |  |     {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " | 
53  |  |                     "is representable"},  | 
54  |  |     {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e " | 
55  |  |                     "is representable"},  | 
56  |  |     {"min",             "DBL_MIN -- Minimum positive normalized float"}, | 
57  |  |     {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " | 
58  |  |                     "is a normalized float"},  | 
59  |  |     {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is " | 
60  |  |                     "a normalized"},  | 
61  |  |     {"dig",             "DBL_DIG -- digits"}, | 
62  |  |     {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"}, | 
63  |  |     {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next " | 
64  |  |                     "representable float"},  | 
65  |  |     {"radix",           "FLT_RADIX -- radix of exponent"}, | 
66  |  |     {"rounds",          "FLT_ROUNDS -- rounding mode"}, | 
67  |  |     {0} | 
68  |  | };  | 
69  |  |  | 
70  |  | static PyStructSequence_Desc floatinfo_desc = { | 
71  |  |     "sys.float_info",           /* name */  | 
72  |  |     floatinfo__doc__,           /* doc */  | 
73  |  |     floatinfo_fields,           /* fields */  | 
74  |  |     11  | 
75  |  | };  | 
76  |  |  | 
77  |  | PyObject *  | 
78  |  | PyFloat_GetInfo(void)  | 
79  | 14  | { | 
80  | 14  |     PyObject* floatinfo;  | 
81  | 14  |     int pos = 0;  | 
82  |  |  | 
83  | 14  |     floatinfo = PyStructSequence_New(&FloatInfoType);  | 
84  | 14  |     if (floatinfo == NULL) { | 
85  | 0  |         return NULL;  | 
86  | 0  |     }  | 
87  |  |  | 
88  | 14  | #define SetIntFlag(flag) \  | 
89  | 112  |     PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))  | 
90  | 14  | #define SetDblFlag(flag) \  | 
91  | 42  |     PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))  | 
92  |  |  | 
93  | 14  |     SetDblFlag(DBL_MAX);  | 
94  | 14  |     SetIntFlag(DBL_MAX_EXP);  | 
95  | 14  |     SetIntFlag(DBL_MAX_10_EXP);  | 
96  | 14  |     SetDblFlag(DBL_MIN);  | 
97  | 14  |     SetIntFlag(DBL_MIN_EXP);  | 
98  | 14  |     SetIntFlag(DBL_MIN_10_EXP);  | 
99  | 14  |     SetIntFlag(DBL_DIG);  | 
100  | 14  |     SetIntFlag(DBL_MANT_DIG);  | 
101  | 14  |     SetDblFlag(DBL_EPSILON);  | 
102  | 14  |     SetIntFlag(FLT_RADIX);  | 
103  | 14  |     SetIntFlag(FLT_ROUNDS);  | 
104  | 14  | #undef SetIntFlag  | 
105  | 14  | #undef SetDblFlag  | 
106  |  |  | 
107  | 14  |     if (PyErr_Occurred()) { | 
108  | 0  |         Py_CLEAR(floatinfo);  | 
109  | 0  |         return NULL;  | 
110  | 0  |     }  | 
111  | 14  |     return floatinfo;  | 
112  | 14  | }  | 
113  |  |  | 
114  |  | PyObject *  | 
115  |  | PyFloat_FromDouble(double fval)  | 
116  | 2.69k  | { | 
117  | 2.69k  |     PyFloatObject *op = free_list;  | 
118  | 2.69k  |     if (op != NULL) { | 
119  | 2.54k  |         free_list = (PyFloatObject *) Py_TYPE(op);  | 
120  | 2.54k  |         numfree--;  | 
121  | 2.54k  |     } else { | 
122  | 145  |         op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));  | 
123  | 145  |         if (!op)  | 
124  | 0  |             return PyErr_NoMemory();  | 
125  | 145  |     }  | 
126  |  |     /* Inline PyObject_New */  | 
127  | 2.69k  |     (void)PyObject_INIT(op, &PyFloat_Type);  | 
128  | 2.69k  |     op->ob_fval = fval;  | 
129  | 2.69k  |     return (PyObject *) op;  | 
130  | 2.69k  | }  | 
131  |  |  | 
132  |  | static PyObject *  | 
133  |  | float_from_string_inner(const char *s, Py_ssize_t len, void *obj)  | 
134  | 0  | { | 
135  | 0  |     double x;  | 
136  | 0  |     const char *end;  | 
137  | 0  |     const char *last = s + len;  | 
138  |  |     /* strip space */  | 
139  | 0  |     while (s < last && Py_ISSPACE(*s)) { | 
140  | 0  |         s++;  | 
141  | 0  |     }  | 
142  |  | 
  | 
143  | 0  |     while (s < last - 1 && Py_ISSPACE(last[-1])) { | 
144  | 0  |         last--;  | 
145  | 0  |     }  | 
146  |  |  | 
147  |  |     /* We don't care about overflow or underflow.  If the platform  | 
148  |  |      * supports them, infinities and signed zeroes (on underflow) are  | 
149  |  |      * fine. */  | 
150  | 0  |     x = PyOS_string_to_double(s, (char **)&end, NULL);  | 
151  | 0  |     if (end != last) { | 
152  | 0  |         PyErr_Format(PyExc_ValueError,  | 
153  | 0  |                      "could not convert string to float: "  | 
154  | 0  |                      "%R", obj);  | 
155  | 0  |         return NULL;  | 
156  | 0  |     }  | 
157  | 0  |     else if (x == -1.0 && PyErr_Occurred()) { | 
158  | 0  |         return NULL;  | 
159  | 0  |     }  | 
160  | 0  |     else { | 
161  | 0  |         return PyFloat_FromDouble(x);  | 
162  | 0  |     }  | 
163  | 0  | }  | 
164  |  |  | 
165  |  | PyObject *  | 
166  |  | PyFloat_FromString(PyObject *v)  | 
167  | 0  | { | 
168  | 0  |     const char *s;  | 
169  | 0  |     PyObject *s_buffer = NULL;  | 
170  | 0  |     Py_ssize_t len;  | 
171  | 0  |     Py_buffer view = {NULL, NULL}; | 
172  | 0  |     PyObject *result = NULL;  | 
173  |  | 
  | 
174  | 0  |     if (PyUnicode_Check(v)) { | 
175  | 0  |         s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);  | 
176  | 0  |         if (s_buffer == NULL)  | 
177  | 0  |             return NULL;  | 
178  | 0  |         assert(PyUnicode_IS_ASCII(s_buffer));  | 
179  |  |         /* Simply get a pointer to existing ASCII characters. */  | 
180  | 0  |         s = PyUnicode_AsUTF8AndSize(s_buffer, &len);  | 
181  | 0  |         assert(s != NULL);  | 
182  | 0  |     }  | 
183  | 0  |     else if (PyBytes_Check(v)) { | 
184  | 0  |         s = PyBytes_AS_STRING(v);  | 
185  | 0  |         len = PyBytes_GET_SIZE(v);  | 
186  | 0  |     }  | 
187  | 0  |     else if (PyByteArray_Check(v)) { | 
188  | 0  |         s = PyByteArray_AS_STRING(v);  | 
189  | 0  |         len = PyByteArray_GET_SIZE(v);  | 
190  | 0  |     }  | 
191  | 0  |     else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) { | 
192  | 0  |         s = (const char *)view.buf;  | 
193  | 0  |         len = view.len;  | 
194  |  |         /* Copy to NUL-terminated buffer. */  | 
195  | 0  |         s_buffer = PyBytes_FromStringAndSize(s, len);  | 
196  | 0  |         if (s_buffer == NULL) { | 
197  | 0  |             PyBuffer_Release(&view);  | 
198  | 0  |             return NULL;  | 
199  | 0  |         }  | 
200  | 0  |         s = PyBytes_AS_STRING(s_buffer);  | 
201  | 0  |     }  | 
202  | 0  |     else { | 
203  | 0  |         PyErr_Format(PyExc_TypeError,  | 
204  | 0  |             "float() argument must be a string or a number, not '%.200s'",  | 
205  | 0  |             Py_TYPE(v)->tp_name);  | 
206  | 0  |         return NULL;  | 
207  | 0  |     }  | 
208  | 0  |     result = _Py_string_to_number_with_underscores(s, len, "float", v, v,  | 
209  | 0  |                                                    float_from_string_inner);  | 
210  | 0  |     PyBuffer_Release(&view);  | 
211  | 0  |     Py_XDECREF(s_buffer);  | 
212  | 0  |     return result;  | 
213  | 0  | }  | 
214  |  |  | 
215  |  | static void  | 
216  |  | float_dealloc(PyFloatObject *op)  | 
217  | 2.60k  | { | 
218  | 2.60k  |     if (PyFloat_CheckExact(op)) { | 
219  | 2.60k  |         if (numfree >= PyFloat_MAXFREELIST)  { | 
220  | 0  |             PyObject_FREE(op);  | 
221  | 0  |             return;  | 
222  | 0  |         }  | 
223  | 2.60k  |         numfree++;  | 
224  | 2.60k  |         Py_TYPE(op) = (struct _typeobject *)free_list;  | 
225  | 2.60k  |         free_list = op;  | 
226  | 2.60k  |     }  | 
227  | 0  |     else  | 
228  | 0  |         Py_TYPE(op)->tp_free((PyObject *)op);  | 
229  | 2.60k  | }  | 
230  |  |  | 
231  |  | double  | 
232  |  | PyFloat_AsDouble(PyObject *op)  | 
233  | 249  | { | 
234  | 249  |     PyNumberMethods *nb;  | 
235  | 249  |     PyObject *res;  | 
236  | 249  |     double val;  | 
237  |  |  | 
238  | 249  |     if (op == NULL) { | 
239  | 0  |         PyErr_BadArgument();  | 
240  | 0  |         return -1;  | 
241  | 0  |     }  | 
242  |  |  | 
243  | 249  |     if (PyFloat_Check(op)) { | 
244  | 249  |         return PyFloat_AS_DOUBLE(op);  | 
245  | 249  |     }  | 
246  |  |  | 
247  | 0  |     nb = Py_TYPE(op)->tp_as_number;  | 
248  | 0  |     if (nb == NULL || nb->nb_float == NULL) { | 
249  | 0  |         if (nb && nb->nb_index) { | 
250  | 0  |             PyObject *res = PyNumber_Index(op);  | 
251  | 0  |             if (!res) { | 
252  | 0  |                 return -1;  | 
253  | 0  |             }  | 
254  | 0  |             double val = PyLong_AsDouble(res);  | 
255  | 0  |             Py_DECREF(res);  | 
256  | 0  |             return val;  | 
257  | 0  |         }  | 
258  | 0  |         PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",  | 
259  | 0  |                      op->ob_type->tp_name);  | 
260  | 0  |         return -1;  | 
261  | 0  |     }  | 
262  |  |  | 
263  | 0  |     res = (*nb->nb_float) (op);  | 
264  | 0  |     if (res == NULL) { | 
265  | 0  |         return -1;  | 
266  | 0  |     }  | 
267  | 0  |     if (!PyFloat_CheckExact(res)) { | 
268  | 0  |         if (!PyFloat_Check(res)) { | 
269  | 0  |             PyErr_Format(PyExc_TypeError,  | 
270  | 0  |                          "%.50s.__float__ returned non-float (type %.50s)",  | 
271  | 0  |                          op->ob_type->tp_name, res->ob_type->tp_name);  | 
272  | 0  |             Py_DECREF(res);  | 
273  | 0  |             return -1;  | 
274  | 0  |         }  | 
275  | 0  |         if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,  | 
276  | 0  |                 "%.50s.__float__ returned non-float (type %.50s).  "  | 
277  | 0  |                 "The ability to return an instance of a strict subclass of float "  | 
278  | 0  |                 "is deprecated, and may be removed in a future version of Python.",  | 
279  | 0  |                 op->ob_type->tp_name, res->ob_type->tp_name)) { | 
280  | 0  |             Py_DECREF(res);  | 
281  | 0  |             return -1;  | 
282  | 0  |         }  | 
283  | 0  |     }  | 
284  |  |  | 
285  | 0  |     val = PyFloat_AS_DOUBLE(res);  | 
286  | 0  |     Py_DECREF(res);  | 
287  | 0  |     return val;  | 
288  | 0  | }  | 
289  |  |  | 
290  |  | /* Macro and helper that convert PyObject obj to a C double and store  | 
291  |  |    the value in dbl.  If conversion to double raises an exception, obj is  | 
292  |  |    set to NULL, and the function invoking this macro returns NULL.  If  | 
293  |  |    obj is not of float or int type, Py_NotImplemented is incref'ed,  | 
294  |  |    stored in obj, and returned from the function invoking this macro.  | 
295  |  | */  | 
296  |  | #define CONVERT_TO_DOUBLE(obj, dbl)                     \  | 
297  | 112  |     if (PyFloat_Check(obj))                             \  | 
298  | 112  |         dbl = PyFloat_AS_DOUBLE(obj);                   \  | 
299  | 112  |     else if (convert_to_double(&(obj), &(dbl)) < 0)     \  | 
300  | 42  |         return obj;  | 
301  |  |  | 
302  |  | /* Methods */  | 
303  |  |  | 
304  |  | static int  | 
305  |  | convert_to_double(PyObject **v, double *dbl)  | 
306  | 42  | { | 
307  | 42  |     PyObject *obj = *v;  | 
308  |  |  | 
309  | 42  |     if (PyLong_Check(obj)) { | 
310  | 42  |         *dbl = PyLong_AsDouble(obj);  | 
311  | 42  |         if (*dbl == -1.0 && PyErr_Occurred()) { | 
312  | 0  |             *v = NULL;  | 
313  | 0  |             return -1;  | 
314  | 0  |         }  | 
315  | 42  |     }  | 
316  | 0  |     else { | 
317  | 0  |         Py_INCREF(Py_NotImplemented);  | 
318  | 0  |         *v = Py_NotImplemented;  | 
319  | 0  |         return -1;  | 
320  | 0  |     }  | 
321  | 42  |     return 0;  | 
322  | 42  | }  | 
323  |  |  | 
324  |  | static PyObject *  | 
325  |  | float_repr(PyFloatObject *v)  | 
326  | 0  | { | 
327  | 0  |     PyObject *result;  | 
328  | 0  |     char *buf;  | 
329  |  | 
  | 
330  | 0  |     buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),  | 
331  | 0  |                                 'r', 0,  | 
332  | 0  |                                 Py_DTSF_ADD_DOT_0,  | 
333  | 0  |                                 NULL);  | 
334  | 0  |     if (!buf)  | 
335  | 0  |         return PyErr_NoMemory();  | 
336  | 0  |     result = _PyUnicode_FromASCII(buf, strlen(buf));  | 
337  | 0  |     PyMem_Free(buf);  | 
338  | 0  |     return result;  | 
339  | 0  | }  | 
340  |  |  | 
341  |  | /* Comparison is pretty much a nightmare.  When comparing float to float,  | 
342  |  |  * we do it as straightforwardly (and long-windedly) as conceivable, so  | 
343  |  |  * that, e.g., Python x == y delivers the same result as the platform  | 
344  |  |  * C x == y when x and/or y is a NaN.  | 
345  |  |  * When mixing float with an integer type, there's no good *uniform* approach.  | 
346  |  |  * Converting the double to an integer obviously doesn't work, since we  | 
347  |  |  * may lose info from fractional bits.  Converting the integer to a double  | 
348  |  |  * also has two failure modes:  (1) an int may trigger overflow (too  | 
349  |  |  * large to fit in the dynamic range of a C double); (2) even a C long may have  | 
350  |  |  * more bits than fit in a C double (e.g., on a 64-bit box long may have  | 
351  |  |  * 63 bits of precision, but a C double probably has only 53), and then  | 
352  |  |  * we can falsely claim equality when low-order integer bits are lost by  | 
353  |  |  * coercion to double.  So this part is painful too.  | 
354  |  |  */  | 
355  |  |  | 
356  |  | static PyObject*  | 
357  |  | float_richcompare(PyObject *v, PyObject *w, int op)  | 
358  | 283  | { | 
359  | 283  |     double i, j;  | 
360  | 283  |     int r = 0;  | 
361  |  |  | 
362  | 283  |     assert(PyFloat_Check(v));  | 
363  | 283  |     i = PyFloat_AS_DOUBLE(v);  | 
364  |  |  | 
365  |  |     /* Switch on the type of w.  Set i and j to doubles to be compared,  | 
366  |  |      * and op to the richcomp to use.  | 
367  |  |      */  | 
368  | 283  |     if (PyFloat_Check(w))  | 
369  | 254  |         j = PyFloat_AS_DOUBLE(w);  | 
370  |  |  | 
371  | 29  |     else if (!Py_IS_FINITE(i)) { | 
372  | 0  |         if (PyLong_Check(w))  | 
373  |  |             /* If i is an infinity, its magnitude exceeds any  | 
374  |  |              * finite integer, so it doesn't matter which int we  | 
375  |  |              * compare i with.  If i is a NaN, similarly.  | 
376  |  |              */  | 
377  | 0  |             j = 0.0;  | 
378  | 0  |         else  | 
379  | 0  |             goto Unimplemented;  | 
380  | 0  |     }  | 
381  |  |  | 
382  | 29  |     else if (PyLong_Check(w)) { | 
383  | 29  |         int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;  | 
384  | 29  |         int wsign = _PyLong_Sign(w);  | 
385  | 29  |         size_t nbits;  | 
386  | 29  |         int exponent;  | 
387  |  |  | 
388  | 29  |         if (vsign != wsign) { | 
389  |  |             /* Magnitudes are irrelevant -- the signs alone  | 
390  |  |              * determine the outcome.  | 
391  |  |              */  | 
392  | 29  |             i = (double)vsign;  | 
393  | 29  |             j = (double)wsign;  | 
394  | 29  |             goto Compare;  | 
395  | 29  |         }  | 
396  |  |         /* The signs are the same. */  | 
397  |  |         /* Convert w to a double if it fits.  In particular, 0 fits. */  | 
398  | 0  |         nbits = _PyLong_NumBits(w);  | 
399  | 0  |         if (nbits == (size_t)-1 && PyErr_Occurred()) { | 
400  |  |             /* This long is so large that size_t isn't big enough  | 
401  |  |              * to hold the # of bits.  Replace with little doubles  | 
402  |  |              * that give the same outcome -- w is so large that  | 
403  |  |              * its magnitude must exceed the magnitude of any  | 
404  |  |              * finite float.  | 
405  |  |              */  | 
406  | 0  |             PyErr_Clear();  | 
407  | 0  |             i = (double)vsign;  | 
408  | 0  |             assert(wsign != 0);  | 
409  | 0  |             j = wsign * 2.0;  | 
410  | 0  |             goto Compare;  | 
411  | 0  |         }  | 
412  | 0  |         if (nbits <= 48) { | 
413  | 0  |             j = PyLong_AsDouble(w);  | 
414  |  |             /* It's impossible that <= 48 bits overflowed. */  | 
415  | 0  |             assert(j != -1.0 || ! PyErr_Occurred());  | 
416  | 0  |             goto Compare;  | 
417  | 0  |         }  | 
418  | 0  |         assert(wsign != 0); /* else nbits was 0 */  | 
419  | 0  |         assert(vsign != 0); /* if vsign were 0, then since wsign is  | 
420  |  |                              * not 0, we would have taken the  | 
421  |  |                              * vsign != wsign branch at the start */  | 
422  |  |         /* We want to work with non-negative numbers. */  | 
423  | 0  |         if (vsign < 0) { | 
424  |  |             /* "Multiply both sides" by -1; this also swaps the  | 
425  |  |              * comparator.  | 
426  |  |              */  | 
427  | 0  |             i = -i;  | 
428  | 0  |             op = _Py_SwappedOp[op];  | 
429  | 0  |         }  | 
430  | 0  |         assert(i > 0.0);  | 
431  | 0  |         (void) frexp(i, &exponent);  | 
432  |  |         /* exponent is the # of bits in v before the radix point;  | 
433  |  |          * we know that nbits (the # of bits in w) > 48 at this point  | 
434  |  |          */  | 
435  | 0  |         if (exponent < 0 || (size_t)exponent < nbits) { | 
436  | 0  |             i = 1.0;  | 
437  | 0  |             j = 2.0;  | 
438  | 0  |             goto Compare;  | 
439  | 0  |         }  | 
440  | 0  |         if ((size_t)exponent > nbits) { | 
441  | 0  |             i = 2.0;  | 
442  | 0  |             j = 1.0;  | 
443  | 0  |             goto Compare;  | 
444  | 0  |         }  | 
445  |  |         /* v and w have the same number of bits before the radix  | 
446  |  |          * point.  Construct two ints that have the same comparison  | 
447  |  |          * outcome.  | 
448  |  |          */  | 
449  | 0  |         { | 
450  | 0  |             double fracpart;  | 
451  | 0  |             double intpart;  | 
452  | 0  |             PyObject *result = NULL;  | 
453  | 0  |             PyObject *vv = NULL;  | 
454  | 0  |             PyObject *ww = w;  | 
455  |  | 
  | 
456  | 0  |             if (wsign < 0) { | 
457  | 0  |                 ww = PyNumber_Negative(w);  | 
458  | 0  |                 if (ww == NULL)  | 
459  | 0  |                     goto Error;  | 
460  | 0  |             }  | 
461  | 0  |             else  | 
462  | 0  |                 Py_INCREF(ww);  | 
463  |  |  | 
464  | 0  |             fracpart = modf(i, &intpart);  | 
465  | 0  |             vv = PyLong_FromDouble(intpart);  | 
466  | 0  |             if (vv == NULL)  | 
467  | 0  |                 goto Error;  | 
468  |  |  | 
469  | 0  |             if (fracpart != 0.0) { | 
470  |  |                 /* Shift left, and or a 1 bit into vv  | 
471  |  |                  * to represent the lost fraction.  | 
472  |  |                  */  | 
473  | 0  |                 PyObject *temp;  | 
474  |  | 
  | 
475  | 0  |                 temp = _PyLong_Lshift(ww, 1);  | 
476  | 0  |                 if (temp == NULL)  | 
477  | 0  |                     goto Error;  | 
478  | 0  |                 Py_DECREF(ww);  | 
479  | 0  |                 ww = temp;  | 
480  |  | 
  | 
481  | 0  |                 temp = _PyLong_Lshift(vv, 1);  | 
482  | 0  |                 if (temp == NULL)  | 
483  | 0  |                     goto Error;  | 
484  | 0  |                 Py_DECREF(vv);  | 
485  | 0  |                 vv = temp;  | 
486  |  | 
  | 
487  | 0  |                 temp = PyNumber_Or(vv, _PyLong_One);  | 
488  | 0  |                 if (temp == NULL)  | 
489  | 0  |                     goto Error;  | 
490  | 0  |                 Py_DECREF(vv);  | 
491  | 0  |                 vv = temp;  | 
492  | 0  |             }  | 
493  |  |  | 
494  | 0  |             r = PyObject_RichCompareBool(vv, ww, op);  | 
495  | 0  |             if (r < 0)  | 
496  | 0  |                 goto Error;  | 
497  | 0  |             result = PyBool_FromLong(r);  | 
498  | 0  |          Error:  | 
499  | 0  |             Py_XDECREF(vv);  | 
500  | 0  |             Py_XDECREF(ww);  | 
501  | 0  |             return result;  | 
502  | 0  |         }  | 
503  | 0  |     } /* else if (PyLong_Check(w)) */  | 
504  |  |  | 
505  | 0  |     else        /* w isn't float or int */  | 
506  | 0  |         goto Unimplemented;  | 
507  |  |  | 
508  | 283  |  Compare:  | 
509  | 283  |     PyFPE_START_PROTECT("richcompare", return NULL) | 
510  | 283  |     switch (op) { | 
511  | 0  |     case Py_EQ:  | 
512  | 0  |         r = i == j;  | 
513  | 0  |         break;  | 
514  | 283  |     case Py_NE:  | 
515  | 283  |         r = i != j;  | 
516  | 283  |         break;  | 
517  | 0  |     case Py_LE:  | 
518  | 0  |         r = i <= j;  | 
519  | 0  |         break;  | 
520  | 0  |     case Py_GE:  | 
521  | 0  |         r = i >= j;  | 
522  | 0  |         break;  | 
523  | 0  |     case Py_LT:  | 
524  | 0  |         r = i < j;  | 
525  | 0  |         break;  | 
526  | 0  |     case Py_GT:  | 
527  | 0  |         r = i > j;  | 
528  | 0  |         break;  | 
529  | 283  |     }  | 
530  | 283  |     PyFPE_END_PROTECT(r)  | 
531  | 283  |     return PyBool_FromLong(r);  | 
532  |  |  | 
533  | 0  |  Unimplemented:  | 
534  | 0  |     Py_RETURN_NOTIMPLEMENTED;  | 
535  | 283  | }  | 
536  |  |  | 
537  |  | static Py_hash_t  | 
538  |  | float_hash(PyFloatObject *v)  | 
539  | 10  | { | 
540  | 10  |     return _Py_HashDouble(v->ob_fval);  | 
541  | 10  | }  | 
542  |  |  | 
543  |  | static PyObject *  | 
544  |  | float_add(PyObject *v, PyObject *w)  | 
545  | 0  | { | 
546  | 0  |     double a,b;  | 
547  | 0  |     CONVERT_TO_DOUBLE(v, a);  | 
548  | 0  |     CONVERT_TO_DOUBLE(w, b);  | 
549  | 0  |     PyFPE_START_PROTECT("add", return 0) | 
550  | 0  |     a = a + b;  | 
551  | 0  |     PyFPE_END_PROTECT(a)  | 
552  | 0  |     return PyFloat_FromDouble(a);  | 
553  | 0  | }  | 
554  |  |  | 
555  |  | static PyObject *  | 
556  |  | float_sub(PyObject *v, PyObject *w)  | 
557  | 28  | { | 
558  | 28  |     double a,b;  | 
559  | 28  |     CONVERT_TO_DOUBLE(v, a);  | 
560  | 28  |     CONVERT_TO_DOUBLE(w, b);  | 
561  | 28  |     PyFPE_START_PROTECT("subtract", return 0) | 
562  | 28  |     a = a - b;  | 
563  | 28  |     PyFPE_END_PROTECT(a)  | 
564  | 28  |     return PyFloat_FromDouble(a);  | 
565  | 28  | }  | 
566  |  |  | 
567  |  | static PyObject *  | 
568  |  | float_mul(PyObject *v, PyObject *w)  | 
569  | 28  | { | 
570  | 28  |     double a,b;  | 
571  | 28  |     CONVERT_TO_DOUBLE(v, a);  | 
572  | 28  |     CONVERT_TO_DOUBLE(w, b);  | 
573  | 28  |     PyFPE_START_PROTECT("multiply", return 0) | 
574  | 28  |     a = a * b;  | 
575  | 28  |     PyFPE_END_PROTECT(a)  | 
576  | 28  |     return PyFloat_FromDouble(a);  | 
577  | 28  | }  | 
578  |  |  | 
579  |  | static PyObject *  | 
580  |  | float_div(PyObject *v, PyObject *w)  | 
581  | 0  | { | 
582  | 0  |     double a,b;  | 
583  | 0  |     CONVERT_TO_DOUBLE(v, a);  | 
584  | 0  |     CONVERT_TO_DOUBLE(w, b);  | 
585  | 0  |     if (b == 0.0) { | 
586  | 0  |         PyErr_SetString(PyExc_ZeroDivisionError,  | 
587  | 0  |                         "float division by zero");  | 
588  | 0  |         return NULL;  | 
589  | 0  |     }  | 
590  | 0  |     PyFPE_START_PROTECT("divide", return 0) | 
591  | 0  |     a = a / b;  | 
592  | 0  |     PyFPE_END_PROTECT(a)  | 
593  | 0  |     return PyFloat_FromDouble(a);  | 
594  | 0  | }  | 
595  |  |  | 
596  |  | static PyObject *  | 
597  |  | float_rem(PyObject *v, PyObject *w)  | 
598  | 0  | { | 
599  | 0  |     double vx, wx;  | 
600  | 0  |     double mod;  | 
601  | 0  |     CONVERT_TO_DOUBLE(v, vx);  | 
602  | 0  |     CONVERT_TO_DOUBLE(w, wx);  | 
603  | 0  |     if (wx == 0.0) { | 
604  | 0  |         PyErr_SetString(PyExc_ZeroDivisionError,  | 
605  | 0  |                         "float modulo");  | 
606  | 0  |         return NULL;  | 
607  | 0  |     }  | 
608  | 0  |     PyFPE_START_PROTECT("modulo", return 0) | 
609  | 0  |     mod = fmod(vx, wx);  | 
610  | 0  |     if (mod) { | 
611  |  |         /* ensure the remainder has the same sign as the denominator */  | 
612  | 0  |         if ((wx < 0) != (mod < 0)) { | 
613  | 0  |             mod += wx;  | 
614  | 0  |         }  | 
615  | 0  |     }  | 
616  | 0  |     else { | 
617  |  |         /* the remainder is zero, and in the presence of signed zeroes  | 
618  |  |            fmod returns different results across platforms; ensure  | 
619  |  |            it has the same sign as the denominator. */  | 
620  | 0  |         mod = copysign(0.0, wx);  | 
621  | 0  |     }  | 
622  | 0  |     PyFPE_END_PROTECT(mod)  | 
623  | 0  |     return PyFloat_FromDouble(mod);  | 
624  | 0  | }  | 
625  |  |  | 
626  |  | static PyObject *  | 
627  |  | float_divmod(PyObject *v, PyObject *w)  | 
628  | 0  | { | 
629  | 0  |     double vx, wx;  | 
630  | 0  |     double div, mod, floordiv;  | 
631  | 0  |     CONVERT_TO_DOUBLE(v, vx);  | 
632  | 0  |     CONVERT_TO_DOUBLE(w, wx);  | 
633  | 0  |     if (wx == 0.0) { | 
634  | 0  |         PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");  | 
635  | 0  |         return NULL;  | 
636  | 0  |     }  | 
637  | 0  |     PyFPE_START_PROTECT("divmod", return 0) | 
638  | 0  |     mod = fmod(vx, wx);  | 
639  |  |     /* fmod is typically exact, so vx-mod is *mathematically* an  | 
640  |  |        exact multiple of wx.  But this is fp arithmetic, and fp  | 
641  |  |        vx - mod is an approximation; the result is that div may  | 
642  |  |        not be an exact integral value after the division, although  | 
643  |  |        it will always be very close to one.  | 
644  |  |     */  | 
645  | 0  |     div = (vx - mod) / wx;  | 
646  | 0  |     if (mod) { | 
647  |  |         /* ensure the remainder has the same sign as the denominator */  | 
648  | 0  |         if ((wx < 0) != (mod < 0)) { | 
649  | 0  |             mod += wx;  | 
650  | 0  |             div -= 1.0;  | 
651  | 0  |         }  | 
652  | 0  |     }  | 
653  | 0  |     else { | 
654  |  |         /* the remainder is zero, and in the presence of signed zeroes  | 
655  |  |            fmod returns different results across platforms; ensure  | 
656  |  |            it has the same sign as the denominator. */  | 
657  | 0  |         mod = copysign(0.0, wx);  | 
658  | 0  |     }  | 
659  |  |     /* snap quotient to nearest integral value */  | 
660  | 0  |     if (div) { | 
661  | 0  |         floordiv = floor(div);  | 
662  | 0  |         if (div - floordiv > 0.5)  | 
663  | 0  |             floordiv += 1.0;  | 
664  | 0  |     }  | 
665  | 0  |     else { | 
666  |  |         /* div is zero - get the same sign as the true quotient */  | 
667  | 0  |         floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */  | 
668  | 0  |     }  | 
669  | 0  |     PyFPE_END_PROTECT(floordiv)  | 
670  | 0  |     return Py_BuildValue("(dd)", floordiv, mod); | 
671  | 0  | }  | 
672  |  |  | 
673  |  | static PyObject *  | 
674  |  | float_floor_div(PyObject *v, PyObject *w)  | 
675  | 0  | { | 
676  | 0  |     PyObject *t, *r;  | 
677  |  | 
  | 
678  | 0  |     t = float_divmod(v, w);  | 
679  | 0  |     if (t == NULL || t == Py_NotImplemented)  | 
680  | 0  |         return t;  | 
681  | 0  |     assert(PyTuple_CheckExact(t));  | 
682  | 0  |     r = PyTuple_GET_ITEM(t, 0);  | 
683  | 0  |     Py_INCREF(r);  | 
684  | 0  |     Py_DECREF(t);  | 
685  | 0  |     return r;  | 
686  | 0  | }  | 
687  |  |  | 
688  |  | /* determine whether x is an odd integer or not;  assumes that  | 
689  |  |    x is not an infinity or nan. */  | 
690  | 0  | #define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)  | 
691  |  |  | 
692  |  | static PyObject *  | 
693  |  | float_pow(PyObject *v, PyObject *w, PyObject *z)  | 
694  | 0  | { | 
695  | 0  |     double iv, iw, ix;  | 
696  | 0  |     int negate_result = 0;  | 
697  |  | 
  | 
698  | 0  |     if ((PyObject *)z != Py_None) { | 
699  | 0  |         PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "  | 
700  | 0  |             "allowed unless all arguments are integers");  | 
701  | 0  |         return NULL;  | 
702  | 0  |     }  | 
703  |  |  | 
704  | 0  |     CONVERT_TO_DOUBLE(v, iv);  | 
705  | 0  |     CONVERT_TO_DOUBLE(w, iw);  | 
706  |  |  | 
707  |  |     /* Sort out special cases here instead of relying on pow() */  | 
708  | 0  |     if (iw == 0) {              /* v**0 is 1, even 0**0 */ | 
709  | 0  |         return PyFloat_FromDouble(1.0);  | 
710  | 0  |     }  | 
711  | 0  |     if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */ | 
712  | 0  |         return PyFloat_FromDouble(iv);  | 
713  | 0  |     }  | 
714  | 0  |     if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */ | 
715  | 0  |         return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);  | 
716  | 0  |     }  | 
717  | 0  |     if (Py_IS_INFINITY(iw)) { | 
718  |  |         /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if  | 
719  |  |          *     abs(v) > 1 (including case where v infinite)  | 
720  |  |          *  | 
721  |  |          * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if  | 
722  |  |          *     abs(v) > 1 (including case where v infinite)  | 
723  |  |          */  | 
724  | 0  |         iv = fabs(iv);  | 
725  | 0  |         if (iv == 1.0)  | 
726  | 0  |             return PyFloat_FromDouble(1.0);  | 
727  | 0  |         else if ((iw > 0.0) == (iv > 1.0))  | 
728  | 0  |             return PyFloat_FromDouble(fabs(iw)); /* return inf */  | 
729  | 0  |         else  | 
730  | 0  |             return PyFloat_FromDouble(0.0);  | 
731  | 0  |     }  | 
732  | 0  |     if (Py_IS_INFINITY(iv)) { | 
733  |  |         /* (+-inf)**w is: inf for w positive, 0 for w negative; in  | 
734  |  |          *     both cases, we need to add the appropriate sign if w is  | 
735  |  |          *     an odd integer.  | 
736  |  |          */  | 
737  | 0  |         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);  | 
738  | 0  |         if (iw > 0.0)  | 
739  | 0  |             return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));  | 
740  | 0  |         else  | 
741  | 0  |             return PyFloat_FromDouble(iw_is_odd ?  | 
742  | 0  |                                       copysign(0.0, iv) : 0.0);  | 
743  | 0  |     }  | 
744  | 0  |     if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero | 
745  |  |                          (already dealt with above), and an error  | 
746  |  |                          if w is negative. */  | 
747  | 0  |         int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);  | 
748  | 0  |         if (iw < 0.0) { | 
749  | 0  |             PyErr_SetString(PyExc_ZeroDivisionError,  | 
750  | 0  |                             "0.0 cannot be raised to a "  | 
751  | 0  |                             "negative power");  | 
752  | 0  |             return NULL;  | 
753  | 0  |         }  | 
754  |  |         /* use correct sign if iw is odd */  | 
755  | 0  |         return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);  | 
756  | 0  |     }  | 
757  |  |  | 
758  | 0  |     if (iv < 0.0) { | 
759  |  |         /* Whether this is an error is a mess, and bumps into libm  | 
760  |  |          * bugs so we have to figure it out ourselves.  | 
761  |  |          */  | 
762  | 0  |         if (iw != floor(iw)) { | 
763  |  |             /* Negative numbers raised to fractional powers  | 
764  |  |              * become complex.  | 
765  |  |              */  | 
766  | 0  |             return PyComplex_Type.tp_as_number->nb_power(v, w, z);  | 
767  | 0  |         }  | 
768  |  |         /* iw is an exact integer, albeit perhaps a very large  | 
769  |  |          * one.  Replace iv by its absolute value and remember  | 
770  |  |          * to negate the pow result if iw is odd.  | 
771  |  |          */  | 
772  | 0  |         iv = -iv;  | 
773  | 0  |         negate_result = DOUBLE_IS_ODD_INTEGER(iw);  | 
774  | 0  |     }  | 
775  |  |  | 
776  | 0  |     if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ | 
777  |  |         /* (-1) ** large_integer also ends up here.  Here's an  | 
778  |  |          * extract from the comments for the previous  | 
779  |  |          * implementation explaining why this special case is  | 
780  |  |          * necessary:  | 
781  |  |          *  | 
782  |  |          * -1 raised to an exact integer should never be exceptional.  | 
783  |  |          * Alas, some libms (chiefly glibc as of early 2003) return  | 
784  |  |          * NaN and set EDOM on pow(-1, large_int) if the int doesn't  | 
785  |  |          * happen to be representable in a *C* integer.  That's a  | 
786  |  |          * bug.  | 
787  |  |          */  | 
788  | 0  |         return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);  | 
789  | 0  |     }  | 
790  |  |  | 
791  |  |     /* Now iv and iw are finite, iw is nonzero, and iv is  | 
792  |  |      * positive and not equal to 1.0.  We finally allow  | 
793  |  |      * the platform pow to step in and do the rest.  | 
794  |  |      */  | 
795  | 0  |     errno = 0;  | 
796  | 0  |     PyFPE_START_PROTECT("pow", return NULL) | 
797  | 0  |     ix = pow(iv, iw);  | 
798  | 0  |     PyFPE_END_PROTECT(ix)  | 
799  | 0  |     Py_ADJUST_ERANGE1(ix);  | 
800  | 0  |     if (negate_result)  | 
801  | 0  |         ix = -ix;  | 
802  |  | 
  | 
803  | 0  |     if (errno != 0) { | 
804  |  |         /* We don't expect any errno value other than ERANGE, but  | 
805  |  |          * the range of libm bugs appears unbounded.  | 
806  |  |          */  | 
807  | 0  |         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :  | 
808  | 0  |                              PyExc_ValueError);  | 
809  | 0  |         return NULL;  | 
810  | 0  |     }  | 
811  | 0  |     return PyFloat_FromDouble(ix);  | 
812  | 0  | }  | 
813  |  |  | 
814  |  | #undef DOUBLE_IS_ODD_INTEGER  | 
815  |  |  | 
816  |  | static PyObject *  | 
817  |  | float_neg(PyFloatObject *v)  | 
818  | 0  | { | 
819  | 0  |     return PyFloat_FromDouble(-v->ob_fval);  | 
820  | 0  | }  | 
821  |  |  | 
822  |  | static PyObject *  | 
823  |  | float_abs(PyFloatObject *v)  | 
824  | 0  | { | 
825  | 0  |     return PyFloat_FromDouble(fabs(v->ob_fval));  | 
826  | 0  | }  | 
827  |  |  | 
828  |  | static int  | 
829  |  | float_bool(PyFloatObject *v)  | 
830  | 0  | { | 
831  | 0  |     return v->ob_fval != 0.0;  | 
832  | 0  | }  | 
833  |  |  | 
834  |  | /*[clinic input]  | 
835  |  | float.is_integer  | 
836  |  |  | 
837  |  | Return True if the float is an integer.  | 
838  |  | [clinic start generated code]*/  | 
839  |  |  | 
840  |  | static PyObject *  | 
841  |  | float_is_integer_impl(PyObject *self)  | 
842  |  | /*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/  | 
843  | 0  | { | 
844  | 0  |     double x = PyFloat_AsDouble(self);  | 
845  | 0  |     PyObject *o;  | 
846  |  | 
  | 
847  | 0  |     if (x == -1.0 && PyErr_Occurred())  | 
848  | 0  |         return NULL;  | 
849  | 0  |     if (!Py_IS_FINITE(x))  | 
850  | 0  |         Py_RETURN_FALSE;  | 
851  | 0  |     errno = 0;  | 
852  | 0  |     PyFPE_START_PROTECT("is_integer", return NULL) | 
853  | 0  |     o = (floor(x) == x) ? Py_True : Py_False;  | 
854  | 0  |     PyFPE_END_PROTECT(x)  | 
855  | 0  |     if (errno != 0) { | 
856  | 0  |         PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :  | 
857  | 0  |                              PyExc_ValueError);  | 
858  | 0  |         return NULL;  | 
859  | 0  |     }  | 
860  | 0  |     Py_INCREF(o);  | 
861  | 0  |     return o;  | 
862  | 0  | }  | 
863  |  |  | 
864  |  | /*[clinic input]  | 
865  |  | float.__trunc__  | 
866  |  |  | 
867  |  | Return the Integral closest to x between 0 and x.  | 
868  |  | [clinic start generated code]*/  | 
869  |  |  | 
870  |  | static PyObject *  | 
871  |  | float___trunc___impl(PyObject *self)  | 
872  |  | /*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/  | 
873  | 249  | { | 
874  | 249  |     double x = PyFloat_AsDouble(self);  | 
875  | 249  |     double wholepart;           /* integral portion of x, rounded toward 0 */  | 
876  |  |  | 
877  | 249  |     (void)modf(x, &wholepart);  | 
878  |  |     /* Try to get out cheap if this fits in a Python int.  The attempt  | 
879  |  |      * to cast to long must be protected, as C doesn't define what  | 
880  |  |      * happens if the double is too big to fit in a long.  Some rare  | 
881  |  |      * systems raise an exception then (RISCOS was mentioned as one,  | 
882  |  |      * and someone using a non-default option on Sun also bumped into  | 
883  |  |      * that).  Note that checking for >= and <= LONG_{MIN,MAX} would | 
884  |  |      * still be vulnerable:  if a long has more bits of precision than  | 
885  |  |      * a double, casting MIN/MAX to double may yield an approximation,  | 
886  |  |      * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would  | 
887  |  |      * yield true from the C expression wholepart<=LONG_MAX, despite  | 
888  |  |      * that wholepart is actually greater than LONG_MAX.  | 
889  |  |      */  | 
890  | 249  |     if (LONG_MIN < wholepart && wholepart < LONG_MAX) { | 
891  | 249  |         const long aslong = (long)wholepart;  | 
892  | 249  |         return PyLong_FromLong(aslong);  | 
893  | 249  |     }  | 
894  | 0  |     return PyLong_FromDouble(wholepart);  | 
895  | 249  | }  | 
896  |  |  | 
897  |  | /* double_round: rounds a finite double to the closest multiple of  | 
898  |  |    10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=  | 
899  |  |    ndigits <= 323).  Returns a Python float, or sets a Python error and  | 
900  |  |    returns NULL on failure (OverflowError and memory errors are possible). */  | 
901  |  |  | 
902  |  | #ifndef PY_NO_SHORT_FLOAT_REPR  | 
903  |  | /* version of double_round that uses the correctly-rounded string<->double  | 
904  |  |    conversions from Python/dtoa.c */  | 
905  |  |  | 
906  |  | static PyObject *  | 
907  | 0  | double_round(double x, int ndigits) { | 
908  |  | 
  | 
909  | 0  |     double rounded;  | 
910  | 0  |     Py_ssize_t buflen, mybuflen=100;  | 
911  | 0  |     char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;  | 
912  | 0  |     int decpt, sign;  | 
913  | 0  |     PyObject *result = NULL;  | 
914  | 0  |     _Py_SET_53BIT_PRECISION_HEADER;  | 
915  |  |  | 
916  |  |     /* round to a decimal string */  | 
917  | 0  |     _Py_SET_53BIT_PRECISION_START;  | 
918  | 0  |     buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);  | 
919  | 0  |     _Py_SET_53BIT_PRECISION_END;  | 
920  | 0  |     if (buf == NULL) { | 
921  | 0  |         PyErr_NoMemory();  | 
922  | 0  |         return NULL;  | 
923  | 0  |     }  | 
924  |  |  | 
925  |  |     /* Get new buffer if shortbuf is too small.  Space needed <= buf_end -  | 
926  |  |     buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */  | 
927  | 0  |     buflen = buf_end - buf;  | 
928  | 0  |     if (buflen + 8 > mybuflen) { | 
929  | 0  |         mybuflen = buflen+8;  | 
930  | 0  |         mybuf = (char *)PyMem_Malloc(mybuflen);  | 
931  | 0  |         if (mybuf == NULL) { | 
932  | 0  |             PyErr_NoMemory();  | 
933  | 0  |             goto exit;  | 
934  | 0  |         }  | 
935  | 0  |     }  | 
936  |  |     /* copy buf to mybuf, adding exponent, sign and leading 0 */  | 
937  | 0  |     PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),  | 
938  | 0  |                   buf, decpt - (int)buflen);  | 
939  |  |  | 
940  |  |     /* and convert the resulting string back to a double */  | 
941  | 0  |     errno = 0;  | 
942  | 0  |     _Py_SET_53BIT_PRECISION_START;  | 
943  | 0  |     rounded = _Py_dg_strtod(mybuf, NULL);  | 
944  | 0  |     _Py_SET_53BIT_PRECISION_END;  | 
945  | 0  |     if (errno == ERANGE && fabs(rounded) >= 1.)  | 
946  | 0  |         PyErr_SetString(PyExc_OverflowError,  | 
947  | 0  |                         "rounded value too large to represent");  | 
948  | 0  |     else  | 
949  | 0  |         result = PyFloat_FromDouble(rounded);  | 
950  |  |  | 
951  |  |     /* done computing value;  now clean up */  | 
952  | 0  |     if (mybuf != shortbuf)  | 
953  | 0  |         PyMem_Free(mybuf);  | 
954  | 0  |   exit:  | 
955  | 0  |     _Py_dg_freedtoa(buf);  | 
956  | 0  |     return result;  | 
957  | 0  | }  | 
958  |  |  | 
959  |  | #else /* PY_NO_SHORT_FLOAT_REPR */  | 
960  |  |  | 
961  |  | /* fallback version, to be used when correctly rounded binary<->decimal  | 
962  |  |    conversions aren't available */  | 
963  |  |  | 
964  |  | static PyObject *  | 
965  |  | double_round(double x, int ndigits) { | 
966  |  |     double pow1, pow2, y, z;  | 
967  |  |     if (ndigits >= 0) { | 
968  |  |         if (ndigits > 22) { | 
969  |  |             /* pow1 and pow2 are each safe from overflow, but  | 
970  |  |                pow1*pow2 ~= pow(10.0, ndigits) might overflow */  | 
971  |  |             pow1 = pow(10.0, (double)(ndigits-22));  | 
972  |  |             pow2 = 1e22;  | 
973  |  |         }  | 
974  |  |         else { | 
975  |  |             pow1 = pow(10.0, (double)ndigits);  | 
976  |  |             pow2 = 1.0;  | 
977  |  |         }  | 
978  |  |         y = (x*pow1)*pow2;  | 
979  |  |         /* if y overflows, then rounded value is exactly x */  | 
980  |  |         if (!Py_IS_FINITE(y))  | 
981  |  |             return PyFloat_FromDouble(x);  | 
982  |  |     }  | 
983  |  |     else { | 
984  |  |         pow1 = pow(10.0, (double)-ndigits);  | 
985  |  |         pow2 = 1.0; /* unused; silences a gcc compiler warning */  | 
986  |  |         y = x / pow1;  | 
987  |  |     }  | 
988  |  |  | 
989  |  |     z = round(y);  | 
990  |  |     if (fabs(y-z) == 0.5)  | 
991  |  |         /* halfway between two integers; use round-half-even */  | 
992  |  |         z = 2.0*round(y/2.0);  | 
993  |  |  | 
994  |  |     if (ndigits >= 0)  | 
995  |  |         z = (z / pow2) / pow1;  | 
996  |  |     else  | 
997  |  |         z *= pow1;  | 
998  |  |  | 
999  |  |     /* if computation resulted in overflow, raise OverflowError */  | 
1000  |  |     if (!Py_IS_FINITE(z)) { | 
1001  |  |         PyErr_SetString(PyExc_OverflowError,  | 
1002  |  |                         "overflow occurred during round");  | 
1003  |  |         return NULL;  | 
1004  |  |     }  | 
1005  |  |  | 
1006  |  |     return PyFloat_FromDouble(z);  | 
1007  |  | }  | 
1008  |  |  | 
1009  |  | #endif /* PY_NO_SHORT_FLOAT_REPR */  | 
1010  |  |  | 
1011  |  | /* round a Python float v to the closest multiple of 10**-ndigits */  | 
1012  |  |  | 
1013  |  | /*[clinic input]  | 
1014  |  | float.__round__  | 
1015  |  |  | 
1016  |  |     ndigits as o_ndigits: object = None  | 
1017  |  |     /  | 
1018  |  |  | 
1019  |  | Return the Integral closest to x, rounding half toward even.  | 
1020  |  |  | 
1021  |  | When an argument is passed, work like built-in round(x, ndigits).  | 
1022  |  | [clinic start generated code]*/  | 
1023  |  |  | 
1024  |  | static PyObject *  | 
1025  |  | float___round___impl(PyObject *self, PyObject *o_ndigits)  | 
1026  |  | /*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/  | 
1027  | 0  | { | 
1028  | 0  |     double x, rounded;  | 
1029  | 0  |     Py_ssize_t ndigits;  | 
1030  |  | 
  | 
1031  | 0  |     x = PyFloat_AsDouble(self);  | 
1032  | 0  |     if (o_ndigits == Py_None) { | 
1033  |  |         /* single-argument round or with None ndigits:  | 
1034  |  |          * round to nearest integer */  | 
1035  | 0  |         rounded = round(x);  | 
1036  | 0  |         if (fabs(x-rounded) == 0.5)  | 
1037  |  |             /* halfway case: round to even */  | 
1038  | 0  |             rounded = 2.0*round(x/2.0);  | 
1039  | 0  |         return PyLong_FromDouble(rounded);  | 
1040  | 0  |     }  | 
1041  |  |  | 
1042  |  |     /* interpret second argument as a Py_ssize_t; clips on overflow */  | 
1043  | 0  |     ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);  | 
1044  | 0  |     if (ndigits == -1 && PyErr_Occurred())  | 
1045  | 0  |         return NULL;  | 
1046  |  |  | 
1047  |  |     /* nans and infinities round to themselves */  | 
1048  | 0  |     if (!Py_IS_FINITE(x))  | 
1049  | 0  |         return PyFloat_FromDouble(x);  | 
1050  |  |  | 
1051  |  |     /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x  | 
1052  |  |        always rounds to itself.  For ndigits < NDIGITS_MIN, x always  | 
1053  |  |        rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */  | 
1054  | 0  | #define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))  | 
1055  | 0  | #define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))  | 
1056  | 0  |     if (ndigits > NDIGITS_MAX)  | 
1057  |  |         /* return x */  | 
1058  | 0  |         return PyFloat_FromDouble(x);  | 
1059  | 0  |     else if (ndigits < NDIGITS_MIN)  | 
1060  |  |         /* return 0.0, but with sign of x */  | 
1061  | 0  |         return PyFloat_FromDouble(0.0*x);  | 
1062  | 0  |     else  | 
1063  |  |         /* finite x, and ndigits is not unreasonably large */  | 
1064  | 0  |         return double_round(x, (int)ndigits);  | 
1065  | 0  | #undef NDIGITS_MAX  | 
1066  | 0  | #undef NDIGITS_MIN  | 
1067  | 0  | }  | 
1068  |  |  | 
1069  |  | static PyObject *  | 
1070  |  | float_float(PyObject *v)  | 
1071  | 0  | { | 
1072  | 0  |     if (PyFloat_CheckExact(v))  | 
1073  | 0  |         Py_INCREF(v);  | 
1074  | 0  |     else  | 
1075  | 0  |         v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);  | 
1076  | 0  |     return v;  | 
1077  | 0  | }  | 
1078  |  |  | 
1079  |  | /*[clinic input]  | 
1080  |  | float.conjugate  | 
1081  |  |  | 
1082  |  | Return self, the complex conjugate of any float.  | 
1083  |  | [clinic start generated code]*/  | 
1084  |  |  | 
1085  |  | static PyObject *  | 
1086  |  | float_conjugate_impl(PyObject *self)  | 
1087  |  | /*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/  | 
1088  | 0  | { | 
1089  | 0  |     return float_float(self);  | 
1090  | 0  | }  | 
1091  |  |  | 
1092  |  | /* turn ASCII hex characters into integer values and vice versa */  | 
1093  |  |  | 
1094  |  | static char  | 
1095  |  | char_from_hex(int x)  | 
1096  | 0  | { | 
1097  | 0  |     assert(0 <= x && x < 16);  | 
1098  | 0  |     return Py_hexdigits[x];  | 
1099  | 0  | }  | 
1100  |  |  | 
1101  |  | static int  | 
1102  | 0  | hex_from_char(char c) { | 
1103  | 0  |     int x;  | 
1104  | 0  |     switch(c) { | 
1105  | 0  |     case '0':  | 
1106  | 0  |         x = 0;  | 
1107  | 0  |         break;  | 
1108  | 0  |     case '1':  | 
1109  | 0  |         x = 1;  | 
1110  | 0  |         break;  | 
1111  | 0  |     case '2':  | 
1112  | 0  |         x = 2;  | 
1113  | 0  |         break;  | 
1114  | 0  |     case '3':  | 
1115  | 0  |         x = 3;  | 
1116  | 0  |         break;  | 
1117  | 0  |     case '4':  | 
1118  | 0  |         x = 4;  | 
1119  | 0  |         break;  | 
1120  | 0  |     case '5':  | 
1121  | 0  |         x = 5;  | 
1122  | 0  |         break;  | 
1123  | 0  |     case '6':  | 
1124  | 0  |         x = 6;  | 
1125  | 0  |         break;  | 
1126  | 0  |     case '7':  | 
1127  | 0  |         x = 7;  | 
1128  | 0  |         break;  | 
1129  | 0  |     case '8':  | 
1130  | 0  |         x = 8;  | 
1131  | 0  |         break;  | 
1132  | 0  |     case '9':  | 
1133  | 0  |         x = 9;  | 
1134  | 0  |         break;  | 
1135  | 0  |     case 'a':  | 
1136  | 0  |     case 'A':  | 
1137  | 0  |         x = 10;  | 
1138  | 0  |         break;  | 
1139  | 0  |     case 'b':  | 
1140  | 0  |     case 'B':  | 
1141  | 0  |         x = 11;  | 
1142  | 0  |         break;  | 
1143  | 0  |     case 'c':  | 
1144  | 0  |     case 'C':  | 
1145  | 0  |         x = 12;  | 
1146  | 0  |         break;  | 
1147  | 0  |     case 'd':  | 
1148  | 0  |     case 'D':  | 
1149  | 0  |         x = 13;  | 
1150  | 0  |         break;  | 
1151  | 0  |     case 'e':  | 
1152  | 0  |     case 'E':  | 
1153  | 0  |         x = 14;  | 
1154  | 0  |         break;  | 
1155  | 0  |     case 'f':  | 
1156  | 0  |     case 'F':  | 
1157  | 0  |         x = 15;  | 
1158  | 0  |         break;  | 
1159  | 0  |     default:  | 
1160  | 0  |         x = -1;  | 
1161  | 0  |         break;  | 
1162  | 0  |     }  | 
1163  | 0  |     return x;  | 
1164  | 0  | }  | 
1165  |  |  | 
1166  |  | /* convert a float to a hexadecimal string */  | 
1167  |  |  | 
1168  |  | /* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer  | 
1169  |  |    of the form 4k+1. */  | 
1170  | 0  | #define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4  | 
1171  |  |  | 
1172  |  | /*[clinic input]  | 
1173  |  | float.hex  | 
1174  |  |  | 
1175  |  | Return a hexadecimal representation of a floating-point number.  | 
1176  |  |  | 
1177  |  | >>> (-0.1).hex()  | 
1178  |  | '-0x1.999999999999ap-4'  | 
1179  |  | >>> 3.14159.hex()  | 
1180  |  | '0x1.921f9f01b866ep+1'  | 
1181  |  | [clinic start generated code]*/  | 
1182  |  |  | 
1183  |  | static PyObject *  | 
1184  |  | float_hex_impl(PyObject *self)  | 
1185  |  | /*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/  | 
1186  | 0  | { | 
1187  | 0  |     double x, m;  | 
1188  | 0  |     int e, shift, i, si, esign;  | 
1189  |  |     /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the  | 
1190  |  |        trailing NUL byte. */  | 
1191  | 0  |     char s[(TOHEX_NBITS-1)/4+3];  | 
1192  |  | 
  | 
1193  | 0  |     CONVERT_TO_DOUBLE(self, x);  | 
1194  |  | 
  | 
1195  | 0  |     if (Py_IS_NAN(x) || Py_IS_INFINITY(x))  | 
1196  | 0  |         return float_repr((PyFloatObject *)self);  | 
1197  |  |  | 
1198  | 0  |     if (x == 0.0) { | 
1199  | 0  |         if (copysign(1.0, x) == -1.0)  | 
1200  | 0  |             return PyUnicode_FromString("-0x0.0p+0"); | 
1201  | 0  |         else  | 
1202  | 0  |             return PyUnicode_FromString("0x0.0p+0"); | 
1203  | 0  |     }  | 
1204  |  |  | 
1205  | 0  |     m = frexp(fabs(x), &e);  | 
1206  | 0  |     shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);  | 
1207  | 0  |     m = ldexp(m, shift);  | 
1208  | 0  |     e -= shift;  | 
1209  |  | 
  | 
1210  | 0  |     si = 0;  | 
1211  | 0  |     s[si] = char_from_hex((int)m);  | 
1212  | 0  |     si++;  | 
1213  | 0  |     m -= (int)m;  | 
1214  | 0  |     s[si] = '.';  | 
1215  | 0  |     si++;  | 
1216  | 0  |     for (i=0; i < (TOHEX_NBITS-1)/4; i++) { | 
1217  | 0  |         m *= 16.0;  | 
1218  | 0  |         s[si] = char_from_hex((int)m);  | 
1219  | 0  |         si++;  | 
1220  | 0  |         m -= (int)m;  | 
1221  | 0  |     }  | 
1222  | 0  |     s[si] = '\0';  | 
1223  |  | 
  | 
1224  | 0  |     if (e < 0) { | 
1225  | 0  |         esign = (int)'-';  | 
1226  | 0  |         e = -e;  | 
1227  | 0  |     }  | 
1228  | 0  |     else  | 
1229  | 0  |         esign = (int)'+';  | 
1230  |  | 
  | 
1231  | 0  |     if (x < 0.0)  | 
1232  | 0  |         return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); | 
1233  | 0  |     else  | 
1234  | 0  |         return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); | 
1235  | 0  | }  | 
1236  |  |  | 
1237  |  | /* Convert a hexadecimal string to a float. */  | 
1238  |  |  | 
1239  |  | /*[clinic input]  | 
1240  |  | @classmethod  | 
1241  |  | float.fromhex  | 
1242  |  |  | 
1243  |  |     string: object  | 
1244  |  |     /  | 
1245  |  |  | 
1246  |  | Create a floating-point number from a hexadecimal string.  | 
1247  |  |  | 
1248  |  | >>> float.fromhex('0x1.ffffp10') | 
1249  |  | 2047.984375  | 
1250  |  | >>> float.fromhex('-0x1p-1074') | 
1251  |  | -5e-324  | 
1252  |  | [clinic start generated code]*/  | 
1253  |  |  | 
1254  |  | static PyObject *  | 
1255  |  | float_fromhex(PyTypeObject *type, PyObject *string)  | 
1256  |  | /*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/  | 
1257  | 0  | { | 
1258  | 0  |     PyObject *result;  | 
1259  | 0  |     double x;  | 
1260  | 0  |     long exp, top_exp, lsb, key_digit;  | 
1261  | 0  |     const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;  | 
1262  | 0  |     int half_eps, digit, round_up, negate=0;  | 
1263  | 0  |     Py_ssize_t length, ndigits, fdigits, i;  | 
1264  |  |  | 
1265  |  |     /*  | 
1266  |  |      * For the sake of simplicity and correctness, we impose an artificial  | 
1267  |  |      * limit on ndigits, the total number of hex digits in the coefficient  | 
1268  |  |      * The limit is chosen to ensure that, writing exp for the exponent,  | 
1269  |  |      *  | 
1270  |  |      *   (1) if exp > LONG_MAX/2 then the value of the hex string is  | 
1271  |  |      *   guaranteed to overflow (provided it's nonzero)  | 
1272  |  |      *  | 
1273  |  |      *   (2) if exp < LONG_MIN/2 then the value of the hex string is  | 
1274  |  |      *   guaranteed to underflow to 0.  | 
1275  |  |      *  | 
1276  |  |      *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of  | 
1277  |  |      *   overflow in the calculation of exp and top_exp below.  | 
1278  |  |      *  | 
1279  |  |      * More specifically, ndigits is assumed to satisfy the following  | 
1280  |  |      * inequalities:  | 
1281  |  |      *  | 
1282  |  |      *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2  | 
1283  |  |      *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP  | 
1284  |  |      *  | 
1285  |  |      * If either of these inequalities is not satisfied, a ValueError is  | 
1286  |  |      * raised.  Otherwise, write x for the value of the hex string, and  | 
1287  |  |      * assume x is nonzero.  Then  | 
1288  |  |      *  | 
1289  |  |      *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).  | 
1290  |  |      *  | 
1291  |  |      * Now if exp > LONG_MAX/2 then:  | 
1292  |  |      *  | 
1293  |  |      *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)  | 
1294  |  |      *                    = DBL_MAX_EXP  | 
1295  |  |      *  | 
1296  |  |      * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C  | 
1297  |  |      * double, so overflows.  If exp < LONG_MIN/2, then  | 
1298  |  |      *  | 
1299  |  |      *   exp + 4*ndigits <= LONG_MIN/2 - 1 + (  | 
1300  |  |      *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)  | 
1301  |  |      *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1  | 
1302  |  |      *  | 
1303  |  |      * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0  | 
1304  |  |      * when converted to a C double.  | 
1305  |  |      *  | 
1306  |  |      * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both  | 
1307  |  |      * exp+4*ndigits and exp-4*ndigits are within the range of a long.  | 
1308  |  |      */  | 
1309  |  | 
  | 
1310  | 0  |     s = PyUnicode_AsUTF8AndSize(string, &length);  | 
1311  | 0  |     if (s == NULL)  | 
1312  | 0  |         return NULL;  | 
1313  | 0  |     s_end = s + length;  | 
1314  |  |  | 
1315  |  |     /********************  | 
1316  |  |      * Parse the string *  | 
1317  |  |      ********************/  | 
1318  |  |  | 
1319  |  |     /* leading whitespace */  | 
1320  | 0  |     while (Py_ISSPACE(*s))  | 
1321  | 0  |         s++;  | 
1322  |  |  | 
1323  |  |     /* infinities and nans */  | 
1324  | 0  |     x = _Py_parse_inf_or_nan(s, (char **)&coeff_end);  | 
1325  | 0  |     if (coeff_end != s) { | 
1326  | 0  |         s = coeff_end;  | 
1327  | 0  |         goto finished;  | 
1328  | 0  |     }  | 
1329  |  |  | 
1330  |  |     /* optional sign */  | 
1331  | 0  |     if (*s == '-') { | 
1332  | 0  |         s++;  | 
1333  | 0  |         negate = 1;  | 
1334  | 0  |     }  | 
1335  | 0  |     else if (*s == '+')  | 
1336  | 0  |         s++;  | 
1337  |  |  | 
1338  |  |     /* [0x] */  | 
1339  | 0  |     s_store = s;  | 
1340  | 0  |     if (*s == '0') { | 
1341  | 0  |         s++;  | 
1342  | 0  |         if (*s == 'x' || *s == 'X')  | 
1343  | 0  |             s++;  | 
1344  | 0  |         else  | 
1345  | 0  |             s = s_store;  | 
1346  | 0  |     }  | 
1347  |  |  | 
1348  |  |     /* coefficient: <integer> [. <fraction>] */  | 
1349  | 0  |     coeff_start = s;  | 
1350  | 0  |     while (hex_from_char(*s) >= 0)  | 
1351  | 0  |         s++;  | 
1352  | 0  |     s_store = s;  | 
1353  | 0  |     if (*s == '.') { | 
1354  | 0  |         s++;  | 
1355  | 0  |         while (hex_from_char(*s) >= 0)  | 
1356  | 0  |             s++;  | 
1357  | 0  |         coeff_end = s-1;  | 
1358  | 0  |     }  | 
1359  | 0  |     else  | 
1360  | 0  |         coeff_end = s;  | 
1361  |  |  | 
1362  |  |     /* ndigits = total # of hex digits; fdigits = # after point */  | 
1363  | 0  |     ndigits = coeff_end - coeff_start;  | 
1364  | 0  |     fdigits = coeff_end - s_store;  | 
1365  | 0  |     if (ndigits == 0)  | 
1366  | 0  |         goto parse_error;  | 
1367  | 0  |     if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,  | 
1368  | 0  |                          LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)  | 
1369  | 0  |         goto insane_length_error;  | 
1370  |  |  | 
1371  |  |     /* [p <exponent>] */  | 
1372  | 0  |     if (*s == 'p' || *s == 'P') { | 
1373  | 0  |         s++;  | 
1374  | 0  |         exp_start = s;  | 
1375  | 0  |         if (*s == '-' || *s == '+')  | 
1376  | 0  |             s++;  | 
1377  | 0  |         if (!('0' <= *s && *s <= '9')) | 
1378  | 0  |             goto parse_error;  | 
1379  | 0  |         s++;  | 
1380  | 0  |         while ('0' <= *s && *s <= '9') | 
1381  | 0  |             s++;  | 
1382  | 0  |         exp = strtol(exp_start, NULL, 10);  | 
1383  | 0  |     }  | 
1384  | 0  |     else  | 
1385  | 0  |         exp = 0;  | 
1386  |  |  | 
1387  |  | /* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */  | 
1388  | 0  | #define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \  | 
1389  | 0  |                      coeff_end-(j) :                                    \  | 
1390  | 0  |                      coeff_end-1-(j)))  | 
1391  |  |  | 
1392  |  |     /*******************************************  | 
1393  |  |      * Compute rounded value of the hex string *  | 
1394  |  |      *******************************************/  | 
1395  |  |  | 
1396  |  |     /* Discard leading zeros, and catch extreme overflow and underflow */  | 
1397  | 0  |     while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)  | 
1398  | 0  |         ndigits--;  | 
1399  | 0  |     if (ndigits == 0 || exp < LONG_MIN/2) { | 
1400  | 0  |         x = 0.0;  | 
1401  | 0  |         goto finished;  | 
1402  | 0  |     }  | 
1403  | 0  |     if (exp > LONG_MAX/2)  | 
1404  | 0  |         goto overflow_error;  | 
1405  |  |  | 
1406  |  |     /* Adjust exponent for fractional part. */  | 
1407  | 0  |     exp = exp - 4*((long)fdigits);  | 
1408  |  |  | 
1409  |  |     /* top_exp = 1 more than exponent of most sig. bit of coefficient */  | 
1410  | 0  |     top_exp = exp + 4*((long)ndigits - 1);  | 
1411  | 0  |     for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)  | 
1412  | 0  |         top_exp++;  | 
1413  |  |  | 
1414  |  |     /* catch almost all nonextreme cases of overflow and underflow here */  | 
1415  | 0  |     if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { | 
1416  | 0  |         x = 0.0;  | 
1417  | 0  |         goto finished;  | 
1418  | 0  |     }  | 
1419  | 0  |     if (top_exp > DBL_MAX_EXP)  | 
1420  | 0  |         goto overflow_error;  | 
1421  |  |  | 
1422  |  |     /* lsb = exponent of least significant bit of the *rounded* value.  | 
1423  |  |        This is top_exp - DBL_MANT_DIG unless result is subnormal. */  | 
1424  | 0  |     lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;  | 
1425  |  | 
  | 
1426  | 0  |     x = 0.0;  | 
1427  | 0  |     if (exp >= lsb) { | 
1428  |  |         /* no rounding required */  | 
1429  | 0  |         for (i = ndigits-1; i >= 0; i--)  | 
1430  | 0  |             x = 16.0*x + HEX_DIGIT(i);  | 
1431  | 0  |         x = ldexp(x, (int)(exp));  | 
1432  | 0  |         goto finished;  | 
1433  | 0  |     }  | 
1434  |  |     /* rounding required.  key_digit is the index of the hex digit  | 
1435  |  |        containing the first bit to be rounded away. */  | 
1436  | 0  |     half_eps = 1 << (int)((lsb - exp - 1) % 4);  | 
1437  | 0  |     key_digit = (lsb - exp - 1) / 4;  | 
1438  | 0  |     for (i = ndigits-1; i > key_digit; i--)  | 
1439  | 0  |         x = 16.0*x + HEX_DIGIT(i);  | 
1440  | 0  |     digit = HEX_DIGIT(key_digit);  | 
1441  | 0  |     x = 16.0*x + (double)(digit & (16-2*half_eps));  | 
1442  |  |  | 
1443  |  |     /* round-half-even: round up if bit lsb-1 is 1 and at least one of  | 
1444  |  |        bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */  | 
1445  | 0  |     if ((digit & half_eps) != 0) { | 
1446  | 0  |         round_up = 0;  | 
1447  | 0  |         if ((digit & (3*half_eps-1)) != 0 ||  | 
1448  | 0  |             (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))  | 
1449  | 0  |             round_up = 1;  | 
1450  | 0  |         else  | 
1451  | 0  |             for (i = key_digit-1; i >= 0; i--)  | 
1452  | 0  |                 if (HEX_DIGIT(i) != 0) { | 
1453  | 0  |                     round_up = 1;  | 
1454  | 0  |                     break;  | 
1455  | 0  |                 }  | 
1456  | 0  |         if (round_up) { | 
1457  | 0  |             x += 2*half_eps;  | 
1458  | 0  |             if (top_exp == DBL_MAX_EXP &&  | 
1459  | 0  |                 x == ldexp((double)(2*half_eps), DBL_MANT_DIG))  | 
1460  |  |                 /* overflow corner case: pre-rounded value <  | 
1461  |  |                    2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */  | 
1462  | 0  |                 goto overflow_error;  | 
1463  | 0  |         }  | 
1464  | 0  |     }  | 
1465  | 0  |     x = ldexp(x, (int)(exp+4*key_digit));  | 
1466  |  | 
  | 
1467  | 0  |   finished:  | 
1468  |  |     /* optional trailing whitespace leading to the end of the string */  | 
1469  | 0  |     while (Py_ISSPACE(*s))  | 
1470  | 0  |         s++;  | 
1471  | 0  |     if (s != s_end)  | 
1472  | 0  |         goto parse_error;  | 
1473  | 0  |     result = PyFloat_FromDouble(negate ? -x : x);  | 
1474  | 0  |     if (type != &PyFloat_Type && result != NULL) { | 
1475  | 0  |         Py_SETREF(result, PyObject_CallFunctionObjArgs((PyObject *)type, result, NULL));  | 
1476  | 0  |     }  | 
1477  | 0  |     return result;  | 
1478  |  |  | 
1479  | 0  |   overflow_error:  | 
1480  | 0  |     PyErr_SetString(PyExc_OverflowError,  | 
1481  | 0  |                     "hexadecimal value too large to represent as a float");  | 
1482  | 0  |     return NULL;  | 
1483  |  |  | 
1484  | 0  |   parse_error:  | 
1485  | 0  |     PyErr_SetString(PyExc_ValueError,  | 
1486  | 0  |                     "invalid hexadecimal floating-point string");  | 
1487  | 0  |     return NULL;  | 
1488  |  |  | 
1489  | 0  |   insane_length_error:  | 
1490  | 0  |     PyErr_SetString(PyExc_ValueError,  | 
1491  | 0  |                     "hexadecimal string too long to convert");  | 
1492  | 0  |     return NULL;  | 
1493  | 0  | }  | 
1494  |  |  | 
1495  |  | /*[clinic input]  | 
1496  |  | float.as_integer_ratio  | 
1497  |  |  | 
1498  |  | Return integer ratio.  | 
1499  |  |  | 
1500  |  | Return a pair of integers, whose ratio is exactly equal to the original float  | 
1501  |  | and with a positive denominator.  | 
1502  |  |  | 
1503  |  | Raise OverflowError on infinities and a ValueError on NaNs.  | 
1504  |  |  | 
1505  |  | >>> (10.0).as_integer_ratio()  | 
1506  |  | (10, 1)  | 
1507  |  | >>> (0.0).as_integer_ratio()  | 
1508  |  | (0, 1)  | 
1509  |  | >>> (-.25).as_integer_ratio()  | 
1510  |  | (-1, 4)  | 
1511  |  | [clinic start generated code]*/  | 
1512  |  |  | 
1513  |  | static PyObject *  | 
1514  |  | float_as_integer_ratio_impl(PyObject *self)  | 
1515  |  | /*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/  | 
1516  | 0  | { | 
1517  | 0  |     double self_double;  | 
1518  | 0  |     double float_part;  | 
1519  | 0  |     int exponent;  | 
1520  | 0  |     int i;  | 
1521  |  | 
  | 
1522  | 0  |     PyObject *py_exponent = NULL;  | 
1523  | 0  |     PyObject *numerator = NULL;  | 
1524  | 0  |     PyObject *denominator = NULL;  | 
1525  | 0  |     PyObject *result_pair = NULL;  | 
1526  | 0  |     PyNumberMethods *long_methods = PyLong_Type.tp_as_number;  | 
1527  |  | 
  | 
1528  | 0  |     CONVERT_TO_DOUBLE(self, self_double);  | 
1529  |  | 
  | 
1530  | 0  |     if (Py_IS_INFINITY(self_double)) { | 
1531  | 0  |         PyErr_SetString(PyExc_OverflowError,  | 
1532  | 0  |                         "cannot convert Infinity to integer ratio");  | 
1533  | 0  |         return NULL;  | 
1534  | 0  |     }  | 
1535  | 0  |     if (Py_IS_NAN(self_double)) { | 
1536  | 0  |         PyErr_SetString(PyExc_ValueError,  | 
1537  | 0  |                         "cannot convert NaN to integer ratio");  | 
1538  | 0  |         return NULL;  | 
1539  | 0  |     }  | 
1540  |  |  | 
1541  | 0  |     PyFPE_START_PROTECT("as_integer_ratio", goto error); | 
1542  | 0  |     float_part = frexp(self_double, &exponent);        /* self_double == float_part * 2**exponent exactly */  | 
1543  | 0  |     PyFPE_END_PROTECT(float_part);  | 
1544  |  | 
  | 
1545  | 0  |     for (i=0; i<300 && float_part != floor(float_part) ; i++) { | 
1546  | 0  |         float_part *= 2.0;  | 
1547  | 0  |         exponent--;  | 
1548  | 0  |     }  | 
1549  |  |     /* self == float_part * 2**exponent exactly and float_part is integral.  | 
1550  |  |        If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part  | 
1551  |  |        to be truncated by PyLong_FromDouble(). */  | 
1552  |  | 
  | 
1553  | 0  |     numerator = PyLong_FromDouble(float_part);  | 
1554  | 0  |     if (numerator == NULL)  | 
1555  | 0  |         goto error;  | 
1556  | 0  |     denominator = PyLong_FromLong(1);  | 
1557  | 0  |     if (denominator == NULL)  | 
1558  | 0  |         goto error;  | 
1559  | 0  |     py_exponent = PyLong_FromLong(Py_ABS(exponent));  | 
1560  | 0  |     if (py_exponent == NULL)  | 
1561  | 0  |         goto error;  | 
1562  |  |  | 
1563  |  |     /* fold in 2**exponent */  | 
1564  | 0  |     if (exponent > 0) { | 
1565  | 0  |         Py_SETREF(numerator,  | 
1566  | 0  |                   long_methods->nb_lshift(numerator, py_exponent));  | 
1567  | 0  |         if (numerator == NULL)  | 
1568  | 0  |             goto error;  | 
1569  | 0  |     }  | 
1570  | 0  |     else { | 
1571  | 0  |         Py_SETREF(denominator,  | 
1572  | 0  |                   long_methods->nb_lshift(denominator, py_exponent));  | 
1573  | 0  |         if (denominator == NULL)  | 
1574  | 0  |             goto error;  | 
1575  | 0  |     }  | 
1576  |  |  | 
1577  | 0  |     result_pair = PyTuple_Pack(2, numerator, denominator);  | 
1578  |  | 
  | 
1579  | 0  | error:  | 
1580  | 0  |     Py_XDECREF(py_exponent);  | 
1581  | 0  |     Py_XDECREF(denominator);  | 
1582  | 0  |     Py_XDECREF(numerator);  | 
1583  | 0  |     return result_pair;  | 
1584  | 0  | }  | 
1585  |  |  | 
1586  |  | static PyObject *  | 
1587  |  | float_subtype_new(PyTypeObject *type, PyObject *x);  | 
1588  |  |  | 
1589  |  | /*[clinic input]  | 
1590  |  | @classmethod  | 
1591  |  | float.__new__ as float_new  | 
1592  |  |     x: object(c_default="_PyLong_Zero") = 0  | 
1593  |  |     /  | 
1594  |  |  | 
1595  |  | Convert a string or number to a floating point number, if possible.  | 
1596  |  | [clinic start generated code]*/  | 
1597  |  |  | 
1598  |  | static PyObject *  | 
1599  |  | float_new_impl(PyTypeObject *type, PyObject *x)  | 
1600  |  | /*[clinic end generated code: output=ccf1e8dc460ba6ba input=540ee77c204ff87a]*/  | 
1601  | 0  | { | 
1602  | 0  |     if (type != &PyFloat_Type)  | 
1603  | 0  |         return float_subtype_new(type, x); /* Wimp out */  | 
1604  |  |     /* If it's a string, but not a string subclass, use  | 
1605  |  |        PyFloat_FromString. */  | 
1606  | 0  |     if (PyUnicode_CheckExact(x))  | 
1607  | 0  |         return PyFloat_FromString(x);  | 
1608  | 0  |     return PyNumber_Float(x);  | 
1609  | 0  | }  | 
1610  |  |  | 
1611  |  | /* Wimpy, slow approach to tp_new calls for subtypes of float:  | 
1612  |  |    first create a regular float from whatever arguments we got,  | 
1613  |  |    then allocate a subtype instance and initialize its ob_fval  | 
1614  |  |    from the regular float.  The regular float is then thrown away.  | 
1615  |  | */  | 
1616  |  | static PyObject *  | 
1617  |  | float_subtype_new(PyTypeObject *type, PyObject *x)  | 
1618  | 0  | { | 
1619  | 0  |     PyObject *tmp, *newobj;  | 
1620  |  | 
  | 
1621  | 0  |     assert(PyType_IsSubtype(type, &PyFloat_Type));  | 
1622  | 0  |     tmp = float_new_impl(&PyFloat_Type, x);  | 
1623  | 0  |     if (tmp == NULL)  | 
1624  | 0  |         return NULL;  | 
1625  | 0  |     assert(PyFloat_Check(tmp));  | 
1626  | 0  |     newobj = type->tp_alloc(type, 0);  | 
1627  | 0  |     if (newobj == NULL) { | 
1628  | 0  |         Py_DECREF(tmp);  | 
1629  | 0  |         return NULL;  | 
1630  | 0  |     }  | 
1631  | 0  |     ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;  | 
1632  | 0  |     Py_DECREF(tmp);  | 
1633  | 0  |     return newobj;  | 
1634  | 0  | }  | 
1635  |  |  | 
1636  |  | /*[clinic input]  | 
1637  |  | float.__getnewargs__  | 
1638  |  | [clinic start generated code]*/  | 
1639  |  |  | 
1640  |  | static PyObject *  | 
1641  |  | float___getnewargs___impl(PyObject *self)  | 
1642  |  | /*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/  | 
1643  | 0  | { | 
1644  | 0  |     return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval); | 
1645  | 0  | }  | 
1646  |  |  | 
1647  |  | /* this is for the benefit of the pack/unpack routines below */  | 
1648  |  |  | 
1649  |  | typedef enum { | 
1650  |  |     unknown_format, ieee_big_endian_format, ieee_little_endian_format  | 
1651  |  | } float_format_type;  | 
1652  |  |  | 
1653  |  | static float_format_type double_format, float_format;  | 
1654  |  | static float_format_type detected_double_format, detected_float_format;  | 
1655  |  |  | 
1656  |  | /*[clinic input]  | 
1657  |  | @classmethod  | 
1658  |  | float.__getformat__  | 
1659  |  |  | 
1660  |  |     typestr: str  | 
1661  |  |         Must be 'double' or 'float'.  | 
1662  |  |     /  | 
1663  |  |  | 
1664  |  | You probably don't want to use this function.  | 
1665  |  |  | 
1666  |  | It exists mainly to be used in Python's test suite.  | 
1667  |  |  | 
1668  |  | This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE,  | 
1669  |  | little-endian' best describes the format of floating point numbers used by the  | 
1670  |  | C type named by typestr.  | 
1671  |  | [clinic start generated code]*/  | 
1672  |  |  | 
1673  |  | static PyObject *  | 
1674  |  | float___getformat___impl(PyTypeObject *type, const char *typestr)  | 
1675  |  | /*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/  | 
1676  | 0  | { | 
1677  | 0  |     float_format_type r;  | 
1678  |  | 
  | 
1679  | 0  |     if (strcmp(typestr, "double") == 0) { | 
1680  | 0  |         r = double_format;  | 
1681  | 0  |     }  | 
1682  | 0  |     else if (strcmp(typestr, "float") == 0) { | 
1683  | 0  |         r = float_format;  | 
1684  | 0  |     }  | 
1685  | 0  |     else { | 
1686  | 0  |         PyErr_SetString(PyExc_ValueError,  | 
1687  | 0  |                         "__getformat__() argument 1 must be "  | 
1688  | 0  |                         "'double' or 'float'");  | 
1689  | 0  |         return NULL;  | 
1690  | 0  |     }  | 
1691  |  |  | 
1692  | 0  |     switch (r) { | 
1693  | 0  |     case unknown_format:  | 
1694  | 0  |         return PyUnicode_FromString("unknown"); | 
1695  | 0  |     case ieee_little_endian_format:  | 
1696  | 0  |         return PyUnicode_FromString("IEEE, little-endian"); | 
1697  | 0  |     case ieee_big_endian_format:  | 
1698  | 0  |         return PyUnicode_FromString("IEEE, big-endian"); | 
1699  | 0  |     default:  | 
1700  | 0  |         Py_FatalError("insane float_format or double_format"); | 
1701  | 0  |         return NULL;  | 
1702  | 0  |     }  | 
1703  | 0  | }  | 
1704  |  |  | 
1705  |  | /*[clinic input]  | 
1706  |  | @classmethod  | 
1707  |  | float.__set_format__  | 
1708  |  |  | 
1709  |  |     typestr: str  | 
1710  |  |         Must be 'double' or 'float'.  | 
1711  |  |     fmt: str  | 
1712  |  |         Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian',  | 
1713  |  |         and in addition can only be one of the latter two if it appears to  | 
1714  |  |         match the underlying C reality.  | 
1715  |  |     /  | 
1716  |  |  | 
1717  |  | You probably don't want to use this function.  | 
1718  |  |  | 
1719  |  | It exists mainly to be used in Python's test suite.  | 
1720  |  |  | 
1721  |  | Override the automatic determination of C-level floating point type.  | 
1722  |  | This affects how floats are converted to and from binary strings.  | 
1723  |  | [clinic start generated code]*/  | 
1724  |  |  | 
1725  |  | static PyObject *  | 
1726  |  | float___set_format___impl(PyTypeObject *type, const char *typestr,  | 
1727  |  |                           const char *fmt)  | 
1728  |  | /*[clinic end generated code: output=504460f5dc85acbd input=5306fa2b81a997e4]*/  | 
1729  | 0  | { | 
1730  | 0  |     float_format_type f;  | 
1731  | 0  |     float_format_type detected;  | 
1732  | 0  |     float_format_type *p;  | 
1733  |  | 
  | 
1734  | 0  |     if (strcmp(typestr, "double") == 0) { | 
1735  | 0  |         p = &double_format;  | 
1736  | 0  |         detected = detected_double_format;  | 
1737  | 0  |     }  | 
1738  | 0  |     else if (strcmp(typestr, "float") == 0) { | 
1739  | 0  |         p = &float_format;  | 
1740  | 0  |         detected = detected_float_format;  | 
1741  | 0  |     }  | 
1742  | 0  |     else { | 
1743  | 0  |         PyErr_SetString(PyExc_ValueError,  | 
1744  | 0  |                         "__setformat__() argument 1 must "  | 
1745  | 0  |                         "be 'double' or 'float'");  | 
1746  | 0  |         return NULL;  | 
1747  | 0  |     }  | 
1748  |  |  | 
1749  | 0  |     if (strcmp(fmt, "unknown") == 0) { | 
1750  | 0  |         f = unknown_format;  | 
1751  | 0  |     }  | 
1752  | 0  |     else if (strcmp(fmt, "IEEE, little-endian") == 0) { | 
1753  | 0  |         f = ieee_little_endian_format;  | 
1754  | 0  |     }  | 
1755  | 0  |     else if (strcmp(fmt, "IEEE, big-endian") == 0) { | 
1756  | 0  |         f = ieee_big_endian_format;  | 
1757  | 0  |     }  | 
1758  | 0  |     else { | 
1759  | 0  |         PyErr_SetString(PyExc_ValueError,  | 
1760  | 0  |                         "__setformat__() argument 2 must be "  | 
1761  | 0  |                         "'unknown', 'IEEE, little-endian' or "  | 
1762  | 0  |                         "'IEEE, big-endian'");  | 
1763  | 0  |         return NULL;  | 
1764  |  | 
  | 
1765  | 0  |     }  | 
1766  |  |  | 
1767  | 0  |     if (f != unknown_format && f != detected) { | 
1768  | 0  |         PyErr_Format(PyExc_ValueError,  | 
1769  | 0  |                      "can only set %s format to 'unknown' or the "  | 
1770  | 0  |                      "detected platform value", typestr);  | 
1771  | 0  |         return NULL;  | 
1772  | 0  |     }  | 
1773  |  |  | 
1774  | 0  |     *p = f;  | 
1775  | 0  |     Py_RETURN_NONE;  | 
1776  | 0  | }  | 
1777  |  |  | 
1778  |  | static PyObject *  | 
1779  |  | float_getreal(PyObject *v, void *closure)  | 
1780  | 0  | { | 
1781  | 0  |     return float_float(v);  | 
1782  | 0  | }  | 
1783  |  |  | 
1784  |  | static PyObject *  | 
1785  |  | float_getimag(PyObject *v, void *closure)  | 
1786  | 0  | { | 
1787  | 0  |     return PyFloat_FromDouble(0.0);  | 
1788  | 0  | }  | 
1789  |  |  | 
1790  |  | /*[clinic input]  | 
1791  |  | float.__format__  | 
1792  |  |  | 
1793  |  |   format_spec: unicode  | 
1794  |  |   /  | 
1795  |  |  | 
1796  |  | Formats the float according to format_spec.  | 
1797  |  | [clinic start generated code]*/  | 
1798  |  |  | 
1799  |  | static PyObject *  | 
1800  |  | float___format___impl(PyObject *self, PyObject *format_spec)  | 
1801  |  | /*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/  | 
1802  | 0  | { | 
1803  | 0  |     _PyUnicodeWriter writer;  | 
1804  | 0  |     int ret;  | 
1805  |  | 
  | 
1806  | 0  |     _PyUnicodeWriter_Init(&writer);  | 
1807  | 0  |     ret = _PyFloat_FormatAdvancedWriter(  | 
1808  | 0  |         &writer,  | 
1809  | 0  |         self,  | 
1810  | 0  |         format_spec, 0, PyUnicode_GET_LENGTH(format_spec));  | 
1811  | 0  |     if (ret == -1) { | 
1812  | 0  |         _PyUnicodeWriter_Dealloc(&writer);  | 
1813  | 0  |         return NULL;  | 
1814  | 0  |     }  | 
1815  | 0  |     return _PyUnicodeWriter_Finish(&writer);  | 
1816  | 0  | }  | 
1817  |  |  | 
1818  |  | static PyMethodDef float_methods[] = { | 
1819  |  |     FLOAT_CONJUGATE_METHODDEF  | 
1820  |  |     FLOAT___TRUNC___METHODDEF  | 
1821  |  |     FLOAT___ROUND___METHODDEF  | 
1822  |  |     FLOAT_AS_INTEGER_RATIO_METHODDEF  | 
1823  |  |     FLOAT_FROMHEX_METHODDEF  | 
1824  |  |     FLOAT_HEX_METHODDEF  | 
1825  |  |     FLOAT_IS_INTEGER_METHODDEF  | 
1826  |  |     FLOAT___GETNEWARGS___METHODDEF  | 
1827  |  |     FLOAT___GETFORMAT___METHODDEF  | 
1828  |  |     FLOAT___SET_FORMAT___METHODDEF  | 
1829  |  |     FLOAT___FORMAT___METHODDEF  | 
1830  |  |     {NULL,              NULL}           /* sentinel */ | 
1831  |  | };  | 
1832  |  |  | 
1833  |  | static PyGetSetDef float_getset[] = { | 
1834  |  |     {"real", | 
1835  |  |      float_getreal, (setter)NULL,  | 
1836  |  |      "the real part of a complex number",  | 
1837  |  |      NULL},  | 
1838  |  |     {"imag", | 
1839  |  |      float_getimag, (setter)NULL,  | 
1840  |  |      "the imaginary part of a complex number",  | 
1841  |  |      NULL},  | 
1842  |  |     {NULL}  /* Sentinel */ | 
1843  |  | };  | 
1844  |  |  | 
1845  |  |  | 
1846  |  | static PyNumberMethods float_as_number = { | 
1847  |  |     float_add,          /* nb_add */  | 
1848  |  |     float_sub,          /* nb_subtract */  | 
1849  |  |     float_mul,          /* nb_multiply */  | 
1850  |  |     float_rem,          /* nb_remainder */  | 
1851  |  |     float_divmod,       /* nb_divmod */  | 
1852  |  |     float_pow,          /* nb_power */  | 
1853  |  |     (unaryfunc)float_neg, /* nb_negative */  | 
1854  |  |     float_float,        /* nb_positive */  | 
1855  |  |     (unaryfunc)float_abs, /* nb_absolute */  | 
1856  |  |     (inquiry)float_bool, /* nb_bool */  | 
1857  |  |     0,                  /* nb_invert */  | 
1858  |  |     0,                  /* nb_lshift */  | 
1859  |  |     0,                  /* nb_rshift */  | 
1860  |  |     0,                  /* nb_and */  | 
1861  |  |     0,                  /* nb_xor */  | 
1862  |  |     0,                  /* nb_or */  | 
1863  |  |     float___trunc___impl, /* nb_int */  | 
1864  |  |     0,                  /* nb_reserved */  | 
1865  |  |     float_float,        /* nb_float */  | 
1866  |  |     0,                  /* nb_inplace_add */  | 
1867  |  |     0,                  /* nb_inplace_subtract */  | 
1868  |  |     0,                  /* nb_inplace_multiply */  | 
1869  |  |     0,                  /* nb_inplace_remainder */  | 
1870  |  |     0,                  /* nb_inplace_power */  | 
1871  |  |     0,                  /* nb_inplace_lshift */  | 
1872  |  |     0,                  /* nb_inplace_rshift */  | 
1873  |  |     0,                  /* nb_inplace_and */  | 
1874  |  |     0,                  /* nb_inplace_xor */  | 
1875  |  |     0,                  /* nb_inplace_or */  | 
1876  |  |     float_floor_div,    /* nb_floor_divide */  | 
1877  |  |     float_div,          /* nb_true_divide */  | 
1878  |  |     0,                  /* nb_inplace_floor_divide */  | 
1879  |  |     0,                  /* nb_inplace_true_divide */  | 
1880  |  | };  | 
1881  |  |  | 
1882  |  | PyTypeObject PyFloat_Type = { | 
1883  |  |     PyVarObject_HEAD_INIT(&PyType_Type, 0)  | 
1884  |  |     "float",  | 
1885  |  |     sizeof(PyFloatObject),  | 
1886  |  |     0,  | 
1887  |  |     (destructor)float_dealloc,                  /* tp_dealloc */  | 
1888  |  |     0,                                          /* tp_vectorcall_offset */  | 
1889  |  |     0,                                          /* tp_getattr */  | 
1890  |  |     0,                                          /* tp_setattr */  | 
1891  |  |     0,                                          /* tp_as_async */  | 
1892  |  |     (reprfunc)float_repr,                       /* tp_repr */  | 
1893  |  |     &float_as_number,                           /* tp_as_number */  | 
1894  |  |     0,                                          /* tp_as_sequence */  | 
1895  |  |     0,                                          /* tp_as_mapping */  | 
1896  |  |     (hashfunc)float_hash,                       /* tp_hash */  | 
1897  |  |     0,                                          /* tp_call */  | 
1898  |  |     0,                                          /* tp_str */  | 
1899  |  |     PyObject_GenericGetAttr,                    /* tp_getattro */  | 
1900  |  |     0,                                          /* tp_setattro */  | 
1901  |  |     0,                                          /* tp_as_buffer */  | 
1902  |  |     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   /* tp_flags */  | 
1903  |  |     float_new__doc__,                           /* tp_doc */  | 
1904  |  |     0,                                          /* tp_traverse */  | 
1905  |  |     0,                                          /* tp_clear */  | 
1906  |  |     float_richcompare,                          /* tp_richcompare */  | 
1907  |  |     0,                                          /* tp_weaklistoffset */  | 
1908  |  |     0,                                          /* tp_iter */  | 
1909  |  |     0,                                          /* tp_iternext */  | 
1910  |  |     float_methods,                              /* tp_methods */  | 
1911  |  |     0,                                          /* tp_members */  | 
1912  |  |     float_getset,                               /* tp_getset */  | 
1913  |  |     0,                                          /* tp_base */  | 
1914  |  |     0,                                          /* tp_dict */  | 
1915  |  |     0,                                          /* tp_descr_get */  | 
1916  |  |     0,                                          /* tp_descr_set */  | 
1917  |  |     0,                                          /* tp_dictoffset */  | 
1918  |  |     0,                                          /* tp_init */  | 
1919  |  |     0,                                          /* tp_alloc */  | 
1920  |  |     float_new,                                  /* tp_new */  | 
1921  |  | };  | 
1922  |  |  | 
1923  |  | int  | 
1924  |  | _PyFloat_Init(void)  | 
1925  | 14  | { | 
1926  |  |     /* We attempt to determine if this machine is using IEEE  | 
1927  |  |        floating point formats by peering at the bits of some  | 
1928  |  |        carefully chosen values.  If it looks like we are on an  | 
1929  |  |        IEEE platform, the float packing/unpacking routines can  | 
1930  |  |        just copy bits, if not they resort to arithmetic & shifts  | 
1931  |  |        and masks.  The shifts & masks approach works on all finite  | 
1932  |  |        values, but what happens to infinities, NaNs and signed  | 
1933  |  |        zeroes on packing is an accident, and attempting to unpack  | 
1934  |  |        a NaN or an infinity will raise an exception.  | 
1935  |  |  | 
1936  |  |        Note that if we're on some whacked-out platform which uses  | 
1937  |  |        IEEE formats but isn't strictly little-endian or big-  | 
1938  |  |        endian, we will fall back to the portable shifts & masks  | 
1939  |  |        method. */  | 
1940  |  |  | 
1941  | 14  | #if SIZEOF_DOUBLE == 8  | 
1942  | 14  |     { | 
1943  | 14  |         double x = 9006104071832581.0;  | 
1944  | 14  |         if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)  | 
1945  | 0  |             detected_double_format = ieee_big_endian_format;  | 
1946  | 14  |         else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)  | 
1947  | 14  |             detected_double_format = ieee_little_endian_format;  | 
1948  | 0  |         else  | 
1949  | 0  |             detected_double_format = unknown_format;  | 
1950  | 14  |     }  | 
1951  |  | #else  | 
1952  |  |     detected_double_format = unknown_format;  | 
1953  |  | #endif  | 
1954  |  |  | 
1955  | 14  | #if SIZEOF_FLOAT == 4  | 
1956  | 14  |     { | 
1957  | 14  |         float y = 16711938.0;  | 
1958  | 14  |         if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)  | 
1959  | 0  |             detected_float_format = ieee_big_endian_format;  | 
1960  | 14  |         else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)  | 
1961  | 14  |             detected_float_format = ieee_little_endian_format;  | 
1962  | 0  |         else  | 
1963  | 0  |             detected_float_format = unknown_format;  | 
1964  | 14  |     }  | 
1965  |  | #else  | 
1966  |  |     detected_float_format = unknown_format;  | 
1967  |  | #endif  | 
1968  |  |  | 
1969  | 14  |     double_format = detected_double_format;  | 
1970  | 14  |     float_format = detected_float_format;  | 
1971  |  |  | 
1972  |  |     /* Init float info */  | 
1973  | 14  |     if (FloatInfoType.tp_name == NULL) { | 
1974  | 14  |         if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) { | 
1975  | 0  |             return 0;  | 
1976  | 0  |         }  | 
1977  | 14  |     }  | 
1978  | 14  |     return 1;  | 
1979  | 14  | }  | 
1980  |  |  | 
1981  |  | int  | 
1982  |  | PyFloat_ClearFreeList(void)  | 
1983  | 0  | { | 
1984  | 0  |     PyFloatObject *f = free_list, *next;  | 
1985  | 0  |     int i = numfree;  | 
1986  | 0  |     while (f) { | 
1987  | 0  |         next = (PyFloatObject*) Py_TYPE(f);  | 
1988  | 0  |         PyObject_FREE(f);  | 
1989  | 0  |         f = next;  | 
1990  | 0  |     }  | 
1991  | 0  |     free_list = NULL;  | 
1992  | 0  |     numfree = 0;  | 
1993  | 0  |     return i;  | 
1994  | 0  | }  | 
1995  |  |  | 
1996  |  | void  | 
1997  |  | PyFloat_Fini(void)  | 
1998  | 0  | { | 
1999  | 0  |     (void)PyFloat_ClearFreeList();  | 
2000  | 0  | }  | 
2001  |  |  | 
2002  |  | /* Print summary info about the state of the optimized allocator */  | 
2003  |  | void  | 
2004  |  | _PyFloat_DebugMallocStats(FILE *out)  | 
2005  | 0  | { | 
2006  | 0  |     _PyDebugAllocatorStats(out,  | 
2007  | 0  |                            "free PyFloatObject",  | 
2008  | 0  |                            numfree, sizeof(PyFloatObject));  | 
2009  | 0  | }  | 
2010  |  |  | 
2011  |  |  | 
2012  |  | /*----------------------------------------------------------------------------  | 
2013  |  |  * _PyFloat_{Pack,Unpack}{2,4,8}.  See floatobject.h. | 
2014  |  |  * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:  | 
2015  |  |  * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c  | 
2016  |  |  * We use:  | 
2017  |  |  *       bits = (unsigned short)f;    Note the truncation  | 
2018  |  |  *       if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) { | 
2019  |  |  *           bits++;  | 
2020  |  |  *       }  | 
2021  |  |  */  | 
2022  |  |  | 
2023  |  | int  | 
2024  |  | _PyFloat_Pack2(double x, unsigned char *p, int le)  | 
2025  | 0  | { | 
2026  | 0  |     unsigned char sign;  | 
2027  | 0  |     int e;  | 
2028  | 0  |     double f;  | 
2029  | 0  |     unsigned short bits;  | 
2030  | 0  |     int incr = 1;  | 
2031  |  | 
  | 
2032  | 0  |     if (x == 0.0) { | 
2033  | 0  |         sign = (copysign(1.0, x) == -1.0);  | 
2034  | 0  |         e = 0;  | 
2035  | 0  |         bits = 0;  | 
2036  | 0  |     }  | 
2037  | 0  |     else if (Py_IS_INFINITY(x)) { | 
2038  | 0  |         sign = (x < 0.0);  | 
2039  | 0  |         e = 0x1f;  | 
2040  | 0  |         bits = 0;  | 
2041  | 0  |     }  | 
2042  | 0  |     else if (Py_IS_NAN(x)) { | 
2043  |  |         /* There are 2046 distinct half-precision NaNs (1022 signaling and  | 
2044  |  |            1024 quiet), but there are only two quiet NaNs that don't arise by  | 
2045  |  |            quieting a signaling NaN; we get those by setting the topmost bit  | 
2046  |  |            of the fraction field and clearing all other fraction bits. We  | 
2047  |  |            choose the one with the appropriate sign. */  | 
2048  | 0  |         sign = (copysign(1.0, x) == -1.0);  | 
2049  | 0  |         e = 0x1f;  | 
2050  | 0  |         bits = 512;  | 
2051  | 0  |     }  | 
2052  | 0  |     else { | 
2053  | 0  |         sign = (x < 0.0);  | 
2054  | 0  |         if (sign) { | 
2055  | 0  |             x = -x;  | 
2056  | 0  |         }  | 
2057  |  | 
  | 
2058  | 0  |         f = frexp(x, &e);  | 
2059  | 0  |         if (f < 0.5 || f >= 1.0) { | 
2060  | 0  |             PyErr_SetString(PyExc_SystemError,  | 
2061  | 0  |                             "frexp() result out of range");  | 
2062  | 0  |             return -1;  | 
2063  | 0  |         }  | 
2064  |  |  | 
2065  |  |         /* Normalize f to be in the range [1.0, 2.0) */  | 
2066  | 0  |         f *= 2.0;  | 
2067  | 0  |         e--;  | 
2068  |  | 
  | 
2069  | 0  |         if (e >= 16) { | 
2070  | 0  |             goto Overflow;  | 
2071  | 0  |         }  | 
2072  | 0  |         else if (e < -25) { | 
2073  |  |             /* |x| < 2**-25. Underflow to zero. */  | 
2074  | 0  |             f = 0.0;  | 
2075  | 0  |             e = 0;  | 
2076  | 0  |         }  | 
2077  | 0  |         else if (e < -14) { | 
2078  |  |             /* |x| < 2**-14. Gradual underflow */  | 
2079  | 0  |             f = ldexp(f, 14 + e);  | 
2080  | 0  |             e = 0;  | 
2081  | 0  |         }  | 
2082  | 0  |         else /* if (!(e == 0 && f == 0.0)) */ { | 
2083  | 0  |             e += 15;  | 
2084  | 0  |             f -= 1.0; /* Get rid of leading 1 */  | 
2085  | 0  |         }  | 
2086  |  |  | 
2087  | 0  |         f *= 1024.0; /* 2**10 */  | 
2088  |  |         /* Round to even */  | 
2089  | 0  |         bits = (unsigned short)f; /* Note the truncation */  | 
2090  | 0  |         assert(bits < 1024);  | 
2091  | 0  |         assert(e < 31);  | 
2092  | 0  |         if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) { | 
2093  | 0  |             ++bits;  | 
2094  | 0  |             if (bits == 1024) { | 
2095  |  |                 /* The carry propagated out of a string of 10 1 bits. */  | 
2096  | 0  |                 bits = 0;  | 
2097  | 0  |                 ++e;  | 
2098  | 0  |                 if (e == 31)  | 
2099  | 0  |                     goto Overflow;  | 
2100  | 0  |             }  | 
2101  | 0  |         }  | 
2102  | 0  |     }  | 
2103  |  |  | 
2104  | 0  |     bits |= (e << 10) | (sign << 15);  | 
2105  |  |  | 
2106  |  |     /* Write out result. */  | 
2107  | 0  |     if (le) { | 
2108  | 0  |         p += 1;  | 
2109  | 0  |         incr = -1;  | 
2110  | 0  |     }  | 
2111  |  |  | 
2112  |  |     /* First byte */  | 
2113  | 0  |     *p = (unsigned char)((bits >> 8) & 0xFF);  | 
2114  | 0  |     p += incr;  | 
2115  |  |  | 
2116  |  |     /* Second byte */  | 
2117  | 0  |     *p = (unsigned char)(bits & 0xFF);  | 
2118  |  | 
  | 
2119  | 0  |     return 0;  | 
2120  |  |  | 
2121  | 0  |   Overflow:  | 
2122  | 0  |     PyErr_SetString(PyExc_OverflowError,  | 
2123  | 0  |                     "float too large to pack with e format");  | 
2124  | 0  |     return -1;  | 
2125  | 0  | }  | 
2126  |  |  | 
2127  |  | int  | 
2128  |  | _PyFloat_Pack4(double x, unsigned char *p, int le)  | 
2129  | 0  | { | 
2130  | 0  |     if (float_format == unknown_format) { | 
2131  | 0  |         unsigned char sign;  | 
2132  | 0  |         int e;  | 
2133  | 0  |         double f;  | 
2134  | 0  |         unsigned int fbits;  | 
2135  | 0  |         int incr = 1;  | 
2136  |  | 
  | 
2137  | 0  |         if (le) { | 
2138  | 0  |             p += 3;  | 
2139  | 0  |             incr = -1;  | 
2140  | 0  |         }  | 
2141  |  | 
  | 
2142  | 0  |         if (x < 0) { | 
2143  | 0  |             sign = 1;  | 
2144  | 0  |             x = -x;  | 
2145  | 0  |         }  | 
2146  | 0  |         else  | 
2147  | 0  |             sign = 0;  | 
2148  |  | 
  | 
2149  | 0  |         f = frexp(x, &e);  | 
2150  |  |  | 
2151  |  |         /* Normalize f to be in the range [1.0, 2.0) */  | 
2152  | 0  |         if (0.5 <= f && f < 1.0) { | 
2153  | 0  |             f *= 2.0;  | 
2154  | 0  |             e--;  | 
2155  | 0  |         }  | 
2156  | 0  |         else if (f == 0.0)  | 
2157  | 0  |             e = 0;  | 
2158  | 0  |         else { | 
2159  | 0  |             PyErr_SetString(PyExc_SystemError,  | 
2160  | 0  |                             "frexp() result out of range");  | 
2161  | 0  |             return -1;  | 
2162  | 0  |         }  | 
2163  |  |  | 
2164  | 0  |         if (e >= 128)  | 
2165  | 0  |             goto Overflow;  | 
2166  | 0  |         else if (e < -126) { | 
2167  |  |             /* Gradual underflow */  | 
2168  | 0  |             f = ldexp(f, 126 + e);  | 
2169  | 0  |             e = 0;  | 
2170  | 0  |         }  | 
2171  | 0  |         else if (!(e == 0 && f == 0.0)) { | 
2172  | 0  |             e += 127;  | 
2173  | 0  |             f -= 1.0; /* Get rid of leading 1 */  | 
2174  | 0  |         }  | 
2175  |  |  | 
2176  | 0  |         f *= 8388608.0; /* 2**23 */  | 
2177  | 0  |         fbits = (unsigned int)(f + 0.5); /* Round */  | 
2178  | 0  |         assert(fbits <= 8388608);  | 
2179  | 0  |         if (fbits >> 23) { | 
2180  |  |             /* The carry propagated out of a string of 23 1 bits. */  | 
2181  | 0  |             fbits = 0;  | 
2182  | 0  |             ++e;  | 
2183  | 0  |             if (e >= 255)  | 
2184  | 0  |                 goto Overflow;  | 
2185  | 0  |         }  | 
2186  |  |  | 
2187  |  |         /* First byte */  | 
2188  | 0  |         *p = (sign << 7) | (e >> 1);  | 
2189  | 0  |         p += incr;  | 
2190  |  |  | 
2191  |  |         /* Second byte */  | 
2192  | 0  |         *p = (char) (((e & 1) << 7) | (fbits >> 16));  | 
2193  | 0  |         p += incr;  | 
2194  |  |  | 
2195  |  |         /* Third byte */  | 
2196  | 0  |         *p = (fbits >> 8) & 0xFF;  | 
2197  | 0  |         p += incr;  | 
2198  |  |  | 
2199  |  |         /* Fourth byte */  | 
2200  | 0  |         *p = fbits & 0xFF;  | 
2201  |  |  | 
2202  |  |         /* Done */  | 
2203  | 0  |         return 0;  | 
2204  |  | 
  | 
2205  | 0  |     }  | 
2206  | 0  |     else { | 
2207  | 0  |         float y = (float)x;  | 
2208  | 0  |         int i, incr = 1;  | 
2209  |  | 
  | 
2210  | 0  |         if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))  | 
2211  | 0  |             goto Overflow;  | 
2212  |  |  | 
2213  | 0  |         unsigned char s[sizeof(float)];  | 
2214  | 0  |         memcpy(s, &y, sizeof(float));  | 
2215  |  | 
  | 
2216  | 0  |         if ((float_format == ieee_little_endian_format && !le)  | 
2217  | 0  |             || (float_format == ieee_big_endian_format && le)) { | 
2218  | 0  |             p += 3;  | 
2219  | 0  |             incr = -1;  | 
2220  | 0  |         }  | 
2221  |  | 
  | 
2222  | 0  |         for (i = 0; i < 4; i++) { | 
2223  | 0  |             *p = s[i];  | 
2224  | 0  |             p += incr;  | 
2225  | 0  |         }  | 
2226  | 0  |         return 0;  | 
2227  | 0  |     }  | 
2228  | 0  |   Overflow:  | 
2229  | 0  |     PyErr_SetString(PyExc_OverflowError,  | 
2230  | 0  |                     "float too large to pack with f format");  | 
2231  | 0  |     return -1;  | 
2232  | 0  | }  | 
2233  |  |  | 
2234  |  | int  | 
2235  |  | _PyFloat_Pack8(double x, unsigned char *p, int le)  | 
2236  | 0  | { | 
2237  | 0  |     if (double_format == unknown_format) { | 
2238  | 0  |         unsigned char sign;  | 
2239  | 0  |         int e;  | 
2240  | 0  |         double f;  | 
2241  | 0  |         unsigned int fhi, flo;  | 
2242  | 0  |         int incr = 1;  | 
2243  |  | 
  | 
2244  | 0  |         if (le) { | 
2245  | 0  |             p += 7;  | 
2246  | 0  |             incr = -1;  | 
2247  | 0  |         }  | 
2248  |  | 
  | 
2249  | 0  |         if (x < 0) { | 
2250  | 0  |             sign = 1;  | 
2251  | 0  |             x = -x;  | 
2252  | 0  |         }  | 
2253  | 0  |         else  | 
2254  | 0  |             sign = 0;  | 
2255  |  | 
  | 
2256  | 0  |         f = frexp(x, &e);  | 
2257  |  |  | 
2258  |  |         /* Normalize f to be in the range [1.0, 2.0) */  | 
2259  | 0  |         if (0.5 <= f && f < 1.0) { | 
2260  | 0  |             f *= 2.0;  | 
2261  | 0  |             e--;  | 
2262  | 0  |         }  | 
2263  | 0  |         else if (f == 0.0)  | 
2264  | 0  |             e = 0;  | 
2265  | 0  |         else { | 
2266  | 0  |             PyErr_SetString(PyExc_SystemError,  | 
2267  | 0  |                             "frexp() result out of range");  | 
2268  | 0  |             return -1;  | 
2269  | 0  |         }  | 
2270  |  |  | 
2271  | 0  |         if (e >= 1024)  | 
2272  | 0  |             goto Overflow;  | 
2273  | 0  |         else if (e < -1022) { | 
2274  |  |             /* Gradual underflow */  | 
2275  | 0  |             f = ldexp(f, 1022 + e);  | 
2276  | 0  |             e = 0;  | 
2277  | 0  |         }  | 
2278  | 0  |         else if (!(e == 0 && f == 0.0)) { | 
2279  | 0  |             e += 1023;  | 
2280  | 0  |             f -= 1.0; /* Get rid of leading 1 */  | 
2281  | 0  |         }  | 
2282  |  |  | 
2283  |  |         /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */  | 
2284  | 0  |         f *= 268435456.0; /* 2**28 */  | 
2285  | 0  |         fhi = (unsigned int)f; /* Truncate */  | 
2286  | 0  |         assert(fhi < 268435456);  | 
2287  |  | 
  | 
2288  | 0  |         f -= (double)fhi;  | 
2289  | 0  |         f *= 16777216.0; /* 2**24 */  | 
2290  | 0  |         flo = (unsigned int)(f + 0.5); /* Round */  | 
2291  | 0  |         assert(flo <= 16777216);  | 
2292  | 0  |         if (flo >> 24) { | 
2293  |  |             /* The carry propagated out of a string of 24 1 bits. */  | 
2294  | 0  |             flo = 0;  | 
2295  | 0  |             ++fhi;  | 
2296  | 0  |             if (fhi >> 28) { | 
2297  |  |                 /* And it also progagated out of the next 28 bits. */  | 
2298  | 0  |                 fhi = 0;  | 
2299  | 0  |                 ++e;  | 
2300  | 0  |                 if (e >= 2047)  | 
2301  | 0  |                     goto Overflow;  | 
2302  | 0  |             }  | 
2303  | 0  |         }  | 
2304  |  |  | 
2305  |  |         /* First byte */  | 
2306  | 0  |         *p = (sign << 7) | (e >> 4);  | 
2307  | 0  |         p += incr;  | 
2308  |  |  | 
2309  |  |         /* Second byte */  | 
2310  | 0  |         *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));  | 
2311  | 0  |         p += incr;  | 
2312  |  |  | 
2313  |  |         /* Third byte */  | 
2314  | 0  |         *p = (fhi >> 16) & 0xFF;  | 
2315  | 0  |         p += incr;  | 
2316  |  |  | 
2317  |  |         /* Fourth byte */  | 
2318  | 0  |         *p = (fhi >> 8) & 0xFF;  | 
2319  | 0  |         p += incr;  | 
2320  |  |  | 
2321  |  |         /* Fifth byte */  | 
2322  | 0  |         *p = fhi & 0xFF;  | 
2323  | 0  |         p += incr;  | 
2324  |  |  | 
2325  |  |         /* Sixth byte */  | 
2326  | 0  |         *p = (flo >> 16) & 0xFF;  | 
2327  | 0  |         p += incr;  | 
2328  |  |  | 
2329  |  |         /* Seventh byte */  | 
2330  | 0  |         *p = (flo >> 8) & 0xFF;  | 
2331  | 0  |         p += incr;  | 
2332  |  |  | 
2333  |  |         /* Eighth byte */  | 
2334  | 0  |         *p = flo & 0xFF;  | 
2335  |  |         /* p += incr; */  | 
2336  |  |  | 
2337  |  |         /* Done */  | 
2338  | 0  |         return 0;  | 
2339  |  |  | 
2340  | 0  |       Overflow:  | 
2341  | 0  |         PyErr_SetString(PyExc_OverflowError,  | 
2342  | 0  |                         "float too large to pack with d format");  | 
2343  | 0  |         return -1;  | 
2344  | 0  |     }  | 
2345  | 0  |     else { | 
2346  | 0  |         const unsigned char *s = (unsigned char*)&x;  | 
2347  | 0  |         int i, incr = 1;  | 
2348  |  | 
  | 
2349  | 0  |         if ((double_format == ieee_little_endian_format && !le)  | 
2350  | 0  |             || (double_format == ieee_big_endian_format && le)) { | 
2351  | 0  |             p += 7;  | 
2352  | 0  |             incr = -1;  | 
2353  | 0  |         }  | 
2354  |  | 
  | 
2355  | 0  |         for (i = 0; i < 8; i++) { | 
2356  | 0  |             *p = *s++;  | 
2357  | 0  |             p += incr;  | 
2358  | 0  |         }  | 
2359  | 0  |         return 0;  | 
2360  | 0  |     }  | 
2361  | 0  | }  | 
2362  |  |  | 
2363  |  | double  | 
2364  |  | _PyFloat_Unpack2(const unsigned char *p, int le)  | 
2365  | 0  | { | 
2366  | 0  |     unsigned char sign;  | 
2367  | 0  |     int e;  | 
2368  | 0  |     unsigned int f;  | 
2369  | 0  |     double x;  | 
2370  | 0  |     int incr = 1;  | 
2371  |  | 
  | 
2372  | 0  |     if (le) { | 
2373  | 0  |         p += 1;  | 
2374  | 0  |         incr = -1;  | 
2375  | 0  |     }  | 
2376  |  |  | 
2377  |  |     /* First byte */  | 
2378  | 0  |     sign = (*p >> 7) & 1;  | 
2379  | 0  |     e = (*p & 0x7C) >> 2;  | 
2380  | 0  |     f = (*p & 0x03) << 8;  | 
2381  | 0  |     p += incr;  | 
2382  |  |  | 
2383  |  |     /* Second byte */  | 
2384  | 0  |     f |= *p;  | 
2385  |  | 
  | 
2386  | 0  |     if (e == 0x1f) { | 
2387  |  | #ifdef PY_NO_SHORT_FLOAT_REPR  | 
2388  |  |         if (f == 0) { | 
2389  |  |             /* Infinity */  | 
2390  |  |             return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;  | 
2391  |  |         }  | 
2392  |  |         else { | 
2393  |  |             /* NaN */  | 
2394  |  | #ifdef Py_NAN  | 
2395  |  |             return sign ? -Py_NAN : Py_NAN;  | 
2396  |  | #else  | 
2397  |  |             PyErr_SetString(  | 
2398  |  |                 PyExc_ValueError,  | 
2399  |  |                 "can't unpack IEEE 754 NaN "  | 
2400  |  |                 "on platform that does not support NaNs");  | 
2401  |  |             return -1;  | 
2402  |  | #endif  /* #ifdef Py_NAN */  | 
2403  |  |         }  | 
2404  |  | #else  | 
2405  | 0  |         if (f == 0) { | 
2406  |  |             /* Infinity */  | 
2407  | 0  |             return _Py_dg_infinity(sign);  | 
2408  | 0  |         }  | 
2409  | 0  |         else { | 
2410  |  |             /* NaN */  | 
2411  | 0  |             return _Py_dg_stdnan(sign);  | 
2412  | 0  |         }  | 
2413  | 0  | #endif  /* #ifdef PY_NO_SHORT_FLOAT_REPR */  | 
2414  | 0  |     }  | 
2415  |  |  | 
2416  | 0  |     x = (double)f / 1024.0;  | 
2417  |  | 
  | 
2418  | 0  |     if (e == 0) { | 
2419  | 0  |         e = -14;  | 
2420  | 0  |     }  | 
2421  | 0  |     else { | 
2422  | 0  |         x += 1.0;  | 
2423  | 0  |         e -= 15;  | 
2424  | 0  |     }  | 
2425  | 0  |     x = ldexp(x, e);  | 
2426  |  | 
  | 
2427  | 0  |     if (sign)  | 
2428  | 0  |         x = -x;  | 
2429  |  | 
  | 
2430  | 0  |     return x;  | 
2431  | 0  | }  | 
2432  |  |  | 
2433  |  | double  | 
2434  |  | _PyFloat_Unpack4(const unsigned char *p, int le)  | 
2435  | 0  | { | 
2436  | 0  |     if (float_format == unknown_format) { | 
2437  | 0  |         unsigned char sign;  | 
2438  | 0  |         int e;  | 
2439  | 0  |         unsigned int f;  | 
2440  | 0  |         double x;  | 
2441  | 0  |         int incr = 1;  | 
2442  |  | 
  | 
2443  | 0  |         if (le) { | 
2444  | 0  |             p += 3;  | 
2445  | 0  |             incr = -1;  | 
2446  | 0  |         }  | 
2447  |  |  | 
2448  |  |         /* First byte */  | 
2449  | 0  |         sign = (*p >> 7) & 1;  | 
2450  | 0  |         e = (*p & 0x7F) << 1;  | 
2451  | 0  |         p += incr;  | 
2452  |  |  | 
2453  |  |         /* Second byte */  | 
2454  | 0  |         e |= (*p >> 7) & 1;  | 
2455  | 0  |         f = (*p & 0x7F) << 16;  | 
2456  | 0  |         p += incr;  | 
2457  |  | 
  | 
2458  | 0  |         if (e == 255) { | 
2459  | 0  |             PyErr_SetString(  | 
2460  | 0  |                 PyExc_ValueError,  | 
2461  | 0  |                 "can't unpack IEEE 754 special value "  | 
2462  | 0  |                 "on non-IEEE platform");  | 
2463  | 0  |             return -1;  | 
2464  | 0  |         }  | 
2465  |  |  | 
2466  |  |         /* Third byte */  | 
2467  | 0  |         f |= *p << 8;  | 
2468  | 0  |         p += incr;  | 
2469  |  |  | 
2470  |  |         /* Fourth byte */  | 
2471  | 0  |         f |= *p;  | 
2472  |  | 
  | 
2473  | 0  |         x = (double)f / 8388608.0;  | 
2474  |  |  | 
2475  |  |         /* XXX This sadly ignores Inf/NaN issues */  | 
2476  | 0  |         if (e == 0)  | 
2477  | 0  |             e = -126;  | 
2478  | 0  |         else { | 
2479  | 0  |             x += 1.0;  | 
2480  | 0  |             e -= 127;  | 
2481  | 0  |         }  | 
2482  | 0  |         x = ldexp(x, e);  | 
2483  |  | 
  | 
2484  | 0  |         if (sign)  | 
2485  | 0  |             x = -x;  | 
2486  |  | 
  | 
2487  | 0  |         return x;  | 
2488  | 0  |     }  | 
2489  | 0  |     else { | 
2490  | 0  |         float x;  | 
2491  |  | 
  | 
2492  | 0  |         if ((float_format == ieee_little_endian_format && !le)  | 
2493  | 0  |             || (float_format == ieee_big_endian_format && le)) { | 
2494  | 0  |             char buf[4];  | 
2495  | 0  |             char *d = &buf[3];  | 
2496  | 0  |             int i;  | 
2497  |  | 
  | 
2498  | 0  |             for (i = 0; i < 4; i++) { | 
2499  | 0  |                 *d-- = *p++;  | 
2500  | 0  |             }  | 
2501  | 0  |             memcpy(&x, buf, 4);  | 
2502  | 0  |         }  | 
2503  | 0  |         else { | 
2504  | 0  |             memcpy(&x, p, 4);  | 
2505  | 0  |         }  | 
2506  |  | 
  | 
2507  | 0  |         return x;  | 
2508  | 0  |     }  | 
2509  | 0  | }  | 
2510  |  |  | 
2511  |  | double  | 
2512  |  | _PyFloat_Unpack8(const unsigned char *p, int le)  | 
2513  | 0  | { | 
2514  | 0  |     if (double_format == unknown_format) { | 
2515  | 0  |         unsigned char sign;  | 
2516  | 0  |         int e;  | 
2517  | 0  |         unsigned int fhi, flo;  | 
2518  | 0  |         double x;  | 
2519  | 0  |         int incr = 1;  | 
2520  |  | 
  | 
2521  | 0  |         if (le) { | 
2522  | 0  |             p += 7;  | 
2523  | 0  |             incr = -1;  | 
2524  | 0  |         }  | 
2525  |  |  | 
2526  |  |         /* First byte */  | 
2527  | 0  |         sign = (*p >> 7) & 1;  | 
2528  | 0  |         e = (*p & 0x7F) << 4;  | 
2529  |  | 
  | 
2530  | 0  |         p += incr;  | 
2531  |  |  | 
2532  |  |         /* Second byte */  | 
2533  | 0  |         e |= (*p >> 4) & 0xF;  | 
2534  | 0  |         fhi = (*p & 0xF) << 24;  | 
2535  | 0  |         p += incr;  | 
2536  |  | 
  | 
2537  | 0  |         if (e == 2047) { | 
2538  | 0  |             PyErr_SetString(  | 
2539  | 0  |                 PyExc_ValueError,  | 
2540  | 0  |                 "can't unpack IEEE 754 special value "  | 
2541  | 0  |                 "on non-IEEE platform");  | 
2542  | 0  |             return -1.0;  | 
2543  | 0  |         }  | 
2544  |  |  | 
2545  |  |         /* Third byte */  | 
2546  | 0  |         fhi |= *p << 16;  | 
2547  | 0  |         p += incr;  | 
2548  |  |  | 
2549  |  |         /* Fourth byte */  | 
2550  | 0  |         fhi |= *p  << 8;  | 
2551  | 0  |         p += incr;  | 
2552  |  |  | 
2553  |  |         /* Fifth byte */  | 
2554  | 0  |         fhi |= *p;  | 
2555  | 0  |         p += incr;  | 
2556  |  |  | 
2557  |  |         /* Sixth byte */  | 
2558  | 0  |         flo = *p << 16;  | 
2559  | 0  |         p += incr;  | 
2560  |  |  | 
2561  |  |         /* Seventh byte */  | 
2562  | 0  |         flo |= *p << 8;  | 
2563  | 0  |         p += incr;  | 
2564  |  |  | 
2565  |  |         /* Eighth byte */  | 
2566  | 0  |         flo |= *p;  | 
2567  |  | 
  | 
2568  | 0  |         x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */  | 
2569  | 0  |         x /= 268435456.0; /* 2**28 */  | 
2570  |  | 
  | 
2571  | 0  |         if (e == 0)  | 
2572  | 0  |             e = -1022;  | 
2573  | 0  |         else { | 
2574  | 0  |             x += 1.0;  | 
2575  | 0  |             e -= 1023;  | 
2576  | 0  |         }  | 
2577  | 0  |         x = ldexp(x, e);  | 
2578  |  | 
  | 
2579  | 0  |         if (sign)  | 
2580  | 0  |             x = -x;  | 
2581  |  | 
  | 
2582  | 0  |         return x;  | 
2583  | 0  |     }  | 
2584  | 0  |     else { | 
2585  | 0  |         double x;  | 
2586  |  | 
  | 
2587  | 0  |         if ((double_format == ieee_little_endian_format && !le)  | 
2588  | 0  |             || (double_format == ieee_big_endian_format && le)) { | 
2589  | 0  |             char buf[8];  | 
2590  | 0  |             char *d = &buf[7];  | 
2591  | 0  |             int i;  | 
2592  |  | 
  | 
2593  | 0  |             for (i = 0; i < 8; i++) { | 
2594  | 0  |                 *d-- = *p++;  | 
2595  | 0  |             }  | 
2596  | 0  |             memcpy(&x, buf, 8);  | 
2597  | 0  |         }  | 
2598  | 0  |         else { | 
2599  | 0  |             memcpy(&x, p, 8);  | 
2600  | 0  |         }  | 
2601  |  | 
  | 
2602  | 0  |         return x;  | 
2603  | 0  |     }  | 
2604  | 0  | }  |