/src/Python-3.8.3/Objects/obmalloc.c
Line  | Count  | Source  | 
1  |  | #include "Python.h"  | 
2  |  | #include "pycore_pymem.h"  | 
3  |  |  | 
4  |  | #include <stdbool.h>  | 
5  |  |  | 
6  |  |  | 
7  |  | /* Defined in tracemalloc.c */  | 
8  |  | extern void _PyMem_DumpTraceback(int fd, const void *ptr);  | 
9  |  |  | 
10  |  |  | 
11  |  | /* Python's malloc wrappers (see pymem.h) */  | 
12  |  |  | 
13  |  | #undef  uint  | 
14  | 1.81M  | #define uint    unsigned int    /* assuming >= 16 bits */  | 
15  |  |  | 
16  |  | /* Forward declaration */  | 
17  |  | static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);  | 
18  |  | static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);  | 
19  |  | static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);  | 
20  |  | static void _PyMem_DebugRawFree(void *ctx, void *ptr);  | 
21  |  |  | 
22  |  | static void* _PyMem_DebugMalloc(void *ctx, size_t size);  | 
23  |  | static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);  | 
24  |  | static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);  | 
25  |  | static void _PyMem_DebugFree(void *ctx, void *p);  | 
26  |  |  | 
27  |  | static void _PyObject_DebugDumpAddress(const void *p);  | 
28  |  | static void _PyMem_DebugCheckAddress(char api_id, const void *p);  | 
29  |  |  | 
30  |  | static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);  | 
31  |  |  | 
32  |  | #if defined(__has_feature)  /* Clang */  | 
33  |  | #  if __has_feature(address_sanitizer) /* is ASAN enabled? */  | 
34  |  | #    define _Py_NO_SANITIZE_ADDRESS \  | 
35  |  |         __attribute__((no_sanitize("address"))) | 
36  |  | #  endif  | 
37  |  | #  if __has_feature(thread_sanitizer)  /* is TSAN enabled? */  | 
38  |  | #    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))  | 
39  |  | #  endif  | 
40  |  | #  if __has_feature(memory_sanitizer)  /* is MSAN enabled? */  | 
41  |  | #    define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))  | 
42  |  | #  endif  | 
43  |  | #elif defined(__GNUC__)  | 
44  |  | #  if defined(__SANITIZE_ADDRESS__)    /* GCC 4.8+, is ASAN enabled? */  | 
45  |  | #    define _Py_NO_SANITIZE_ADDRESS \  | 
46  |  |         __attribute__((no_sanitize_address))  | 
47  |  | #  endif  | 
48  |  |    // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro  | 
49  |  |    // is provided only since GCC 7.  | 
50  |  | #  if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)  | 
51  |  | #    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))  | 
52  |  | #  endif  | 
53  |  | #endif  | 
54  |  |  | 
55  |  | #ifndef _Py_NO_SANITIZE_ADDRESS  | 
56  |  | #  define _Py_NO_SANITIZE_ADDRESS  | 
57  |  | #endif  | 
58  |  | #ifndef _Py_NO_SANITIZE_THREAD  | 
59  |  | #  define _Py_NO_SANITIZE_THREAD  | 
60  |  | #endif  | 
61  |  | #ifndef _Py_NO_SANITIZE_MEMORY  | 
62  |  | #  define _Py_NO_SANITIZE_MEMORY  | 
63  |  | #endif  | 
64  |  |  | 
65  |  | #ifdef WITH_PYMALLOC  | 
66  |  |  | 
67  |  | #ifdef MS_WINDOWS  | 
68  |  | #  include <windows.h>  | 
69  |  | #elif defined(HAVE_MMAP)  | 
70  |  | #  include <sys/mman.h>  | 
71  |  | #  ifdef MAP_ANONYMOUS  | 
72  |  | #    define ARENAS_USE_MMAP  | 
73  |  | #  endif  | 
74  |  | #endif  | 
75  |  |  | 
76  |  | /* Forward declaration */  | 
77  |  | static void* _PyObject_Malloc(void *ctx, size_t size);  | 
78  |  | static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);  | 
79  |  | static void _PyObject_Free(void *ctx, void *p);  | 
80  |  | static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);  | 
81  |  | #endif  | 
82  |  |  | 
83  |  |  | 
84  |  | /* bpo-35053: Declare tracemalloc configuration here rather than  | 
85  |  |    Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic  | 
86  |  |    library, whereas _Py_NewReference() requires it. */  | 
87  |  | struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;  | 
88  |  |  | 
89  |  |  | 
90  |  | static void *  | 
91  |  | _PyMem_RawMalloc(void *ctx, size_t size)  | 
92  | 25.2k  | { | 
93  |  |     /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL  | 
94  |  |        for malloc(0), which would be treated as an error. Some platforms would  | 
95  |  |        return a pointer with no memory behind it, which would break pymalloc.  | 
96  |  |        To solve these problems, allocate an extra byte. */  | 
97  | 25.2k  |     if (size == 0)  | 
98  | 45  |         size = 1;  | 
99  | 25.2k  |     return malloc(size);  | 
100  | 25.2k  | }  | 
101  |  |  | 
102  |  | static void *  | 
103  |  | _PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)  | 
104  | 44  | { | 
105  |  |     /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL  | 
106  |  |        for calloc(0, 0), which would be treated as an error. Some platforms  | 
107  |  |        would return a pointer with no memory behind it, which would break  | 
108  |  |        pymalloc.  To solve these problems, allocate an extra byte. */  | 
109  | 44  |     if (nelem == 0 || elsize == 0) { | 
110  | 0  |         nelem = 1;  | 
111  | 0  |         elsize = 1;  | 
112  | 0  |     }  | 
113  | 44  |     return calloc(nelem, elsize);  | 
114  | 44  | }  | 
115  |  |  | 
116  |  | static void *  | 
117  |  | _PyMem_RawRealloc(void *ctx, void *ptr, size_t size)  | 
118  | 1.94k  | { | 
119  | 1.94k  |     if (size == 0)  | 
120  | 0  |         size = 1;  | 
121  | 1.94k  |     return realloc(ptr, size);  | 
122  | 1.94k  | }  | 
123  |  |  | 
124  |  | static void  | 
125  |  | _PyMem_RawFree(void *ctx, void *ptr)  | 
126  | 21.6k  | { | 
127  | 21.6k  |     free(ptr);  | 
128  | 21.6k  | }  | 
129  |  |  | 
130  |  |  | 
131  |  | #ifdef MS_WINDOWS  | 
132  |  | static void *  | 
133  |  | _PyObject_ArenaVirtualAlloc(void *ctx, size_t size)  | 
134  |  | { | 
135  |  |     return VirtualAlloc(NULL, size,  | 
136  |  |                         MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);  | 
137  |  | }  | 
138  |  |  | 
139  |  | static void  | 
140  |  | _PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)  | 
141  |  | { | 
142  |  |     VirtualFree(ptr, 0, MEM_RELEASE);  | 
143  |  | }  | 
144  |  |  | 
145  |  | #elif defined(ARENAS_USE_MMAP)  | 
146  |  | static void *  | 
147  |  | _PyObject_ArenaMmap(void *ctx, size_t size)  | 
148  | 115  | { | 
149  | 115  |     void *ptr;  | 
150  | 115  |     ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,  | 
151  | 115  |                MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);  | 
152  | 115  |     if (ptr == MAP_FAILED)  | 
153  | 0  |         return NULL;  | 
154  | 115  |     assert(ptr != NULL);  | 
155  | 115  |     return ptr;  | 
156  | 115  | }  | 
157  |  |  | 
158  |  | static void  | 
159  |  | _PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)  | 
160  | 26  | { | 
161  | 26  |     munmap(ptr, size);  | 
162  | 26  | }  | 
163  |  |  | 
164  |  | #else  | 
165  |  | static void *  | 
166  |  | _PyObject_ArenaMalloc(void *ctx, size_t size)  | 
167  |  | { | 
168  |  |     return malloc(size);  | 
169  |  | }  | 
170  |  |  | 
171  |  | static void  | 
172  |  | _PyObject_ArenaFree(void *ctx, void *ptr, size_t size)  | 
173  |  | { | 
174  |  |     free(ptr);  | 
175  |  | }  | 
176  |  | #endif  | 
177  |  |  | 
178  | 154  | #define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree} | 
179  |  | #ifdef WITH_PYMALLOC  | 
180  | 0  | #  define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free} | 
181  |  | #endif  | 
182  |  |  | 
183  | 154  | #define PYRAW_ALLOC MALLOC_ALLOC  | 
184  |  | #ifdef WITH_PYMALLOC  | 
185  | 0  | #  define PYOBJ_ALLOC PYMALLOC_ALLOC  | 
186  |  | #else  | 
187  |  | #  define PYOBJ_ALLOC MALLOC_ALLOC  | 
188  |  | #endif  | 
189  | 0  | #define PYMEM_ALLOC PYOBJ_ALLOC  | 
190  |  |  | 
191  |  | typedef struct { | 
192  |  |     /* We tag each block with an API ID in order to tag API violations */  | 
193  |  |     char api_id;  | 
194  |  |     PyMemAllocatorEx alloc;  | 
195  |  | } debug_alloc_api_t;  | 
196  |  | static struct { | 
197  |  |     debug_alloc_api_t raw;  | 
198  |  |     debug_alloc_api_t mem;  | 
199  |  |     debug_alloc_api_t obj;  | 
200  |  | } _PyMem_Debug = { | 
201  |  |     {'r', PYRAW_ALLOC}, | 
202  |  |     {'m', PYMEM_ALLOC}, | 
203  |  |     {'o', PYOBJ_ALLOC} | 
204  |  |     };  | 
205  |  |  | 
206  |  | #define PYDBGRAW_ALLOC \  | 
207  | 0  |     {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree} | 
208  |  | #define PYDBGMEM_ALLOC \  | 
209  | 0  |     {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} | 
210  |  | #define PYDBGOBJ_ALLOC \  | 
211  | 0  |     {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree} | 
212  |  |  | 
213  |  | #ifdef Py_DEBUG  | 
214  |  | static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;  | 
215  |  | static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;  | 
216  |  | static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;  | 
217  |  | #else  | 
218  |  | static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;  | 
219  |  | static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;  | 
220  |  | static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;  | 
221  |  | #endif  | 
222  |  |  | 
223  |  |  | 
224  |  | static int  | 
225  |  | pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,  | 
226  |  |                             PyMemAllocatorEx *old_alloc)  | 
227  | 154  | { | 
228  | 154  |     if (old_alloc != NULL) { | 
229  | 154  |         PyMem_GetAllocator(domain, old_alloc);  | 
230  | 154  |     }  | 
231  |  |  | 
232  |  |  | 
233  | 154  |     PyMemAllocatorEx new_alloc;  | 
234  | 154  |     switch(domain)  | 
235  | 154  |     { | 
236  | 154  |     case PYMEM_DOMAIN_RAW:  | 
237  | 154  |         new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;  | 
238  | 154  |         break;  | 
239  | 0  |     case PYMEM_DOMAIN_MEM:  | 
240  | 0  |         new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;  | 
241  | 0  |         break;  | 
242  | 0  |     case PYMEM_DOMAIN_OBJ:  | 
243  | 0  |         new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;  | 
244  | 0  |         break;  | 
245  | 0  |     default:  | 
246  |  |         /* unknown domain */  | 
247  | 0  |         return -1;  | 
248  | 154  |     }  | 
249  | 154  |     PyMem_SetAllocator(domain, &new_alloc);  | 
250  | 154  |     if (debug) { | 
251  | 0  |         _PyMem_SetupDebugHooksDomain(domain);  | 
252  | 0  |     }  | 
253  | 154  |     return 0;  | 
254  | 154  | }  | 
255  |  |  | 
256  |  |  | 
257  |  | int  | 
258  |  | _PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,  | 
259  |  |                            PyMemAllocatorEx *old_alloc)  | 
260  | 154  | { | 
261  |  | #ifdef Py_DEBUG  | 
262  |  |     const int debug = 1;  | 
263  |  | #else  | 
264  | 154  |     const int debug = 0;  | 
265  | 154  | #endif  | 
266  | 154  |     return pymem_set_default_allocator(domain, debug, old_alloc);  | 
267  | 154  | }  | 
268  |  |  | 
269  |  |  | 
270  |  | int  | 
271  |  | _PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)  | 
272  | 0  | { | 
273  | 0  |     if (name == NULL || *name == '\0') { | 
274  |  |         /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line  | 
275  |  |            nameions): use default memory allocators */  | 
276  | 0  |         *allocator = PYMEM_ALLOCATOR_DEFAULT;  | 
277  | 0  |     }  | 
278  | 0  |     else if (strcmp(name, "default") == 0) { | 
279  | 0  |         *allocator = PYMEM_ALLOCATOR_DEFAULT;  | 
280  | 0  |     }  | 
281  | 0  |     else if (strcmp(name, "debug") == 0) { | 
282  | 0  |         *allocator = PYMEM_ALLOCATOR_DEBUG;  | 
283  | 0  |     }  | 
284  | 0  | #ifdef WITH_PYMALLOC  | 
285  | 0  |     else if (strcmp(name, "pymalloc") == 0) { | 
286  | 0  |         *allocator = PYMEM_ALLOCATOR_PYMALLOC;  | 
287  | 0  |     }  | 
288  | 0  |     else if (strcmp(name, "pymalloc_debug") == 0) { | 
289  | 0  |         *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;  | 
290  | 0  |     }  | 
291  | 0  | #endif  | 
292  | 0  |     else if (strcmp(name, "malloc") == 0) { | 
293  | 0  |         *allocator = PYMEM_ALLOCATOR_MALLOC;  | 
294  | 0  |     }  | 
295  | 0  |     else if (strcmp(name, "malloc_debug") == 0) { | 
296  | 0  |         *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;  | 
297  | 0  |     }  | 
298  | 0  |     else { | 
299  |  |         /* unknown allocator */  | 
300  | 0  |         return -1;  | 
301  | 0  |     }  | 
302  | 0  |     return 0;  | 
303  | 0  | }  | 
304  |  |  | 
305  |  |  | 
306  |  | int  | 
307  |  | _PyMem_SetupAllocators(PyMemAllocatorName allocator)  | 
308  | 0  | { | 
309  | 0  |     switch (allocator) { | 
310  | 0  |     case PYMEM_ALLOCATOR_NOT_SET:  | 
311  |  |         /* do nothing */  | 
312  | 0  |         break;  | 
313  |  |  | 
314  | 0  |     case PYMEM_ALLOCATOR_DEFAULT:  | 
315  | 0  |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);  | 
316  | 0  |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);  | 
317  | 0  |         (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);  | 
318  | 0  |         break;  | 
319  |  |  | 
320  | 0  |     case PYMEM_ALLOCATOR_DEBUG:  | 
321  | 0  |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);  | 
322  | 0  |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);  | 
323  | 0  |         (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);  | 
324  | 0  |         break;  | 
325  |  |  | 
326  | 0  | #ifdef WITH_PYMALLOC  | 
327  | 0  |     case PYMEM_ALLOCATOR_PYMALLOC:  | 
328  | 0  |     case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:  | 
329  | 0  |     { | 
330  | 0  |         PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;  | 
331  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);  | 
332  |  | 
  | 
333  | 0  |         PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;  | 
334  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);  | 
335  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);  | 
336  |  | 
  | 
337  | 0  |         if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) { | 
338  | 0  |             PyMem_SetupDebugHooks();  | 
339  | 0  |         }  | 
340  | 0  |         break;  | 
341  | 0  |     }  | 
342  | 0  | #endif  | 
343  |  |  | 
344  | 0  |     case PYMEM_ALLOCATOR_MALLOC:  | 
345  | 0  |     case PYMEM_ALLOCATOR_MALLOC_DEBUG:  | 
346  | 0  |     { | 
347  | 0  |         PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;  | 
348  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);  | 
349  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);  | 
350  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);  | 
351  |  | 
  | 
352  | 0  |         if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) { | 
353  | 0  |             PyMem_SetupDebugHooks();  | 
354  | 0  |         }  | 
355  | 0  |         break;  | 
356  | 0  |     }  | 
357  |  |  | 
358  | 0  |     default:  | 
359  |  |         /* unknown allocator */  | 
360  | 0  |         return -1;  | 
361  | 0  |     }  | 
362  | 0  |     return 0;  | 
363  | 0  | }  | 
364  |  |  | 
365  |  |  | 
366  |  | static int  | 
367  |  | pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)  | 
368  | 0  | { | 
369  | 0  |     return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);  | 
370  | 0  | }  | 
371  |  |  | 
372  |  |  | 
373  |  | const char*  | 
374  |  | _PyMem_GetCurrentAllocatorName(void)  | 
375  | 0  | { | 
376  | 0  |     PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;  | 
377  | 0  | #ifdef WITH_PYMALLOC  | 
378  | 0  |     PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;  | 
379  | 0  | #endif  | 
380  |  | 
  | 
381  | 0  |     if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&  | 
382  | 0  |         pymemallocator_eq(&_PyMem, &malloc_alloc) &&  | 
383  | 0  |         pymemallocator_eq(&_PyObject, &malloc_alloc))  | 
384  | 0  |     { | 
385  | 0  |         return "malloc";  | 
386  | 0  |     }  | 
387  | 0  | #ifdef WITH_PYMALLOC  | 
388  | 0  |     if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&  | 
389  | 0  |         pymemallocator_eq(&_PyMem, &pymalloc) &&  | 
390  | 0  |         pymemallocator_eq(&_PyObject, &pymalloc))  | 
391  | 0  |     { | 
392  | 0  |         return "pymalloc";  | 
393  | 0  |     }  | 
394  | 0  | #endif  | 
395  |  |  | 
396  | 0  |     PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;  | 
397  | 0  |     PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;  | 
398  | 0  |     PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;  | 
399  |  | 
  | 
400  | 0  |     if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&  | 
401  | 0  |         pymemallocator_eq(&_PyMem, &dbg_mem) &&  | 
402  | 0  |         pymemallocator_eq(&_PyObject, &dbg_obj))  | 
403  | 0  |     { | 
404  |  |         /* Debug hooks installed */  | 
405  | 0  |         if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&  | 
406  | 0  |             pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&  | 
407  | 0  |             pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))  | 
408  | 0  |         { | 
409  | 0  |             return "malloc_debug";  | 
410  | 0  |         }  | 
411  | 0  | #ifdef WITH_PYMALLOC  | 
412  | 0  |         if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&  | 
413  | 0  |             pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&  | 
414  | 0  |             pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))  | 
415  | 0  |         { | 
416  | 0  |             return "pymalloc_debug";  | 
417  | 0  |         }  | 
418  | 0  | #endif  | 
419  | 0  |     }  | 
420  | 0  |     return NULL;  | 
421  | 0  | }  | 
422  |  |  | 
423  |  |  | 
424  |  | #undef MALLOC_ALLOC  | 
425  |  | #undef PYMALLOC_ALLOC  | 
426  |  | #undef PYRAW_ALLOC  | 
427  |  | #undef PYMEM_ALLOC  | 
428  |  | #undef PYOBJ_ALLOC  | 
429  |  | #undef PYDBGRAW_ALLOC  | 
430  |  | #undef PYDBGMEM_ALLOC  | 
431  |  | #undef PYDBGOBJ_ALLOC  | 
432  |  |  | 
433  |  |  | 
434  |  | static PyObjectArenaAllocator _PyObject_Arena = {NULL, | 
435  |  | #ifdef MS_WINDOWS  | 
436  |  |     _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree  | 
437  |  | #elif defined(ARENAS_USE_MMAP)  | 
438  |  |     _PyObject_ArenaMmap, _PyObject_ArenaMunmap  | 
439  |  | #else  | 
440  |  |     _PyObject_ArenaMalloc, _PyObject_ArenaFree  | 
441  |  | #endif  | 
442  |  |     };  | 
443  |  |  | 
444  |  | #ifdef WITH_PYMALLOC  | 
445  |  | static int  | 
446  |  | _PyMem_DebugEnabled(void)  | 
447  | 0  | { | 
448  | 0  |     return (_PyObject.malloc == _PyMem_DebugMalloc);  | 
449  | 0  | }  | 
450  |  |  | 
451  |  | static int  | 
452  |  | _PyMem_PymallocEnabled(void)  | 
453  | 0  | { | 
454  | 0  |     if (_PyMem_DebugEnabled()) { | 
455  | 0  |         return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);  | 
456  | 0  |     }  | 
457  | 0  |     else { | 
458  | 0  |         return (_PyObject.malloc == _PyObject_Malloc);  | 
459  | 0  |     }  | 
460  | 0  | }  | 
461  |  | #endif  | 
462  |  |  | 
463  |  |  | 
464  |  | static void  | 
465  |  | _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)  | 
466  | 0  | { | 
467  | 0  |     PyMemAllocatorEx alloc;  | 
468  |  | 
  | 
469  | 0  |     if (domain == PYMEM_DOMAIN_RAW) { | 
470  | 0  |         if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) { | 
471  | 0  |             return;  | 
472  | 0  |         }  | 
473  |  |  | 
474  | 0  |         PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);  | 
475  | 0  |         alloc.ctx = &_PyMem_Debug.raw;  | 
476  | 0  |         alloc.malloc = _PyMem_DebugRawMalloc;  | 
477  | 0  |         alloc.calloc = _PyMem_DebugRawCalloc;  | 
478  | 0  |         alloc.realloc = _PyMem_DebugRawRealloc;  | 
479  | 0  |         alloc.free = _PyMem_DebugRawFree;  | 
480  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);  | 
481  | 0  |     }  | 
482  | 0  |     else if (domain == PYMEM_DOMAIN_MEM) { | 
483  | 0  |         if (_PyMem.malloc == _PyMem_DebugMalloc) { | 
484  | 0  |             return;  | 
485  | 0  |         }  | 
486  |  |  | 
487  | 0  |         PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);  | 
488  | 0  |         alloc.ctx = &_PyMem_Debug.mem;  | 
489  | 0  |         alloc.malloc = _PyMem_DebugMalloc;  | 
490  | 0  |         alloc.calloc = _PyMem_DebugCalloc;  | 
491  | 0  |         alloc.realloc = _PyMem_DebugRealloc;  | 
492  | 0  |         alloc.free = _PyMem_DebugFree;  | 
493  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);  | 
494  | 0  |     }  | 
495  | 0  |     else if (domain == PYMEM_DOMAIN_OBJ)  { | 
496  | 0  |         if (_PyObject.malloc == _PyMem_DebugMalloc) { | 
497  | 0  |             return;  | 
498  | 0  |         }  | 
499  |  |  | 
500  | 0  |         PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);  | 
501  | 0  |         alloc.ctx = &_PyMem_Debug.obj;  | 
502  | 0  |         alloc.malloc = _PyMem_DebugMalloc;  | 
503  | 0  |         alloc.calloc = _PyMem_DebugCalloc;  | 
504  | 0  |         alloc.realloc = _PyMem_DebugRealloc;  | 
505  | 0  |         alloc.free = _PyMem_DebugFree;  | 
506  | 0  |         PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);  | 
507  | 0  |     }  | 
508  | 0  | }  | 
509  |  |  | 
510  |  |  | 
511  |  | void  | 
512  |  | PyMem_SetupDebugHooks(void)  | 
513  | 0  | { | 
514  | 0  |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);  | 
515  | 0  |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);  | 
516  | 0  |     _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);  | 
517  | 0  | }  | 
518  |  |  | 
519  |  | void  | 
520  |  | PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)  | 
521  | 154  | { | 
522  | 154  |     switch(domain)  | 
523  | 154  |     { | 
524  | 154  |     case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;  | 
525  | 0  |     case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;  | 
526  | 0  |     case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;  | 
527  | 0  |     default:  | 
528  |  |         /* unknown domain: set all attributes to NULL */  | 
529  | 0  |         allocator->ctx = NULL;  | 
530  | 0  |         allocator->malloc = NULL;  | 
531  | 0  |         allocator->calloc = NULL;  | 
532  | 0  |         allocator->realloc = NULL;  | 
533  | 0  |         allocator->free = NULL;  | 
534  | 154  |     }  | 
535  | 154  | }  | 
536  |  |  | 
537  |  | void  | 
538  |  | PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)  | 
539  | 308  | { | 
540  | 308  |     switch(domain)  | 
541  | 308  |     { | 
542  | 308  |     case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;  | 
543  | 0  |     case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;  | 
544  | 0  |     case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;  | 
545  |  |     /* ignore unknown domain */  | 
546  | 308  |     }  | 
547  | 308  | }  | 
548  |  |  | 
549  |  | void  | 
550  |  | PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)  | 
551  | 0  | { | 
552  | 0  |     *allocator = _PyObject_Arena;  | 
553  | 0  | }  | 
554  |  |  | 
555  |  | void  | 
556  |  | PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)  | 
557  | 0  | { | 
558  | 0  |     _PyObject_Arena = *allocator;  | 
559  | 0  | }  | 
560  |  |  | 
561  |  | void *  | 
562  |  | PyMem_RawMalloc(size_t size)  | 
563  | 25.2k  | { | 
564  |  |     /*  | 
565  |  |      * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.  | 
566  |  |      * Most python internals blindly use a signed Py_ssize_t to track  | 
567  |  |      * things without checking for overflows or negatives.  | 
568  |  |      * As size_t is unsigned, checking for size < 0 is not required.  | 
569  |  |      */  | 
570  | 25.2k  |     if (size > (size_t)PY_SSIZE_T_MAX)  | 
571  | 0  |         return NULL;  | 
572  | 25.2k  |     return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);  | 
573  | 25.2k  | }  | 
574  |  |  | 
575  |  | void *  | 
576  |  | PyMem_RawCalloc(size_t nelem, size_t elsize)  | 
577  | 44  | { | 
578  |  |     /* see PyMem_RawMalloc() */  | 
579  | 44  |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)  | 
580  | 0  |         return NULL;  | 
581  | 44  |     return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);  | 
582  | 44  | }  | 
583  |  |  | 
584  |  | void*  | 
585  |  | PyMem_RawRealloc(void *ptr, size_t new_size)  | 
586  | 1.94k  | { | 
587  |  |     /* see PyMem_RawMalloc() */  | 
588  | 1.94k  |     if (new_size > (size_t)PY_SSIZE_T_MAX)  | 
589  | 0  |         return NULL;  | 
590  | 1.94k  |     return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);  | 
591  | 1.94k  | }  | 
592  |  |  | 
593  |  | void PyMem_RawFree(void *ptr)  | 
594  | 21.6k  | { | 
595  | 21.6k  |     _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);  | 
596  | 21.6k  | }  | 
597  |  |  | 
598  |  |  | 
599  |  | void *  | 
600  |  | PyMem_Malloc(size_t size)  | 
601  | 5.35k  | { | 
602  |  |     /* see PyMem_RawMalloc() */  | 
603  | 5.35k  |     if (size > (size_t)PY_SSIZE_T_MAX)  | 
604  | 0  |         return NULL;  | 
605  | 5.35k  |     return _PyMem.malloc(_PyMem.ctx, size);  | 
606  | 5.35k  | }  | 
607  |  |  | 
608  |  | void *  | 
609  |  | PyMem_Calloc(size_t nelem, size_t elsize)  | 
610  | 1.46k  | { | 
611  |  |     /* see PyMem_RawMalloc() */  | 
612  | 1.46k  |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)  | 
613  | 0  |         return NULL;  | 
614  | 1.46k  |     return _PyMem.calloc(_PyMem.ctx, nelem, elsize);  | 
615  | 1.46k  | }  | 
616  |  |  | 
617  |  | void *  | 
618  |  | PyMem_Realloc(void *ptr, size_t new_size)  | 
619  | 8.41k  | { | 
620  |  |     /* see PyMem_RawMalloc() */  | 
621  | 8.41k  |     if (new_size > (size_t)PY_SSIZE_T_MAX)  | 
622  | 0  |         return NULL;  | 
623  | 8.41k  |     return _PyMem.realloc(_PyMem.ctx, ptr, new_size);  | 
624  | 8.41k  | }  | 
625  |  |  | 
626  |  | void  | 
627  |  | PyMem_Free(void *ptr)  | 
628  | 8.81k  | { | 
629  | 8.81k  |     _PyMem.free(_PyMem.ctx, ptr);  | 
630  | 8.81k  | }  | 
631  |  |  | 
632  |  |  | 
633  |  | wchar_t*  | 
634  |  | _PyMem_RawWcsdup(const wchar_t *str)  | 
635  | 686  | { | 
636  | 686  |     assert(str != NULL);  | 
637  |  |  | 
638  | 686  |     size_t len = wcslen(str);  | 
639  | 686  |     if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) { | 
640  | 0  |         return NULL;  | 
641  | 0  |     }  | 
642  |  |  | 
643  | 686  |     size_t size = (len + 1) * sizeof(wchar_t);  | 
644  | 686  |     wchar_t *str2 = PyMem_RawMalloc(size);  | 
645  | 686  |     if (str2 == NULL) { | 
646  | 0  |         return NULL;  | 
647  | 0  |     }  | 
648  |  |  | 
649  | 686  |     memcpy(str2, str, size);  | 
650  | 686  |     return str2;  | 
651  | 686  | }  | 
652  |  |  | 
653  |  | char *  | 
654  |  | _PyMem_RawStrdup(const char *str)  | 
655  | 42  | { | 
656  | 42  |     assert(str != NULL);  | 
657  | 42  |     size_t size = strlen(str) + 1;  | 
658  | 42  |     char *copy = PyMem_RawMalloc(size);  | 
659  | 42  |     if (copy == NULL) { | 
660  | 0  |         return NULL;  | 
661  | 0  |     }  | 
662  | 42  |     memcpy(copy, str, size);  | 
663  | 42  |     return copy;  | 
664  | 42  | }  | 
665  |  |  | 
666  |  | char *  | 
667  |  | _PyMem_Strdup(const char *str)  | 
668  | 0  | { | 
669  | 0  |     assert(str != NULL);  | 
670  | 0  |     size_t size = strlen(str) + 1;  | 
671  | 0  |     char *copy = PyMem_Malloc(size);  | 
672  | 0  |     if (copy == NULL) { | 
673  | 0  |         return NULL;  | 
674  | 0  |     }  | 
675  | 0  |     memcpy(copy, str, size);  | 
676  | 0  |     return copy;  | 
677  | 0  | }  | 
678  |  |  | 
679  |  | void *  | 
680  |  | PyObject_Malloc(size_t size)  | 
681  | 605k  | { | 
682  |  |     /* see PyMem_RawMalloc() */  | 
683  | 605k  |     if (size > (size_t)PY_SSIZE_T_MAX)  | 
684  | 0  |         return NULL;  | 
685  | 605k  |     return _PyObject.malloc(_PyObject.ctx, size);  | 
686  | 605k  | }  | 
687  |  |  | 
688  |  | void *  | 
689  |  | PyObject_Calloc(size_t nelem, size_t elsize)  | 
690  | 0  | { | 
691  |  |     /* see PyMem_RawMalloc() */  | 
692  | 0  |     if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)  | 
693  | 0  |         return NULL;  | 
694  | 0  |     return _PyObject.calloc(_PyObject.ctx, nelem, elsize);  | 
695  | 0  | }  | 
696  |  |  | 
697  |  | void *  | 
698  |  | PyObject_Realloc(void *ptr, size_t new_size)  | 
699  | 14.3k  | { | 
700  |  |     /* see PyMem_RawMalloc() */  | 
701  | 14.3k  |     if (new_size > (size_t)PY_SSIZE_T_MAX)  | 
702  | 0  |         return NULL;  | 
703  | 14.3k  |     return _PyObject.realloc(_PyObject.ctx, ptr, new_size);  | 
704  | 14.3k  | }  | 
705  |  |  | 
706  |  | void  | 
707  |  | PyObject_Free(void *ptr)  | 
708  | 396k  | { | 
709  | 396k  |     _PyObject.free(_PyObject.ctx, ptr);  | 
710  | 396k  | }  | 
711  |  |  | 
712  |  |  | 
713  |  | #ifdef WITH_PYMALLOC  | 
714  |  |  | 
715  |  | #ifdef WITH_VALGRIND  | 
716  |  | #include <valgrind/valgrind.h>  | 
717  |  |  | 
718  |  | /* If we're using GCC, use __builtin_expect() to reduce overhead of  | 
719  |  |    the valgrind checks */  | 
720  |  | #if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)  | 
721  |  | #  define UNLIKELY(value) __builtin_expect((value), 0)  | 
722  |  | #else  | 
723  |  | #  define UNLIKELY(value) (value)  | 
724  |  | #endif  | 
725  |  |  | 
726  |  | /* -1 indicates that we haven't checked that we're running on valgrind yet. */  | 
727  |  | static int running_on_valgrind = -1;  | 
728  |  | #endif  | 
729  |  |  | 
730  |  |  | 
731  |  | /* An object allocator for Python.  | 
732  |  |  | 
733  |  |    Here is an introduction to the layers of the Python memory architecture,  | 
734  |  |    showing where the object allocator is actually used (layer +2), It is  | 
735  |  |    called for every object allocation and deallocation (PyObject_New/Del),  | 
736  |  |    unless the object-specific allocators implement a proprietary allocation  | 
737  |  |    scheme (ex.: ints use a simple free list). This is also the place where  | 
738  |  |    the cyclic garbage collector operates selectively on container objects.  | 
739  |  |  | 
740  |  |  | 
741  |  |     Object-specific allocators  | 
742  |  |     _____   ______   ______       ________  | 
743  |  |    [ int ] [ dict ] [ list ] ... [ string ]       Python core         |  | 
744  |  | +3 | <----- Object-specific memory -----> | <-- Non-object memory --> |  | 
745  |  |     _______________________________       |                           |  | 
746  |  |    [   Python's object allocator   ]      |                           |  | 
747  |  | +2 | ####### Object memory ####### | <------ Internal buffers ------> |  | 
748  |  |     ______________________________________________________________    |  | 
749  |  |    [          Python's raw memory allocator (PyMem_ API)          ]   |  | 
750  |  | +1 | <----- Python memory (under PyMem manager's control) ------> |   |  | 
751  |  |     __________________________________________________________________  | 
752  |  |    [    Underlying general-purpose allocator (ex: C library malloc)   ]  | 
753  |  |  0 | <------ Virtual memory allocated for the python process -------> |  | 
754  |  |  | 
755  |  |    =========================================================================  | 
756  |  |     _______________________________________________________________________  | 
757  |  |    [                OS-specific Virtual Memory Manager (VMM)               ]  | 
758  |  | -1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |  | 
759  |  |     __________________________________   __________________________________  | 
760  |  |    [                                  ] [                                  ]  | 
761  |  | -2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |  | 
762  |  |  | 
763  |  | */  | 
764  |  | /*==========================================================================*/  | 
765  |  |  | 
766  |  | /* A fast, special-purpose memory allocator for small blocks, to be used  | 
767  |  |    on top of a general-purpose malloc -- heavily based on previous art. */  | 
768  |  |  | 
769  |  | /* Vladimir Marangozov -- August 2000 */  | 
770  |  |  | 
771  |  | /*  | 
772  |  |  * "Memory management is where the rubber meets the road -- if we do the wrong  | 
773  |  |  * thing at any level, the results will not be good. And if we don't make the  | 
774  |  |  * levels work well together, we are in serious trouble." (1)  | 
775  |  |  *  | 
776  |  |  * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,  | 
777  |  |  *    "Dynamic Storage Allocation: A Survey and Critical Review",  | 
778  |  |  *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.  | 
779  |  |  */  | 
780  |  |  | 
781  |  | /* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */  | 
782  |  |  | 
783  |  | /*==========================================================================*/  | 
784  |  |  | 
785  |  | /*  | 
786  |  |  * Allocation strategy abstract:  | 
787  |  |  *  | 
788  |  |  * For small requests, the allocator sub-allocates <Big> blocks of memory.  | 
789  |  |  * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the  | 
790  |  |  * system's allocator.  | 
791  |  |  *  | 
792  |  |  * Small requests are grouped in size classes spaced 8 bytes apart, due  | 
793  |  |  * to the required valid alignment of the returned address. Requests of  | 
794  |  |  * a particular size are serviced from memory pools of 4K (one VMM page).  | 
795  |  |  * Pools are fragmented on demand and contain free lists of blocks of one  | 
796  |  |  * particular size class. In other words, there is a fixed-size allocator  | 
797  |  |  * for each size class. Free pools are shared by the different allocators  | 
798  |  |  * thus minimizing the space reserved for a particular size class.  | 
799  |  |  *  | 
800  |  |  * This allocation strategy is a variant of what is known as "simple  | 
801  |  |  * segregated storage based on array of free lists". The main drawback of  | 
802  |  |  * simple segregated storage is that we might end up with lot of reserved  | 
803  |  |  * memory for the different free lists, which degenerate in time. To avoid  | 
804  |  |  * this, we partition each free list in pools and we share dynamically the  | 
805  |  |  * reserved space between all free lists. This technique is quite efficient  | 
806  |  |  * for memory intensive programs which allocate mainly small-sized blocks.  | 
807  |  |  *  | 
808  |  |  * For small requests we have the following table:  | 
809  |  |  *  | 
810  |  |  * Request in bytes     Size of allocated block      Size class idx  | 
811  |  |  * ----------------------------------------------------------------  | 
812  |  |  *        1-8                     8                       0  | 
813  |  |  *        9-16                   16                       1  | 
814  |  |  *       17-24                   24                       2  | 
815  |  |  *       25-32                   32                       3  | 
816  |  |  *       33-40                   40                       4  | 
817  |  |  *       41-48                   48                       5  | 
818  |  |  *       49-56                   56                       6  | 
819  |  |  *       57-64                   64                       7  | 
820  |  |  *       65-72                   72                       8  | 
821  |  |  *        ...                   ...                     ...  | 
822  |  |  *      497-504                 504                      62  | 
823  |  |  *      505-512                 512                      63  | 
824  |  |  *  | 
825  |  |  *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying  | 
826  |  |  *      allocator.  | 
827  |  |  */  | 
828  |  |  | 
829  |  | /*==========================================================================*/  | 
830  |  |  | 
831  |  | /*  | 
832  |  |  * -- Main tunable settings section --  | 
833  |  |  */  | 
834  |  |  | 
835  |  | /*  | 
836  |  |  * Alignment of addresses returned to the user. 8-bytes alignment works  | 
837  |  |  * on most current architectures (with 32-bit or 64-bit address busses).  | 
838  |  |  * The alignment value is also used for grouping small requests in size  | 
839  |  |  * classes spaced ALIGNMENT bytes apart.  | 
840  |  |  *  | 
841  |  |  * You shouldn't change this unless you know what you are doing.  | 
842  |  |  */  | 
843  |  |  | 
844  |  | #if SIZEOF_VOID_P > 4  | 
845  |  | #define ALIGNMENT              16               /* must be 2^N */  | 
846  | 887k  | #define ALIGNMENT_SHIFT         4  | 
847  |  | #else  | 
848  |  | #define ALIGNMENT               8               /* must be 2^N */  | 
849  |  | #define ALIGNMENT_SHIFT         3  | 
850  |  | #endif  | 
851  |  |  | 
852  |  | /* Return the number of bytes in size class I, as a uint. */  | 
853  | 272k  | #define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)  | 
854  |  |  | 
855  |  | /*  | 
856  |  |  * Max size threshold below which malloc requests are considered to be  | 
857  |  |  * small enough in order to use preallocated memory pools. You can tune  | 
858  |  |  * this value according to your application behaviour and memory needs.  | 
859  |  |  *  | 
860  |  |  * Note: a size threshold of 512 guarantees that newly created dictionaries  | 
861  |  |  * will be allocated from preallocated memory pools on 64-bit.  | 
862  |  |  *  | 
863  |  |  * The following invariants must hold:  | 
864  |  |  *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512  | 
865  |  |  *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT  | 
866  |  |  *  | 
867  |  |  * Although not required, for better performance and space efficiency,  | 
868  |  |  * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.  | 
869  |  |  */  | 
870  | 633k  | #define SMALL_REQUEST_THRESHOLD 512  | 
871  |  | #define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)  | 
872  |  |  | 
873  |  | /*  | 
874  |  |  * The system's VMM page size can be obtained on most unices with a  | 
875  |  |  * getpagesize() call or deduced from various header files. To make  | 
876  |  |  * things simpler, we assume that it is 4K, which is OK for most systems.  | 
877  |  |  * It is probably better if this is the native page size, but it doesn't  | 
878  |  |  * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page  | 
879  |  |  * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation  | 
880  |  |  * violation fault.  4K is apparently OK for all the platforms that python  | 
881  |  |  * currently targets.  | 
882  |  |  */  | 
883  | 12.4k  | #define SYSTEM_PAGE_SIZE        (4 * 1024)  | 
884  | 115  | #define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)  | 
885  |  |  | 
886  |  | /*  | 
887  |  |  * Maximum amount of memory managed by the allocator for small requests.  | 
888  |  |  */  | 
889  |  | #ifdef WITH_MEMORY_LIMITS  | 
890  |  | #ifndef SMALL_MEMORY_LIMIT  | 
891  |  | #define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */  | 
892  |  | #endif  | 
893  |  | #endif  | 
894  |  |  | 
895  |  | /*  | 
896  |  |  * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned  | 
897  |  |  * on a page boundary. This is a reserved virtual address space for the  | 
898  |  |  * current process (obtained through a malloc()/mmap() call). In no way this  | 
899  |  |  * means that the memory arenas will be used entirely. A malloc(<Big>) is  | 
900  |  |  * usually an address range reservation for <Big> bytes, unless all pages within  | 
901  |  |  * this space are referenced subsequently. So malloc'ing big blocks and not  | 
902  |  |  * using them does not mean "wasting memory". It's an addressable range  | 
903  |  |  * wastage...  | 
904  |  |  *  | 
905  |  |  * Arenas are allocated with mmap() on systems supporting anonymous memory  | 
906  |  |  * mappings to reduce heap fragmentation.  | 
907  |  |  */  | 
908  | 843k  | #define ARENA_SIZE              (256 << 10)     /* 256KB */  | 
909  |  |  | 
910  |  | #ifdef WITH_MEMORY_LIMITS  | 
911  |  | #define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)  | 
912  |  | #endif  | 
913  |  |  | 
914  |  | /*  | 
915  |  |  * Size of the pools used for small blocks. Should be a power of 2,  | 
916  |  |  * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.  | 
917  |  |  */  | 
918  | 12.3k  | #define POOL_SIZE               SYSTEM_PAGE_SIZE        /* must be 2^N */  | 
919  | 115  | #define POOL_SIZE_MASK          SYSTEM_PAGE_SIZE_MASK  | 
920  |  |  | 
921  | 115  | #define MAX_POOLS_IN_ARENA  (ARENA_SIZE / POOL_SIZE)  | 
922  |  | #if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE  | 
923  |  | #   error "arena size not an exact multiple of pool size"  | 
924  |  | #endif  | 
925  |  |  | 
926  |  | /*  | 
927  |  |  * -- End of tunable settings section --  | 
928  |  |  */  | 
929  |  |  | 
930  |  | /*==========================================================================*/  | 
931  |  |  | 
932  |  | /* When you say memory, my mind reasons in terms of (pointers to) blocks */  | 
933  |  | typedef uint8_t block;  | 
934  |  |  | 
935  |  | /* Pool for small blocks. */  | 
936  |  | struct pool_header { | 
937  |  |     union { block *_padding; | 
938  |  |             uint count; } ref;          /* number of allocated blocks    */  | 
939  |  |     block *freeblock;                   /* pool's free list head         */  | 
940  |  |     struct pool_header *nextpool;       /* next pool of this size class  */  | 
941  |  |     struct pool_header *prevpool;       /* previous pool       ""        */  | 
942  |  |     uint arenaindex;                    /* index into arenas of base adr */  | 
943  |  |     uint szidx;                         /* block size class index        */  | 
944  |  |     uint nextoffset;                    /* bytes to virgin block         */  | 
945  |  |     uint maxnextoffset;                 /* largest valid nextoffset      */  | 
946  |  | };  | 
947  |  |  | 
948  |  | typedef struct pool_header *poolp;  | 
949  |  |  | 
950  |  | /* Record keeping for arenas. */  | 
951  |  | struct arena_object { | 
952  |  |     /* The address of the arena, as returned by malloc.  Note that 0  | 
953  |  |      * will never be returned by a successful malloc, and is used  | 
954  |  |      * here to mark an arena_object that doesn't correspond to an  | 
955  |  |      * allocated arena.  | 
956  |  |      */  | 
957  |  |     uintptr_t address;  | 
958  |  |  | 
959  |  |     /* Pool-aligned pointer to the next pool to be carved off. */  | 
960  |  |     block* pool_address;  | 
961  |  |  | 
962  |  |     /* The number of available pools in the arena:  free pools + never-  | 
963  |  |      * allocated pools.  | 
964  |  |      */  | 
965  |  |     uint nfreepools;  | 
966  |  |  | 
967  |  |     /* The total number of pools in the arena, whether or not available. */  | 
968  |  |     uint ntotalpools;  | 
969  |  |  | 
970  |  |     /* Singly-linked list of available pools. */  | 
971  |  |     struct pool_header* freepools;  | 
972  |  |  | 
973  |  |     /* Whenever this arena_object is not associated with an allocated  | 
974  |  |      * arena, the nextarena member is used to link all unassociated  | 
975  |  |      * arena_objects in the singly-linked `unused_arena_objects` list.  | 
976  |  |      * The prevarena member is unused in this case.  | 
977  |  |      *  | 
978  |  |      * When this arena_object is associated with an allocated arena  | 
979  |  |      * with at least one available pool, both members are used in the  | 
980  |  |      * doubly-linked `usable_arenas` list, which is maintained in  | 
981  |  |      * increasing order of `nfreepools` values.  | 
982  |  |      *  | 
983  |  |      * Else this arena_object is associated with an allocated arena  | 
984  |  |      * all of whose pools are in use.  `nextarena` and `prevarena`  | 
985  |  |      * are both meaningless in this case.  | 
986  |  |      */  | 
987  |  |     struct arena_object* nextarena;  | 
988  |  |     struct arena_object* prevarena;  | 
989  |  | };  | 
990  |  |  | 
991  | 13.3k  | #define POOL_OVERHEAD   _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)  | 
992  |  |  | 
993  | 5.55k  | #define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */  | 
994  |  |  | 
995  |  | /* Round pointer P down to the closest pool-aligned address <= P, as a poolp */  | 
996  | 427k  | #define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))  | 
997  |  |  | 
998  |  | /* Return total number of blocks in pool of size index I, as a uint. */  | 
999  | 0  | #define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))  | 
1000  |  |  | 
1001  |  | /*==========================================================================*/  | 
1002  |  |  | 
1003  |  | /*  | 
1004  |  |  * Pool table -- headed, circular, doubly-linked lists of partially used pools.  | 
1005  |  |  | 
1006  |  | This is involved.  For an index i, usedpools[i+i] is the header for a list of  | 
1007  |  | all partially used pools holding small blocks with "size class idx" i. So  | 
1008  |  | usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size  | 
1009  |  | 16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.  | 
1010  |  |  | 
1011  |  | Pools are carved off an arena's highwater mark (an arena_object's pool_address  | 
1012  |  | member) as needed.  Once carved off, a pool is in one of three states forever  | 
1013  |  | after:  | 
1014  |  |  | 
1015  |  | used == partially used, neither empty nor full  | 
1016  |  |     At least one block in the pool is currently allocated, and at least one  | 
1017  |  |     block in the pool is not currently allocated (note this implies a pool  | 
1018  |  |     has room for at least two blocks).  | 
1019  |  |     This is a pool's initial state, as a pool is created only when malloc  | 
1020  |  |     needs space.  | 
1021  |  |     The pool holds blocks of a fixed size, and is in the circular list headed  | 
1022  |  |     at usedpools[i] (see above).  It's linked to the other used pools of the  | 
1023  |  |     same size class via the pool_header's nextpool and prevpool members.  | 
1024  |  |     If all but one block is currently allocated, a malloc can cause a  | 
1025  |  |     transition to the full state.  If all but one block is not currently  | 
1026  |  |     allocated, a free can cause a transition to the empty state.  | 
1027  |  |  | 
1028  |  | full == all the pool's blocks are currently allocated  | 
1029  |  |     On transition to full, a pool is unlinked from its usedpools[] list.  | 
1030  |  |     It's not linked to from anything then anymore, and its nextpool and  | 
1031  |  |     prevpool members are meaningless until it transitions back to used.  | 
1032  |  |     A free of a block in a full pool puts the pool back in the used state.  | 
1033  |  |     Then it's linked in at the front of the appropriate usedpools[] list, so  | 
1034  |  |     that the next allocation for its size class will reuse the freed block.  | 
1035  |  |  | 
1036  |  | empty == all the pool's blocks are currently available for allocation  | 
1037  |  |     On transition to empty, a pool is unlinked from its usedpools[] list,  | 
1038  |  |     and linked to the front of its arena_object's singly-linked freepools list,  | 
1039  |  |     via its nextpool member.  The prevpool member has no meaning in this case.  | 
1040  |  |     Empty pools have no inherent size class:  the next time a malloc finds  | 
1041  |  |     an empty list in usedpools[], it takes the first pool off of freepools.  | 
1042  |  |     If the size class needed happens to be the same as the size class the pool  | 
1043  |  |     last had, some pool initialization can be skipped.  | 
1044  |  |  | 
1045  |  |  | 
1046  |  | Block Management  | 
1047  |  |  | 
1048  |  | Blocks within pools are again carved out as needed.  pool->freeblock points to  | 
1049  |  | the start of a singly-linked list of free blocks within the pool.  When a  | 
1050  |  | block is freed, it's inserted at the front of its pool's freeblock list.  Note  | 
1051  |  | that the available blocks in a pool are *not* linked all together when a pool  | 
1052  |  | is initialized.  Instead only "the first two" (lowest addresses) blocks are  | 
1053  |  | set up, returning the first such block, and setting pool->freeblock to a  | 
1054  |  | one-block list holding the second such block.  This is consistent with that  | 
1055  |  | pymalloc strives at all levels (arena, pool, and block) never to touch a piece  | 
1056  |  | of memory until it's actually needed.  | 
1057  |  |  | 
1058  |  | So long as a pool is in the used state, we're certain there *is* a block  | 
1059  |  | available for allocating, and pool->freeblock is not NULL.  If pool->freeblock  | 
1060  |  | points to the end of the free list before we've carved the entire pool into  | 
1061  |  | blocks, that means we simply haven't yet gotten to one of the higher-address  | 
1062  |  | blocks.  The offset from the pool_header to the start of "the next" virgin  | 
1063  |  | block is stored in the pool_header nextoffset member, and the largest value  | 
1064  |  | of nextoffset that makes sense is stored in the maxnextoffset member when a  | 
1065  |  | pool is initialized.  All the blocks in a pool have been passed out at least  | 
1066  |  | once when and only when nextoffset > maxnextoffset.  | 
1067  |  |  | 
1068  |  |  | 
1069  |  | Major obscurity:  While the usedpools vector is declared to have poolp  | 
1070  |  | entries, it doesn't really.  It really contains two pointers per (conceptual)  | 
1071  |  | poolp entry, the nextpool and prevpool members of a pool_header.  The  | 
1072  |  | excruciating initialization code below fools C so that  | 
1073  |  |  | 
1074  |  |     usedpool[i+i]  | 
1075  |  |  | 
1076  |  | "acts like" a genuine poolp, but only so long as you only reference its  | 
1077  |  | nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is  | 
1078  |  | compensating for that a pool_header's nextpool and prevpool members  | 
1079  |  | immediately follow a pool_header's first two members:  | 
1080  |  |  | 
1081  |  |     union { block *_padding; | 
1082  |  |             uint count; } ref;  | 
1083  |  |     block *freeblock;  | 
1084  |  |  | 
1085  |  | each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really  | 
1086  |  | contains is a fudged-up pointer p such that *if* C believes it's a poolp  | 
1087  |  | pointer, then p->nextpool and p->prevpool are both p (meaning that the headed  | 
1088  |  | circular list is empty).  | 
1089  |  |  | 
1090  |  | It's unclear why the usedpools setup is so convoluted.  It could be to  | 
1091  |  | minimize the amount of cache required to hold this heavily-referenced table  | 
1092  |  | (which only *needs* the two interpool pointer members of a pool_header). OTOH,  | 
1093  |  | referencing code has to remember to "double the index" and doing so isn't  | 
1094  |  | free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying  | 
1095  |  | on that C doesn't insert any padding anywhere in a pool_header at or before  | 
1096  |  | the prevpool member.  | 
1097  |  | **************************************************************************** */  | 
1098  |  |  | 
1099  |  | #define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))  | 
1100  |  | #define PT(x)   PTA(x), PTA(x)  | 
1101  |  |  | 
1102  |  | static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { | 
1103  |  |     PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)  | 
1104  |  | #if NB_SMALL_SIZE_CLASSES > 8  | 
1105  |  |     , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)  | 
1106  |  | #if NB_SMALL_SIZE_CLASSES > 16  | 
1107  |  |     , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)  | 
1108  |  | #if NB_SMALL_SIZE_CLASSES > 24  | 
1109  |  |     , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)  | 
1110  |  | #if NB_SMALL_SIZE_CLASSES > 32  | 
1111  |  |     , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)  | 
1112  |  | #if NB_SMALL_SIZE_CLASSES > 40  | 
1113  |  |     , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)  | 
1114  |  | #if NB_SMALL_SIZE_CLASSES > 48  | 
1115  |  |     , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)  | 
1116  |  | #if NB_SMALL_SIZE_CLASSES > 56  | 
1117  |  |     , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)  | 
1118  |  | #if NB_SMALL_SIZE_CLASSES > 64  | 
1119  |  | #error "NB_SMALL_SIZE_CLASSES should be less than 64"  | 
1120  |  | #endif /* NB_SMALL_SIZE_CLASSES > 64 */  | 
1121  |  | #endif /* NB_SMALL_SIZE_CLASSES > 56 */  | 
1122  |  | #endif /* NB_SMALL_SIZE_CLASSES > 48 */  | 
1123  |  | #endif /* NB_SMALL_SIZE_CLASSES > 40 */  | 
1124  |  | #endif /* NB_SMALL_SIZE_CLASSES > 32 */  | 
1125  |  | #endif /* NB_SMALL_SIZE_CLASSES > 24 */  | 
1126  |  | #endif /* NB_SMALL_SIZE_CLASSES > 16 */  | 
1127  |  | #endif /* NB_SMALL_SIZE_CLASSES >  8 */  | 
1128  |  | };  | 
1129  |  |  | 
1130  |  | /*==========================================================================  | 
1131  |  | Arena management.  | 
1132  |  |  | 
1133  |  | `arenas` is a vector of arena_objects.  It contains maxarenas entries, some of  | 
1134  |  | which may not be currently used (== they're arena_objects that aren't  | 
1135  |  | currently associated with an allocated arena).  Note that arenas proper are  | 
1136  |  | separately malloc'ed.  | 
1137  |  |  | 
1138  |  | Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,  | 
1139  |  | we do try to free() arenas, and use some mild heuristic strategies to increase  | 
1140  |  | the likelihood that arenas eventually can be freed.  | 
1141  |  |  | 
1142  |  | unused_arena_objects  | 
1143  |  |  | 
1144  |  |     This is a singly-linked list of the arena_objects that are currently not  | 
1145  |  |     being used (no arena is associated with them).  Objects are taken off the  | 
1146  |  |     head of the list in new_arena(), and are pushed on the head of the list in  | 
1147  |  |     PyObject_Free() when the arena is empty.  Key invariant:  an arena_object  | 
1148  |  |     is on this list if and only if its .address member is 0.  | 
1149  |  |  | 
1150  |  | usable_arenas  | 
1151  |  |  | 
1152  |  |     This is a doubly-linked list of the arena_objects associated with arenas  | 
1153  |  |     that have pools available.  These pools are either waiting to be reused,  | 
1154  |  |     or have not been used before.  The list is sorted to have the most-  | 
1155  |  |     allocated arenas first (ascending order based on the nfreepools member).  | 
1156  |  |     This means that the next allocation will come from a heavily used arena,  | 
1157  |  |     which gives the nearly empty arenas a chance to be returned to the system.  | 
1158  |  |     In my unscientific tests this dramatically improved the number of arenas  | 
1159  |  |     that could be freed.  | 
1160  |  |  | 
1161  |  | Note that an arena_object associated with an arena all of whose pools are  | 
1162  |  | currently in use isn't on either list.  | 
1163  |  |  | 
1164  |  | Changed in Python 3.8:  keeping usable_arenas sorted by number of free pools  | 
1165  |  | used to be done by one-at-a-time linear search when an arena's number of  | 
1166  |  | free pools changed.  That could, overall, consume time quadratic in the  | 
1167  |  | number of arenas.  That didn't really matter when there were only a few  | 
1168  |  | hundred arenas (typical!), but could be a timing disaster when there were  | 
1169  |  | hundreds of thousands.  See bpo-37029.  | 
1170  |  |  | 
1171  |  | Now we have a vector of "search fingers" to eliminate the need to search:  | 
1172  |  | nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas | 
1173  |  | with nfp free pools.  This is NULL if and only if there is no arena with  | 
1174  |  | nfp free pools in usable_arenas.  | 
1175  |  | */  | 
1176  |  |  | 
1177  |  | /* Array of objects used to track chunks of memory (arenas). */  | 
1178  |  | static struct arena_object* arenas = NULL;  | 
1179  |  | /* Number of slots currently allocated in the `arenas` vector. */  | 
1180  |  | static uint maxarenas = 0;  | 
1181  |  |  | 
1182  |  | /* The head of the singly-linked, NULL-terminated list of available  | 
1183  |  |  * arena_objects.  | 
1184  |  |  */  | 
1185  |  | static struct arena_object* unused_arena_objects = NULL;  | 
1186  |  |  | 
1187  |  | /* The head of the doubly-linked, NULL-terminated at each end, list of  | 
1188  |  |  * arena_objects associated with arenas that have pools available.  | 
1189  |  |  */  | 
1190  |  | static struct arena_object* usable_arenas = NULL;  | 
1191  |  |  | 
1192  |  | /* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */  | 
1193  |  | static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL }; | 
1194  |  |  | 
1195  |  | /* How many arena_objects do we initially allocate?  | 
1196  |  |  * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the  | 
1197  |  |  * `arenas` vector.  | 
1198  |  |  */  | 
1199  | 28  | #define INITIAL_ARENA_OBJECTS 16  | 
1200  |  |  | 
1201  |  | /* Number of arenas allocated that haven't been free()'d. */  | 
1202  |  | static size_t narenas_currently_allocated = 0;  | 
1203  |  |  | 
1204  |  | /* Total number of times malloc() called to allocate an arena. */  | 
1205  |  | static size_t ntimes_arena_allocated = 0;  | 
1206  |  | /* High water mark (max value ever seen) for narenas_currently_allocated. */  | 
1207  |  | static size_t narenas_highwater = 0;  | 
1208  |  |  | 
1209  |  | static Py_ssize_t _Py_AllocatedBlocks = 0;  | 
1210  |  |  | 
1211  |  | Py_ssize_t  | 
1212  |  | _Py_GetAllocatedBlocks(void)  | 
1213  | 0  | { | 
1214  | 0  |     return _Py_AllocatedBlocks;  | 
1215  | 0  | }  | 
1216  |  |  | 
1217  |  |  | 
1218  |  | /* Allocate a new arena.  If we run out of memory, return NULL.  Else  | 
1219  |  |  * allocate a new arena, and return the address of an arena_object  | 
1220  |  |  * describing the new arena.  It's expected that the caller will set  | 
1221  |  |  * `usable_arenas` to the return value.  | 
1222  |  |  */  | 
1223  |  | static struct arena_object*  | 
1224  |  | new_arena(void)  | 
1225  | 115  | { | 
1226  | 115  |     struct arena_object* arenaobj;  | 
1227  | 115  |     uint excess;        /* number of bytes above pool alignment */  | 
1228  | 115  |     void *address;  | 
1229  | 115  |     static int debug_stats = -1;  | 
1230  |  |  | 
1231  | 115  |     if (debug_stats == -1) { | 
1232  | 14  |         const char *opt = Py_GETENV("PYTHONMALLOCSTATS"); | 
1233  | 14  |         debug_stats = (opt != NULL && *opt != '\0');  | 
1234  | 14  |     }  | 
1235  | 115  |     if (debug_stats)  | 
1236  | 0  |         _PyObject_DebugMallocStats(stderr);  | 
1237  |  |  | 
1238  | 115  |     if (unused_arena_objects == NULL) { | 
1239  | 14  |         uint i;  | 
1240  | 14  |         uint numarenas;  | 
1241  | 14  |         size_t nbytes;  | 
1242  |  |  | 
1243  |  |         /* Double the number of arena objects on each allocation.  | 
1244  |  |          * Note that it's possible for `numarenas` to overflow.  | 
1245  |  |          */  | 
1246  | 14  |         numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;  | 
1247  | 14  |         if (numarenas <= maxarenas)  | 
1248  | 0  |             return NULL;                /* overflow */  | 
1249  |  | #if SIZEOF_SIZE_T <= SIZEOF_INT  | 
1250  |  |         if (numarenas > SIZE_MAX / sizeof(*arenas))  | 
1251  |  |             return NULL;                /* overflow */  | 
1252  |  | #endif  | 
1253  | 14  |         nbytes = numarenas * sizeof(*arenas);  | 
1254  | 14  |         arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);  | 
1255  | 14  |         if (arenaobj == NULL)  | 
1256  | 0  |             return NULL;  | 
1257  | 14  |         arenas = arenaobj;  | 
1258  |  |  | 
1259  |  |         /* We might need to fix pointers that were copied.  However,  | 
1260  |  |          * new_arena only gets called when all the pages in the  | 
1261  |  |          * previous arenas are full.  Thus, there are *no* pointers  | 
1262  |  |          * into the old array. Thus, we don't have to worry about  | 
1263  |  |          * invalid pointers.  Just to be sure, some asserts:  | 
1264  |  |          */  | 
1265  | 14  |         assert(usable_arenas == NULL);  | 
1266  | 14  |         assert(unused_arena_objects == NULL);  | 
1267  |  |  | 
1268  |  |         /* Put the new arenas on the unused_arena_objects list. */  | 
1269  | 238  |         for (i = maxarenas; i < numarenas; ++i) { | 
1270  | 224  |             arenas[i].address = 0;              /* mark as unassociated */  | 
1271  | 224  |             arenas[i].nextarena = i < numarenas - 1 ?  | 
1272  | 224  |                                    &arenas[i+1] : NULL;  | 
1273  | 224  |         }  | 
1274  |  |  | 
1275  |  |         /* Update globals. */  | 
1276  | 14  |         unused_arena_objects = &arenas[maxarenas];  | 
1277  | 14  |         maxarenas = numarenas;  | 
1278  | 14  |     }  | 
1279  |  |  | 
1280  |  |     /* Take the next available arena object off the head of the list. */  | 
1281  | 115  |     assert(unused_arena_objects != NULL);  | 
1282  | 115  |     arenaobj = unused_arena_objects;  | 
1283  | 115  |     unused_arena_objects = arenaobj->nextarena;  | 
1284  | 115  |     assert(arenaobj->address == 0);  | 
1285  | 115  |     address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);  | 
1286  | 115  |     if (address == NULL) { | 
1287  |  |         /* The allocation failed: return NULL after putting the  | 
1288  |  |          * arenaobj back.  | 
1289  |  |          */  | 
1290  | 0  |         arenaobj->nextarena = unused_arena_objects;  | 
1291  | 0  |         unused_arena_objects = arenaobj;  | 
1292  | 0  |         return NULL;  | 
1293  | 0  |     }  | 
1294  | 115  |     arenaobj->address = (uintptr_t)address;  | 
1295  |  |  | 
1296  | 115  |     ++narenas_currently_allocated;  | 
1297  | 115  |     ++ntimes_arena_allocated;  | 
1298  | 115  |     if (narenas_currently_allocated > narenas_highwater)  | 
1299  | 91  |         narenas_highwater = narenas_currently_allocated;  | 
1300  | 115  |     arenaobj->freepools = NULL;  | 
1301  |  |     /* pool_address <- first pool-aligned address in the arena  | 
1302  |  |        nfreepools <- number of whole pools that fit after alignment */  | 
1303  | 115  |     arenaobj->pool_address = (block*)arenaobj->address;  | 
1304  | 115  |     arenaobj->nfreepools = MAX_POOLS_IN_ARENA;  | 
1305  | 115  |     excess = (uint)(arenaobj->address & POOL_SIZE_MASK);  | 
1306  | 115  |     if (excess != 0) { | 
1307  | 0  |         --arenaobj->nfreepools;  | 
1308  | 0  |         arenaobj->pool_address += POOL_SIZE - excess;  | 
1309  | 0  |     }  | 
1310  | 115  |     arenaobj->ntotalpools = arenaobj->nfreepools;  | 
1311  |  |  | 
1312  | 115  |     return arenaobj;  | 
1313  | 115  | }  | 
1314  |  |  | 
1315  |  |  | 
1316  |  | /*  | 
1317  |  | address_in_range(P, POOL)  | 
1318  |  |  | 
1319  |  | Return true if and only if P is an address that was allocated by pymalloc.  | 
1320  |  | POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)  | 
1321  |  | (the caller is asked to compute this because the macro expands POOL more than  | 
1322  |  | once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a  | 
1323  |  | variable and pass the latter to the macro; because address_in_range is  | 
1324  |  | called on every alloc/realloc/free, micro-efficiency is important here).  | 
1325  |  |  | 
1326  |  | Tricky:  Let B be the arena base address associated with the pool, B =  | 
1327  |  | arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if  | 
1328  |  |  | 
1329  |  |     B <= P < B + ARENA_SIZE  | 
1330  |  |  | 
1331  |  | Subtracting B throughout, this is true iff  | 
1332  |  |  | 
1333  |  |     0 <= P-B < ARENA_SIZE  | 
1334  |  |  | 
1335  |  | By using unsigned arithmetic, the "0 <=" half of the test can be skipped.  | 
1336  |  |  | 
1337  |  | Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc  | 
1338  |  | before the first arena has been allocated.  `arenas` is still NULL in that  | 
1339  |  | case.  We're relying on that maxarenas is also 0 in that case, so that  | 
1340  |  | (POOL)->arenaindex < maxarenas  must be false, saving us from trying to index  | 
1341  |  | into a NULL arenas.  | 
1342  |  |  | 
1343  |  | Details:  given P and POOL, the arena_object corresponding to P is AO =  | 
1344  |  | arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild  | 
1345  |  | stores, etc), POOL is the correct address of P's pool, AO.address is the  | 
1346  |  | correct base address of the pool's arena, and P must be within ARENA_SIZE of  | 
1347  |  | AO.address.  In addition, AO.address is not 0 (no arena can start at address 0  | 
1348  |  | (NULL)).  Therefore address_in_range correctly reports that obmalloc  | 
1349  |  | controls P.  | 
1350  |  |  | 
1351  |  | Now suppose obmalloc does not control P (e.g., P was obtained via a direct  | 
1352  |  | call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything  | 
1353  |  | in this case -- it may even be uninitialized trash.  If the trash arenaindex  | 
1354  |  | is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't  | 
1355  |  | control P.  | 
1356  |  |  | 
1357  |  | Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an  | 
1358  |  | allocated arena, obmalloc controls all the memory in slice AO.address :  | 
1359  |  | AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,  | 
1360  |  | so P doesn't lie in that slice, so the macro correctly reports that P is not  | 
1361  |  | controlled by obmalloc.  | 
1362  |  |  | 
1363  |  | Finally, if P is not controlled by obmalloc and AO corresponds to an unused  | 
1364  |  | arena_object (one not currently associated with an allocated arena),  | 
1365  |  | AO.address is 0, and the second test in the macro reduces to:  | 
1366  |  |  | 
1367  |  |     P < ARENA_SIZE  | 
1368  |  |  | 
1369  |  | If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes  | 
1370  |  | that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part  | 
1371  |  | of the test still passes, and the third clause (AO.address != 0) is necessary  | 
1372  |  | to get the correct result:  AO.address is 0 in this case, so the macro  | 
1373  |  | correctly reports that P is not controlled by obmalloc (despite that P lies in  | 
1374  |  | slice AO.address : AO.address + ARENA_SIZE).  | 
1375  |  |  | 
1376  |  | Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before  | 
1377  |  | 2.5, arenas were never free()'ed, and an arenaindex < maxarena always  | 
1378  |  | corresponded to a currently-allocated arena, so the "P is not controlled by  | 
1379  |  | obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case  | 
1380  |  | was impossible.  | 
1381  |  |  | 
1382  |  | Note that the logic is excruciating, and reading up possibly uninitialized  | 
1383  |  | memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)  | 
1384  |  | creates problems for some memory debuggers.  The overwhelming advantage is  | 
1385  |  | that this test determines whether an arbitrary address is controlled by  | 
1386  |  | obmalloc in a small constant time, independent of the number of arenas  | 
1387  |  | obmalloc controls.  Since this test is needed at every entry point, it's  | 
1388  |  | extremely desirable that it be this fast.  | 
1389  |  | */  | 
1390  |  |  | 
1391  |  | static bool _Py_NO_SANITIZE_ADDRESS  | 
1392  |  |             _Py_NO_SANITIZE_THREAD  | 
1393  |  |             _Py_NO_SANITIZE_MEMORY  | 
1394  |  | address_in_range(void *p, poolp pool)  | 
1395  | 427k  | { | 
1396  |  |     // Since address_in_range may be reading from memory which was not allocated  | 
1397  |  |     // by Python, it is important that pool->arenaindex is read only once, as  | 
1398  |  |     // another thread may be concurrently modifying the value without holding  | 
1399  |  |     // the GIL. The following dance forces the compiler to read pool->arenaindex  | 
1400  |  |     // only once.  | 
1401  | 427k  |     uint arenaindex = *((volatile uint *)&pool->arenaindex);  | 
1402  | 427k  |     return arenaindex < maxarenas &&  | 
1403  | 416k  |         (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&  | 
1404  | 412k  |         arenas[arenaindex].address != 0;  | 
1405  | 427k  | }  | 
1406  |  |  | 
1407  |  |  | 
1408  |  | /*==========================================================================*/  | 
1409  |  |  | 
1410  |  | /* pymalloc allocator  | 
1411  |  |  | 
1412  |  |    The basic blocks are ordered by decreasing execution frequency,  | 
1413  |  |    which minimizes the number of jumps in the most common cases,  | 
1414  |  |    improves branching prediction and instruction scheduling (small  | 
1415  |  |    block allocations typically result in a couple of instructions).  | 
1416  |  |    Unless the optimizer reorders everything, being too smart...  | 
1417  |  |  | 
1418  |  |    Return a pointer to newly allocated memory if pymalloc allocated memory.  | 
1419  |  |  | 
1420  |  |    Return NULL if pymalloc failed to allocate the memory block: on bigger  | 
1421  |  |    requests, on error in the code below (as a last chance to serve the request)  | 
1422  |  |    or when the max memory limit has been reached. */  | 
1423  |  | static void*  | 
1424  |  | pymalloc_alloc(void *ctx, size_t nbytes)  | 
1425  | 633k  | { | 
1426  | 633k  |     block *bp;  | 
1427  | 633k  |     poolp pool;  | 
1428  | 633k  |     poolp next;  | 
1429  | 633k  |     uint size;  | 
1430  |  |  | 
1431  |  | #ifdef WITH_VALGRIND  | 
1432  |  |     if (UNLIKELY(running_on_valgrind == -1)) { | 
1433  |  |         running_on_valgrind = RUNNING_ON_VALGRIND;  | 
1434  |  |     }  | 
1435  |  |     if (UNLIKELY(running_on_valgrind)) { | 
1436  |  |         return NULL;  | 
1437  |  |     }  | 
1438  |  | #endif  | 
1439  |  |  | 
1440  | 633k  |     if (nbytes == 0) { | 
1441  | 45  |         return NULL;  | 
1442  | 45  |     }  | 
1443  | 633k  |     if (nbytes > SMALL_REQUEST_THRESHOLD) { | 
1444  | 17.7k  |         return NULL;  | 
1445  | 17.7k  |     }  | 
1446  |  |  | 
1447  |  |     /*  | 
1448  |  |      * Most frequent paths first  | 
1449  |  |      */  | 
1450  | 615k  |     size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;  | 
1451  | 615k  |     pool = usedpools[size + size];  | 
1452  | 615k  |     if (pool != pool->nextpool) { | 
1453  |  |         /*  | 
1454  |  |          * There is a used pool for this size class.  | 
1455  |  |          * Pick up the head block of its free list.  | 
1456  |  |          */  | 
1457  | 605k  |         ++pool->ref.count;  | 
1458  | 605k  |         bp = pool->freeblock;  | 
1459  | 605k  |         assert(bp != NULL);  | 
1460  | 605k  |         if ((pool->freeblock = *(block **)bp) != NULL) { | 
1461  | 284k  |             goto success;  | 
1462  | 284k  |         }  | 
1463  |  |  | 
1464  |  |         /*  | 
1465  |  |          * Reached the end of the free list, try to extend it.  | 
1466  |  |          */  | 
1467  | 321k  |         if (pool->nextoffset <= pool->maxnextoffset) { | 
1468  |  |             /* There is room for another block. */  | 
1469  | 254k  |             pool->freeblock = (block*)pool +  | 
1470  | 254k  |                               pool->nextoffset;  | 
1471  | 254k  |             pool->nextoffset += INDEX2SIZE(size);  | 
1472  | 254k  |             *(block **)(pool->freeblock) = NULL;  | 
1473  | 254k  |             goto success;  | 
1474  | 254k  |         }  | 
1475  |  |  | 
1476  |  |         /* Pool is full, unlink from used pools. */  | 
1477  | 66.5k  |         next = pool->nextpool;  | 
1478  | 66.5k  |         pool = pool->prevpool;  | 
1479  | 66.5k  |         next->prevpool = pool;  | 
1480  | 66.5k  |         pool->nextpool = next;  | 
1481  | 66.5k  |         goto success;  | 
1482  | 321k  |     }  | 
1483  |  |  | 
1484  |  |     /* There isn't a pool of the right size class immediately  | 
1485  |  |      * available:  use a free pool.  | 
1486  |  |      */  | 
1487  | 9.67k  |     if (usable_arenas == NULL) { | 
1488  |  |         /* No arena has a free pool:  allocate a new arena. */  | 
1489  |  | #ifdef WITH_MEMORY_LIMITS  | 
1490  |  |         if (narenas_currently_allocated >= MAX_ARENAS) { | 
1491  |  |             goto failed;  | 
1492  |  |         }  | 
1493  |  | #endif  | 
1494  | 115  |         usable_arenas = new_arena();  | 
1495  | 115  |         if (usable_arenas == NULL) { | 
1496  | 0  |             goto failed;  | 
1497  | 0  |         }  | 
1498  | 115  |         usable_arenas->nextarena =  | 
1499  | 115  |             usable_arenas->prevarena = NULL;  | 
1500  | 115  |         assert(nfp2lasta[usable_arenas->nfreepools] == NULL);  | 
1501  | 115  |         nfp2lasta[usable_arenas->nfreepools] = usable_arenas;  | 
1502  | 115  |     }  | 
1503  | 9.67k  |     assert(usable_arenas->address != 0);  | 
1504  |  |  | 
1505  |  |     /* This arena already had the smallest nfreepools value, so decreasing  | 
1506  |  |      * nfreepools doesn't change that, and we don't need to rearrange the  | 
1507  |  |      * usable_arenas list.  However, if the arena becomes wholly allocated,  | 
1508  |  |      * we need to remove its arena_object from usable_arenas.  | 
1509  |  |      */  | 
1510  | 9.67k  |     assert(usable_arenas->nfreepools > 0);  | 
1511  | 9.67k  |     if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) { | 
1512  |  |         /* It's the last of this size, so there won't be any. */  | 
1513  | 9.67k  |         nfp2lasta[usable_arenas->nfreepools] = NULL;  | 
1514  | 9.67k  |     }  | 
1515  |  |     /* If any free pools will remain, it will be the new smallest. */  | 
1516  | 9.67k  |     if (usable_arenas->nfreepools > 1) { | 
1517  | 9.52k  |         assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);  | 
1518  | 9.52k  |         nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;  | 
1519  | 9.52k  |     }  | 
1520  |  |  | 
1521  |  |     /* Try to get a cached free pool. */  | 
1522  | 9.67k  |     pool = usable_arenas->freepools;  | 
1523  | 9.67k  |     if (pool != NULL) { | 
1524  |  |         /* Unlink from cached pools. */  | 
1525  | 4.12k  |         usable_arenas->freepools = pool->nextpool;  | 
1526  | 4.12k  |         --usable_arenas->nfreepools;  | 
1527  | 4.12k  |         if (usable_arenas->nfreepools == 0) { | 
1528  |  |             /* Wholly allocated:  remove. */  | 
1529  | 70  |             assert(usable_arenas->freepools == NULL);  | 
1530  | 70  |             assert(usable_arenas->nextarena == NULL ||  | 
1531  | 70  |                    usable_arenas->nextarena->prevarena ==  | 
1532  | 70  |                    usable_arenas);  | 
1533  | 70  |             usable_arenas = usable_arenas->nextarena;  | 
1534  | 70  |             if (usable_arenas != NULL) { | 
1535  | 44  |                 usable_arenas->prevarena = NULL;  | 
1536  | 44  |                 assert(usable_arenas->address != 0);  | 
1537  | 44  |             }  | 
1538  | 70  |         }  | 
1539  | 4.05k  |         else { | 
1540  |  |             /* nfreepools > 0:  it must be that freepools  | 
1541  |  |              * isn't NULL, or that we haven't yet carved  | 
1542  |  |              * off all the arena's pools for the first  | 
1543  |  |              * time.  | 
1544  |  |              */  | 
1545  | 4.05k  |             assert(usable_arenas->freepools != NULL ||  | 
1546  | 4.05k  |                    usable_arenas->pool_address <=  | 
1547  | 4.05k  |                    (block*)usable_arenas->address +  | 
1548  | 4.05k  |                        ARENA_SIZE - POOL_SIZE);  | 
1549  | 4.05k  |         }  | 
1550  |  |  | 
1551  | 9.67k  |     init_pool:  | 
1552  |  |         /* Frontlink to used pools. */  | 
1553  | 9.67k  |         next = usedpools[size + size]; /* == prev */  | 
1554  | 9.67k  |         pool->nextpool = next;  | 
1555  | 9.67k  |         pool->prevpool = next;  | 
1556  | 9.67k  |         next->nextpool = pool;  | 
1557  | 9.67k  |         next->prevpool = pool;  | 
1558  | 9.67k  |         pool->ref.count = 1;  | 
1559  | 9.67k  |         if (pool->szidx == size) { | 
1560  |  |             /* Luckily, this pool last contained blocks  | 
1561  |  |              * of the same size class, so its header  | 
1562  |  |              * and free list are already initialized.  | 
1563  |  |              */  | 
1564  | 3.00k  |             bp = pool->freeblock;  | 
1565  | 3.00k  |             assert(bp != NULL);  | 
1566  | 3.00k  |             pool->freeblock = *(block **)bp;  | 
1567  | 3.00k  |             goto success;  | 
1568  | 3.00k  |         }  | 
1569  |  |         /*  | 
1570  |  |          * Initialize the pool header, set up the free list to  | 
1571  |  |          * contain just the second block, and return the first  | 
1572  |  |          * block.  | 
1573  |  |          */  | 
1574  | 6.66k  |         pool->szidx = size;  | 
1575  | 6.66k  |         size = INDEX2SIZE(size);  | 
1576  | 6.66k  |         bp = (block *)pool + POOL_OVERHEAD;  | 
1577  | 6.66k  |         pool->nextoffset = POOL_OVERHEAD + (size << 1);  | 
1578  | 6.66k  |         pool->maxnextoffset = POOL_SIZE - size;  | 
1579  | 6.66k  |         pool->freeblock = bp + size;  | 
1580  | 6.66k  |         *(block **)(pool->freeblock) = NULL;  | 
1581  | 6.66k  |         goto success;  | 
1582  | 9.67k  |     }  | 
1583  |  |  | 
1584  |  |     /* Carve off a new pool. */  | 
1585  | 9.67k  |     assert(usable_arenas->nfreepools > 0);  | 
1586  | 5.55k  |     assert(usable_arenas->freepools == NULL);  | 
1587  | 5.55k  |     pool = (poolp)usable_arenas->pool_address;  | 
1588  | 5.55k  |     assert((block*)pool <= (block*)usable_arenas->address +  | 
1589  | 5.55k  |                              ARENA_SIZE - POOL_SIZE);  | 
1590  | 5.55k  |     pool->arenaindex = (uint)(usable_arenas - arenas);  | 
1591  | 5.55k  |     assert(&arenas[pool->arenaindex] == usable_arenas);  | 
1592  | 5.55k  |     pool->szidx = DUMMY_SIZE_IDX;  | 
1593  | 5.55k  |     usable_arenas->pool_address += POOL_SIZE;  | 
1594  | 5.55k  |     --usable_arenas->nfreepools;  | 
1595  |  |  | 
1596  | 5.55k  |     if (usable_arenas->nfreepools == 0) { | 
1597  | 77  |         assert(usable_arenas->nextarena == NULL ||  | 
1598  | 77  |                usable_arenas->nextarena->prevarena ==  | 
1599  | 77  |                usable_arenas);  | 
1600  |  |         /* Unlink the arena:  it is completely allocated. */  | 
1601  | 77  |         usable_arenas = usable_arenas->nextarena;  | 
1602  | 77  |         if (usable_arenas != NULL) { | 
1603  | 0  |             usable_arenas->prevarena = NULL;  | 
1604  | 0  |             assert(usable_arenas->address != 0);  | 
1605  | 0  |         }  | 
1606  | 77  |     }  | 
1607  |  |  | 
1608  | 5.55k  |     goto init_pool;  | 
1609  |  |  | 
1610  | 615k  | success:  | 
1611  | 615k  |     assert(bp != NULL);  | 
1612  | 615k  |     return (void *)bp;  | 
1613  |  |  | 
1614  | 0  | failed:  | 
1615  | 0  |     return NULL;  | 
1616  | 9.67k  | }  | 
1617  |  |  | 
1618  |  |  | 
1619  |  | static void *  | 
1620  |  | _PyObject_Malloc(void *ctx, size_t nbytes)  | 
1621  | 631k  | { | 
1622  | 631k  |     void* ptr = pymalloc_alloc(ctx, nbytes);  | 
1623  | 631k  |     if (ptr != NULL) { | 
1624  | 613k  |         _Py_AllocatedBlocks++;  | 
1625  | 613k  |         return ptr;  | 
1626  | 613k  |     }  | 
1627  |  |  | 
1628  | 17.7k  |     ptr = PyMem_RawMalloc(nbytes);  | 
1629  | 17.7k  |     if (ptr != NULL) { | 
1630  | 17.7k  |         _Py_AllocatedBlocks++;  | 
1631  | 17.7k  |     }  | 
1632  | 17.7k  |     return ptr;  | 
1633  | 631k  | }  | 
1634  |  |  | 
1635  |  |  | 
1636  |  | static void *  | 
1637  |  | _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)  | 
1638  | 1.46k  | { | 
1639  | 1.46k  |     assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);  | 
1640  | 1.46k  |     size_t nbytes = nelem * elsize;  | 
1641  |  |  | 
1642  | 1.46k  |     void *ptr = pymalloc_alloc(ctx, nbytes);  | 
1643  | 1.46k  |     if (ptr != NULL) { | 
1644  | 1.42k  |         memset(ptr, 0, nbytes);  | 
1645  | 1.42k  |         _Py_AllocatedBlocks++;  | 
1646  | 1.42k  |         return ptr;  | 
1647  | 1.42k  |     }  | 
1648  |  |  | 
1649  | 44  |     ptr = PyMem_RawCalloc(nelem, elsize);  | 
1650  | 44  |     if (ptr != NULL) { | 
1651  | 44  |         _Py_AllocatedBlocks++;  | 
1652  | 44  |     }  | 
1653  | 44  |     return ptr;  | 
1654  | 1.46k  | }  | 
1655  |  |  | 
1656  |  |  | 
1657  |  | /* Free a memory block allocated by pymalloc_alloc().  | 
1658  |  |    Return 1 if it was freed.  | 
1659  |  |    Return 0 if the block was not allocated by pymalloc_alloc(). */  | 
1660  |  | static int  | 
1661  |  | pymalloc_free(void *ctx, void *p)  | 
1662  | 414k  | { | 
1663  | 414k  |     poolp pool;  | 
1664  | 414k  |     block *lastfree;  | 
1665  | 414k  |     poolp next, prev;  | 
1666  | 414k  |     uint size;  | 
1667  |  |  | 
1668  | 414k  |     assert(p != NULL);  | 
1669  |  |  | 
1670  |  | #ifdef WITH_VALGRIND  | 
1671  |  |     if (UNLIKELY(running_on_valgrind > 0)) { | 
1672  |  |         return 0;  | 
1673  |  |     }  | 
1674  |  | #endif  | 
1675  |  |  | 
1676  | 414k  |     pool = POOL_ADDR(p);  | 
1677  | 414k  |     if (!address_in_range(p, pool)) { | 
1678  | 12.9k  |         return 0;  | 
1679  | 12.9k  |     }  | 
1680  |  |     /* We allocated this address. */  | 
1681  |  |  | 
1682  |  |     /* Link p to the start of the pool's freeblock list.  Since  | 
1683  |  |      * the pool had at least the p block outstanding, the pool  | 
1684  |  |      * wasn't empty (so it's already in a usedpools[] list, or  | 
1685  |  |      * was full and is in no list -- it's not in the freeblocks  | 
1686  |  |      * list in any case).  | 
1687  |  |      */  | 
1688  | 414k  |     assert(pool->ref.count > 0);            /* else it was empty */  | 
1689  | 402k  |     *(block **)p = lastfree = pool->freeblock;  | 
1690  | 402k  |     pool->freeblock = (block *)p;  | 
1691  | 402k  |     if (!lastfree) { | 
1692  |  |         /* Pool was full, so doesn't currently live in any list:  | 
1693  |  |          * link it to the front of the appropriate usedpools[] list.  | 
1694  |  |          * This mimics LRU pool usage for new allocations and  | 
1695  |  |          * targets optimal filling when several pools contain  | 
1696  |  |          * blocks of the same size class.  | 
1697  |  |          */  | 
1698  | 62.0k  |         --pool->ref.count;  | 
1699  | 62.0k  |         assert(pool->ref.count > 0);            /* else the pool is empty */  | 
1700  | 62.0k  |         size = pool->szidx;  | 
1701  | 62.0k  |         next = usedpools[size + size];  | 
1702  | 62.0k  |         prev = next->prevpool;  | 
1703  |  |  | 
1704  |  |         /* insert pool before next:   prev <-> pool <-> next */  | 
1705  | 62.0k  |         pool->nextpool = next;  | 
1706  | 62.0k  |         pool->prevpool = prev;  | 
1707  | 62.0k  |         next->prevpool = pool;  | 
1708  | 62.0k  |         prev->nextpool = pool;  | 
1709  | 62.0k  |         goto success;  | 
1710  | 62.0k  |     }  | 
1711  |  |  | 
1712  | 340k  |     struct arena_object* ao;  | 
1713  | 340k  |     uint nf;  /* ao->nfreepools */  | 
1714  |  |  | 
1715  |  |     /* freeblock wasn't NULL, so the pool wasn't full,  | 
1716  |  |      * and the pool is in a usedpools[] list.  | 
1717  |  |      */  | 
1718  | 340k  |     if (--pool->ref.count != 0) { | 
1719  |  |         /* pool isn't empty:  leave it in usedpools */  | 
1720  | 335k  |         goto success;  | 
1721  | 335k  |     }  | 
1722  |  |     /* Pool is now empty:  unlink from usedpools, and  | 
1723  |  |      * link to the front of freepools.  This ensures that  | 
1724  |  |      * previously freed pools will be allocated later  | 
1725  |  |      * (being not referenced, they are perhaps paged out).  | 
1726  |  |      */  | 
1727  | 4.58k  |     next = pool->nextpool;  | 
1728  | 4.58k  |     prev = pool->prevpool;  | 
1729  | 4.58k  |     next->prevpool = prev;  | 
1730  | 4.58k  |     prev->nextpool = next;  | 
1731  |  |  | 
1732  |  |     /* Link the pool to freepools.  This is a singly-linked  | 
1733  |  |      * list, and pool->prevpool isn't used there.  | 
1734  |  |      */  | 
1735  | 4.58k  |     ao = &arenas[pool->arenaindex];  | 
1736  | 4.58k  |     pool->nextpool = ao->freepools;  | 
1737  | 4.58k  |     ao->freepools = pool;  | 
1738  | 4.58k  |     nf = ao->nfreepools;  | 
1739  |  |     /* If this is the rightmost arena with this number of free pools,  | 
1740  |  |      * nfp2lasta[nf] needs to change.  Caution:  if nf is 0, there  | 
1741  |  |      * are no arenas in usable_arenas with that value.  | 
1742  |  |      */  | 
1743  | 4.58k  |     struct arena_object* lastnf = nfp2lasta[nf];  | 
1744  | 4.58k  |     assert((nf == 0 && lastnf == NULL) ||  | 
1745  | 4.58k  |            (nf > 0 &&  | 
1746  | 4.58k  |             lastnf != NULL &&  | 
1747  | 4.58k  |             lastnf->nfreepools == nf &&  | 
1748  | 4.58k  |             (lastnf->nextarena == NULL ||  | 
1749  | 4.58k  |              nf < lastnf->nextarena->nfreepools)));  | 
1750  | 4.58k  |     if (lastnf == ao) {  /* it is the rightmost */ | 
1751  | 4.50k  |         struct arena_object* p = ao->prevarena;  | 
1752  | 4.50k  |         nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;  | 
1753  | 4.50k  |     }  | 
1754  | 4.58k  |     ao->nfreepools = ++nf;  | 
1755  |  |  | 
1756  |  |     /* All the rest is arena management.  We just freed  | 
1757  |  |      * a pool, and there are 4 cases for arena mgmt:  | 
1758  |  |      * 1. If all the pools are free, return the arena to  | 
1759  |  |      *    the system free().  | 
1760  |  |      * 2. If this is the only free pool in the arena,  | 
1761  |  |      *    add the arena back to the `usable_arenas` list.  | 
1762  |  |      * 3. If the "next" arena has a smaller count of free  | 
1763  |  |      *    pools, we have to "slide this arena right" to  | 
1764  |  |      *    restore that usable_arenas is sorted in order of  | 
1765  |  |      *    nfreepools.  | 
1766  |  |      * 4. Else there's nothing more to do.  | 
1767  |  |      */  | 
1768  | 4.58k  |     if (nf == ao->ntotalpools) { | 
1769  |  |         /* Case 1.  First unlink ao from usable_arenas.  | 
1770  |  |          */  | 
1771  | 26  |         assert(ao->prevarena == NULL ||  | 
1772  | 26  |                ao->prevarena->address != 0);  | 
1773  | 26  |         assert(ao ->nextarena == NULL ||  | 
1774  | 26  |                ao->nextarena->address != 0);  | 
1775  |  |  | 
1776  |  |         /* Fix the pointer in the prevarena, or the  | 
1777  |  |          * usable_arenas pointer.  | 
1778  |  |          */  | 
1779  | 26  |         if (ao->prevarena == NULL) { | 
1780  | 16  |             usable_arenas = ao->nextarena;  | 
1781  | 16  |             assert(usable_arenas == NULL ||  | 
1782  | 16  |                    usable_arenas->address != 0);  | 
1783  | 16  |         }  | 
1784  | 10  |         else { | 
1785  | 10  |             assert(ao->prevarena->nextarena == ao);  | 
1786  | 10  |             ao->prevarena->nextarena =  | 
1787  | 10  |                 ao->nextarena;  | 
1788  | 10  |         }  | 
1789  |  |         /* Fix the pointer in the nextarena. */  | 
1790  | 26  |         if (ao->nextarena != NULL) { | 
1791  | 0  |             assert(ao->nextarena->prevarena == ao);  | 
1792  | 0  |             ao->nextarena->prevarena =  | 
1793  | 0  |                 ao->prevarena;  | 
1794  | 0  |         }  | 
1795  |  |         /* Record that this arena_object slot is  | 
1796  |  |          * available to be reused.  | 
1797  |  |          */  | 
1798  | 26  |         ao->nextarena = unused_arena_objects;  | 
1799  | 26  |         unused_arena_objects = ao;  | 
1800  |  |  | 
1801  |  |         /* Free the entire arena. */  | 
1802  | 26  |         _PyObject_Arena.free(_PyObject_Arena.ctx,  | 
1803  | 26  |                              (void *)ao->address, ARENA_SIZE);  | 
1804  | 26  |         ao->address = 0;                        /* mark unassociated */  | 
1805  | 26  |         --narenas_currently_allocated;  | 
1806  |  |  | 
1807  | 26  |         goto success;  | 
1808  | 26  |     }  | 
1809  |  |  | 
1810  | 4.56k  |     if (nf == 1) { | 
1811  |  |         /* Case 2.  Put ao at the head of  | 
1812  |  |          * usable_arenas.  Note that because  | 
1813  |  |          * ao->nfreepools was 0 before, ao isn't  | 
1814  |  |          * currently on the usable_arenas list.  | 
1815  |  |          */  | 
1816  | 72  |         ao->nextarena = usable_arenas;  | 
1817  | 72  |         ao->prevarena = NULL;  | 
1818  | 72  |         if (usable_arenas)  | 
1819  | 54  |             usable_arenas->prevarena = ao;  | 
1820  | 72  |         usable_arenas = ao;  | 
1821  | 72  |         assert(usable_arenas->address != 0);  | 
1822  | 72  |         if (nfp2lasta[1] == NULL) { | 
1823  | 72  |             nfp2lasta[1] = ao;  | 
1824  | 72  |         }  | 
1825  |  |  | 
1826  | 72  |         goto success;  | 
1827  | 72  |     }  | 
1828  |  |  | 
1829  |  |     /* If this arena is now out of order, we need to keep  | 
1830  |  |      * the list sorted.  The list is kept sorted so that  | 
1831  |  |      * the "most full" arenas are used first, which allows  | 
1832  |  |      * the nearly empty arenas to be completely freed.  In  | 
1833  |  |      * a few un-scientific tests, it seems like this  | 
1834  |  |      * approach allowed a lot more memory to be freed.  | 
1835  |  |      */  | 
1836  |  |     /* If this is the only arena with nf, record that. */  | 
1837  | 4.48k  |     if (nfp2lasta[nf] == NULL) { | 
1838  | 4.47k  |         nfp2lasta[nf] = ao;  | 
1839  | 4.47k  |     } /* else the rightmost with nf doesn't change */  | 
1840  |  |     /* If this was the rightmost of the old size, it remains in place. */  | 
1841  | 4.48k  |     if (ao == lastnf) { | 
1842  |  |         /* Case 4.  Nothing to do. */  | 
1843  | 4.47k  |         goto success;  | 
1844  | 4.47k  |     }  | 
1845  |  |     /* If ao were the only arena in the list, the last block would have  | 
1846  |  |      * gotten us out.  | 
1847  |  |      */  | 
1848  | 4.48k  |     assert(ao->nextarena != NULL);  | 
1849  |  |  | 
1850  |  |     /* Case 3:  We have to move the arena towards the end of the list,  | 
1851  |  |      * because it has more free pools than the arena to its right.  It needs  | 
1852  |  |      * to move to follow lastnf.  | 
1853  |  |      * First unlink ao from usable_arenas.  | 
1854  |  |      */  | 
1855  | 11  |     if (ao->prevarena != NULL) { | 
1856  |  |         /* ao isn't at the head of the list */  | 
1857  | 0  |         assert(ao->prevarena->nextarena == ao);  | 
1858  | 0  |         ao->prevarena->nextarena = ao->nextarena;  | 
1859  | 0  |     }  | 
1860  | 11  |     else { | 
1861  |  |         /* ao is at the head of the list */  | 
1862  | 11  |         assert(usable_arenas == ao);  | 
1863  | 11  |         usable_arenas = ao->nextarena;  | 
1864  | 11  |     }  | 
1865  | 11  |     ao->nextarena->prevarena = ao->prevarena;  | 
1866  |  |     /* And insert after lastnf. */  | 
1867  | 11  |     ao->prevarena = lastnf;  | 
1868  | 11  |     ao->nextarena = lastnf->nextarena;  | 
1869  | 11  |     if (ao->nextarena != NULL) { | 
1870  | 3  |         ao->nextarena->prevarena = ao;  | 
1871  | 3  |     }  | 
1872  | 11  |     lastnf->nextarena = ao;  | 
1873  |  |     /* Verify that the swaps worked. */  | 
1874  | 11  |     assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);  | 
1875  | 11  |     assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);  | 
1876  | 11  |     assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);  | 
1877  | 11  |     assert((usable_arenas == ao && ao->prevarena == NULL)  | 
1878  | 11  |            || ao->prevarena->nextarena == ao);  | 
1879  |  |  | 
1880  | 11  |     goto success;  | 
1881  |  |  | 
1882  | 402k  | success:  | 
1883  | 402k  |     return 1;  | 
1884  | 4.48k  | }  | 
1885  |  |  | 
1886  |  |  | 
1887  |  | static void  | 
1888  |  | _PyObject_Free(void *ctx, void *p)  | 
1889  | 415k  | { | 
1890  |  |     /* PyObject_Free(NULL) has no effect */  | 
1891  | 415k  |     if (p == NULL) { | 
1892  | 177  |         return;  | 
1893  | 177  |     }  | 
1894  |  |  | 
1895  | 414k  |     _Py_AllocatedBlocks--;  | 
1896  | 414k  |     if (!pymalloc_free(ctx, p)) { | 
1897  |  |         /* pymalloc didn't allocate this address */  | 
1898  | 12.9k  |         PyMem_RawFree(p);  | 
1899  | 12.9k  |     }  | 
1900  | 414k  | }  | 
1901  |  |  | 
1902  |  |  | 
1903  |  | /* pymalloc realloc.  | 
1904  |  |  | 
1905  |  |    If nbytes==0, then as the Python docs promise, we do not treat this like  | 
1906  |  |    free(p), and return a non-NULL result.  | 
1907  |  |  | 
1908  |  |    Return 1 if pymalloc reallocated memory and wrote the new pointer into  | 
1909  |  |    newptr_p.  | 
1910  |  |  | 
1911  |  |    Return 0 if pymalloc didn't allocated p. */  | 
1912  |  | static int  | 
1913  |  | pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)  | 
1914  | 12.2k  | { | 
1915  | 12.2k  |     void *bp;  | 
1916  | 12.2k  |     poolp pool;  | 
1917  | 12.2k  |     size_t size;  | 
1918  |  |  | 
1919  | 12.2k  |     assert(p != NULL);  | 
1920  |  |  | 
1921  |  | #ifdef WITH_VALGRIND  | 
1922  |  |     /* Treat running_on_valgrind == -1 the same as 0 */  | 
1923  |  |     if (UNLIKELY(running_on_valgrind > 0)) { | 
1924  |  |         return 0;  | 
1925  |  |     }  | 
1926  |  | #endif  | 
1927  |  |  | 
1928  | 12.2k  |     pool = POOL_ADDR(p);  | 
1929  | 12.2k  |     if (!address_in_range(p, pool)) { | 
1930  |  |         /* pymalloc is not managing this block.  | 
1931  |  |  | 
1932  |  |            If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take  | 
1933  |  |            over this block.  However, if we do, we need to copy the valid data  | 
1934  |  |            from the C-managed block to one of our blocks, and there's no  | 
1935  |  |            portable way to know how much of the memory space starting at p is  | 
1936  |  |            valid.  | 
1937  |  |  | 
1938  |  |            As bug 1185883 pointed out the hard way, it's possible that the  | 
1939  |  |            C-managed block is "at the end" of allocated VM space, so that a  | 
1940  |  |            memory fault can occur if we try to copy nbytes bytes starting at p.  | 
1941  |  |            Instead we punt: let C continue to manage this block. */  | 
1942  | 1.80k  |         return 0;  | 
1943  | 1.80k  |     }  | 
1944  |  |  | 
1945  |  |     /* pymalloc is in charge of this block */  | 
1946  | 10.4k  |     size = INDEX2SIZE(pool->szidx);  | 
1947  | 10.4k  |     if (nbytes <= size) { | 
1948  |  |         /* The block is staying the same or shrinking.  | 
1949  |  |  | 
1950  |  |            If it's shrinking, there's a tradeoff: it costs cycles to copy the  | 
1951  |  |            block to a smaller size class, but it wastes memory not to copy it.  | 
1952  |  |  | 
1953  |  |            The compromise here is to copy on shrink only if at least 25% of  | 
1954  |  |            size can be shaved off. */  | 
1955  | 6.55k  |         if (4 * nbytes > 3 * size) { | 
1956  |  |             /* It's the same, or shrinking and new/old > 3/4. */  | 
1957  | 161  |             *newptr_p = p;  | 
1958  | 161  |             return 1;  | 
1959  | 161  |         }  | 
1960  | 6.39k  |         size = nbytes;  | 
1961  | 6.39k  |     }  | 
1962  |  |  | 
1963  | 10.3k  |     bp = _PyObject_Malloc(ctx, nbytes);  | 
1964  | 10.3k  |     if (bp != NULL) { | 
1965  | 10.3k  |         memcpy(bp, p, size);  | 
1966  | 10.3k  |         _PyObject_Free(ctx, p);  | 
1967  | 10.3k  |     }  | 
1968  | 10.3k  |     *newptr_p = bp;  | 
1969  | 10.3k  |     return 1;  | 
1970  | 10.4k  | }  | 
1971  |  |  | 
1972  |  |  | 
1973  |  | static void *  | 
1974  |  | _PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)  | 
1975  | 22.7k  | { | 
1976  | 22.7k  |     void *ptr2;  | 
1977  |  |  | 
1978  | 22.7k  |     if (ptr == NULL) { | 
1979  | 10.4k  |         return _PyObject_Malloc(ctx, nbytes);  | 
1980  | 10.4k  |     }  | 
1981  |  |  | 
1982  | 12.2k  |     if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) { | 
1983  | 10.4k  |         return ptr2;  | 
1984  | 10.4k  |     }  | 
1985  |  |  | 
1986  | 1.80k  |     return PyMem_RawRealloc(ptr, nbytes);  | 
1987  | 12.2k  | }  | 
1988  |  |  | 
1989  |  | #else   /* ! WITH_PYMALLOC */  | 
1990  |  |  | 
1991  |  | /*==========================================================================*/  | 
1992  |  | /* pymalloc not enabled:  Redirect the entry points to malloc.  These will  | 
1993  |  |  * only be used by extensions that are compiled with pymalloc enabled. */  | 
1994  |  |  | 
1995  |  | Py_ssize_t  | 
1996  |  | _Py_GetAllocatedBlocks(void)  | 
1997  |  | { | 
1998  |  |     return 0;  | 
1999  |  | }  | 
2000  |  |  | 
2001  |  | #endif /* WITH_PYMALLOC */  | 
2002  |  |  | 
2003  |  |  | 
2004  |  | /*==========================================================================*/  | 
2005  |  | /* A x-platform debugging allocator.  This doesn't manage memory directly,  | 
2006  |  |  * it wraps a real allocator, adding extra debugging info to the memory blocks.  | 
2007  |  |  */  | 
2008  |  |  | 
2009  |  | /* Uncomment this define to add the "serialno" field */  | 
2010  |  | /* #define PYMEM_DEBUG_SERIALNO */  | 
2011  |  |  | 
2012  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2013  |  | static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */ | 
2014  |  |  | 
2015  |  | /* serialno is always incremented via calling this routine.  The point is  | 
2016  |  |  * to supply a single place to set a breakpoint.  | 
2017  |  |  */  | 
2018  |  | static void  | 
2019  |  | bumpserialno(void)  | 
2020  |  | { | 
2021  |  |     ++serialno;  | 
2022  |  | }  | 
2023  |  | #endif  | 
2024  |  |  | 
2025  | 0  | #define SST SIZEOF_SIZE_T  | 
2026  |  |  | 
2027  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2028  |  | #  define PYMEM_DEBUG_EXTRA_BYTES 4 * SST  | 
2029  |  | #else  | 
2030  | 0  | #  define PYMEM_DEBUG_EXTRA_BYTES 3 * SST  | 
2031  |  | #endif  | 
2032  |  |  | 
2033  |  | /* Read sizeof(size_t) bytes at p as a big-endian size_t. */  | 
2034  |  | static size_t  | 
2035  |  | read_size_t(const void *p)  | 
2036  | 0  | { | 
2037  | 0  |     const uint8_t *q = (const uint8_t *)p;  | 
2038  | 0  |     size_t result = *q++;  | 
2039  | 0  |     int i;  | 
2040  |  | 
  | 
2041  | 0  |     for (i = SST; --i > 0; ++q)  | 
2042  | 0  |         result = (result << 8) | *q;  | 
2043  | 0  |     return result;  | 
2044  | 0  | }  | 
2045  |  |  | 
2046  |  | /* Write n as a big-endian size_t, MSB at address p, LSB at  | 
2047  |  |  * p + sizeof(size_t) - 1.  | 
2048  |  |  */  | 
2049  |  | static void  | 
2050  |  | write_size_t(void *p, size_t n)  | 
2051  | 0  | { | 
2052  | 0  |     uint8_t *q = (uint8_t *)p + SST - 1;  | 
2053  | 0  |     int i;  | 
2054  |  | 
  | 
2055  | 0  |     for (i = SST; --i >= 0; --q) { | 
2056  | 0  |         *q = (uint8_t)(n & 0xff);  | 
2057  | 0  |         n >>= 8;  | 
2058  | 0  |     }  | 
2059  | 0  | }  | 
2060  |  |  | 
2061  |  | /* Let S = sizeof(size_t).  The debug malloc asks for 4 * S extra bytes and  | 
2062  |  |    fills them with useful stuff, here calling the underlying malloc's result p:  | 
2063  |  |  | 
2064  |  | p[0: S]  | 
2065  |  |     Number of bytes originally asked for.  This is a size_t, big-endian (easier  | 
2066  |  |     to read in a memory dump).  | 
2067  |  | p[S]  | 
2068  |  |     API ID.  See PEP 445.  This is a character, but seems undocumented.  | 
2069  |  | p[S+1: 2*S]  | 
2070  |  |     Copies of PYMEM_FORBIDDENBYTE.  Used to catch under- writes and reads.  | 
2071  |  | p[2*S: 2*S+n]  | 
2072  |  |     The requested memory, filled with copies of PYMEM_CLEANBYTE.  | 
2073  |  |     Used to catch reference to uninitialized memory.  | 
2074  |  |     &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc  | 
2075  |  |     handled the request itself.  | 
2076  |  | p[2*S+n: 2*S+n+S]  | 
2077  |  |     Copies of PYMEM_FORBIDDENBYTE.  Used to catch over- writes and reads.  | 
2078  |  | p[2*S+n+S: 2*S+n+2*S]  | 
2079  |  |     A serial number, incremented by 1 on each call to _PyMem_DebugMalloc  | 
2080  |  |     and _PyMem_DebugRealloc.  | 
2081  |  |     This is a big-endian size_t.  | 
2082  |  |     If "bad memory" is detected later, the serial number gives an  | 
2083  |  |     excellent way to set a breakpoint on the next run, to capture the  | 
2084  |  |     instant at which this block was passed out.  | 
2085  |  |  | 
2086  |  | If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks  | 
2087  |  | for 3 * S extra bytes, and omits the last serialno field.  | 
2088  |  | */  | 
2089  |  |  | 
2090  |  | static void *  | 
2091  |  | _PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)  | 
2092  | 0  | { | 
2093  | 0  |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;  | 
2094  | 0  |     uint8_t *p;           /* base address of malloc'ed pad block */  | 
2095  | 0  |     uint8_t *data;        /* p + 2*SST == pointer to data bytes */  | 
2096  | 0  |     uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */  | 
2097  | 0  |     size_t total;         /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */  | 
2098  |  | 
  | 
2099  | 0  |     if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { | 
2100  |  |         /* integer overflow: can't represent total as a Py_ssize_t */  | 
2101  | 0  |         return NULL;  | 
2102  | 0  |     }  | 
2103  | 0  |     total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;  | 
2104  |  |  | 
2105  |  |     /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]  | 
2106  |  |                 ^--- p    ^--- data   ^--- tail  | 
2107  |  |        S: nbytes stored as size_t  | 
2108  |  |        I: API identifier (1 byte)  | 
2109  |  |        F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)  | 
2110  |  |        C: Clean bytes used later to store actual data  | 
2111  |  |        N: Serial number stored as size_t  | 
2112  |  |  | 
2113  |  |        If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field  | 
2114  |  |        is omitted. */  | 
2115  |  | 
  | 
2116  | 0  |     if (use_calloc) { | 
2117  | 0  |         p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);  | 
2118  | 0  |     }  | 
2119  | 0  |     else { | 
2120  | 0  |         p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);  | 
2121  | 0  |     }  | 
2122  | 0  |     if (p == NULL) { | 
2123  | 0  |         return NULL;  | 
2124  | 0  |     }  | 
2125  | 0  |     data = p + 2*SST;  | 
2126  |  | 
  | 
2127  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2128  |  |     bumpserialno();  | 
2129  |  | #endif  | 
2130  |  |  | 
2131  |  |     /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */  | 
2132  | 0  |     write_size_t(p, nbytes);  | 
2133  | 0  |     p[SST] = (uint8_t)api->api_id;  | 
2134  | 0  |     memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);  | 
2135  |  | 
  | 
2136  | 0  |     if (nbytes > 0 && !use_calloc) { | 
2137  | 0  |         memset(data, PYMEM_CLEANBYTE, nbytes);  | 
2138  | 0  |     }  | 
2139  |  |  | 
2140  |  |     /* at tail, write pad (SST bytes) and serialno (SST bytes) */  | 
2141  | 0  |     tail = data + nbytes;  | 
2142  | 0  |     memset(tail, PYMEM_FORBIDDENBYTE, SST);  | 
2143  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2144  |  |     write_size_t(tail + SST, serialno);  | 
2145  |  | #endif  | 
2146  |  | 
  | 
2147  | 0  |     return data;  | 
2148  | 0  | }  | 
2149  |  |  | 
2150  |  | static void *  | 
2151  |  | _PyMem_DebugRawMalloc(void *ctx, size_t nbytes)  | 
2152  | 0  | { | 
2153  | 0  |     return _PyMem_DebugRawAlloc(0, ctx, nbytes);  | 
2154  | 0  | }  | 
2155  |  |  | 
2156  |  | static void *  | 
2157  |  | _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)  | 
2158  | 0  | { | 
2159  | 0  |     size_t nbytes;  | 
2160  | 0  |     assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);  | 
2161  | 0  |     nbytes = nelem * elsize;  | 
2162  | 0  |     return _PyMem_DebugRawAlloc(1, ctx, nbytes);  | 
2163  | 0  | }  | 
2164  |  |  | 
2165  |  |  | 
2166  |  | /* The debug free first checks the 2*SST bytes on each end for sanity (in  | 
2167  |  |    particular, that the FORBIDDENBYTEs with the api ID are still intact).  | 
2168  |  |    Then fills the original bytes with PYMEM_DEADBYTE.  | 
2169  |  |    Then calls the underlying free.  | 
2170  |  | */  | 
2171  |  | static void  | 
2172  |  | _PyMem_DebugRawFree(void *ctx, void *p)  | 
2173  | 0  | { | 
2174  |  |     /* PyMem_Free(NULL) has no effect */  | 
2175  | 0  |     if (p == NULL) { | 
2176  | 0  |         return;  | 
2177  | 0  |     }  | 
2178  |  |  | 
2179  | 0  |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;  | 
2180  | 0  |     uint8_t *q = (uint8_t *)p - 2*SST;  /* address returned from malloc */  | 
2181  | 0  |     size_t nbytes;  | 
2182  |  | 
  | 
2183  | 0  |     _PyMem_DebugCheckAddress(api->api_id, p);  | 
2184  | 0  |     nbytes = read_size_t(q);  | 
2185  | 0  |     nbytes += PYMEM_DEBUG_EXTRA_BYTES;  | 
2186  | 0  |     memset(q, PYMEM_DEADBYTE, nbytes);  | 
2187  | 0  |     api->alloc.free(api->alloc.ctx, q);  | 
2188  | 0  | }  | 
2189  |  |  | 
2190  |  |  | 
2191  |  | static void *  | 
2192  |  | _PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)  | 
2193  | 0  | { | 
2194  | 0  |     if (p == NULL) { | 
2195  | 0  |         return _PyMem_DebugRawAlloc(0, ctx, nbytes);  | 
2196  | 0  |     }  | 
2197  |  |  | 
2198  | 0  |     debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;  | 
2199  | 0  |     uint8_t *head;        /* base address of malloc'ed pad block */  | 
2200  | 0  |     uint8_t *data;        /* pointer to data bytes */  | 
2201  | 0  |     uint8_t *r;  | 
2202  | 0  |     uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */  | 
2203  | 0  |     size_t total;         /* 2 * SST + nbytes + 2 * SST */  | 
2204  | 0  |     size_t original_nbytes;  | 
2205  | 0  | #define ERASED_SIZE 64  | 
2206  | 0  |     uint8_t save[2*ERASED_SIZE];  /* A copy of erased bytes. */  | 
2207  |  | 
  | 
2208  | 0  |     _PyMem_DebugCheckAddress(api->api_id, p);  | 
2209  |  | 
  | 
2210  | 0  |     data = (uint8_t *)p;  | 
2211  | 0  |     head = data - 2*SST;  | 
2212  | 0  |     original_nbytes = read_size_t(head);  | 
2213  | 0  |     if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) { | 
2214  |  |         /* integer overflow: can't represent total as a Py_ssize_t */  | 
2215  | 0  |         return NULL;  | 
2216  | 0  |     }  | 
2217  | 0  |     total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;  | 
2218  |  | 
  | 
2219  | 0  |     tail = data + original_nbytes;  | 
2220  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2221  |  |     size_t block_serialno = read_size_t(tail + SST);  | 
2222  |  | #endif  | 
2223  |  |     /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and  | 
2224  |  |        ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.  | 
2225  |  |      */  | 
2226  | 0  |     if (original_nbytes <= sizeof(save)) { | 
2227  | 0  |         memcpy(save, data, original_nbytes);  | 
2228  | 0  |         memset(data - 2 * SST, PYMEM_DEADBYTE,  | 
2229  | 0  |                original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);  | 
2230  | 0  |     }  | 
2231  | 0  |     else { | 
2232  | 0  |         memcpy(save, data, ERASED_SIZE);  | 
2233  | 0  |         memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);  | 
2234  | 0  |         memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);  | 
2235  | 0  |         memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,  | 
2236  | 0  |                ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);  | 
2237  | 0  |     }  | 
2238  |  |  | 
2239  |  |     /* Resize and add decorations. */  | 
2240  | 0  |     r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);  | 
2241  | 0  |     if (r == NULL) { | 
2242  |  |         /* if realloc() failed: rewrite header and footer which have  | 
2243  |  |            just been erased */  | 
2244  | 0  |         nbytes = original_nbytes;  | 
2245  | 0  |     }  | 
2246  | 0  |     else { | 
2247  | 0  |         head = r;  | 
2248  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2249  |  |         bumpserialno();  | 
2250  |  |         block_serialno = serialno;  | 
2251  |  | #endif  | 
2252  | 0  |     }  | 
2253  | 0  |     data = head + 2*SST;  | 
2254  |  | 
  | 
2255  | 0  |     write_size_t(head, nbytes);  | 
2256  | 0  |     head[SST] = (uint8_t)api->api_id;  | 
2257  | 0  |     memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);  | 
2258  |  | 
  | 
2259  | 0  |     tail = data + nbytes;  | 
2260  | 0  |     memset(tail, PYMEM_FORBIDDENBYTE, SST);  | 
2261  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2262  |  |     write_size_t(tail + SST, block_serialno);  | 
2263  |  | #endif  | 
2264  |  |  | 
2265  |  |     /* Restore saved bytes. */  | 
2266  | 0  |     if (original_nbytes <= sizeof(save)) { | 
2267  | 0  |         memcpy(data, save, Py_MIN(nbytes, original_nbytes));  | 
2268  | 0  |     }  | 
2269  | 0  |     else { | 
2270  | 0  |         size_t i = original_nbytes - ERASED_SIZE;  | 
2271  | 0  |         memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));  | 
2272  | 0  |         if (nbytes > i) { | 
2273  | 0  |             memcpy(data + i, &save[ERASED_SIZE],  | 
2274  | 0  |                    Py_MIN(nbytes - i, ERASED_SIZE));  | 
2275  | 0  |         }  | 
2276  | 0  |     }  | 
2277  |  | 
  | 
2278  | 0  |     if (r == NULL) { | 
2279  | 0  |         return NULL;  | 
2280  | 0  |     }  | 
2281  |  |  | 
2282  | 0  |     if (nbytes > original_nbytes) { | 
2283  |  |         /* growing: mark new extra memory clean */  | 
2284  | 0  |         memset(data + original_nbytes, PYMEM_CLEANBYTE,  | 
2285  | 0  |                nbytes - original_nbytes);  | 
2286  | 0  |     }  | 
2287  |  | 
  | 
2288  | 0  |     return data;  | 
2289  | 0  | }  | 
2290  |  |  | 
2291  |  | static void  | 
2292  |  | _PyMem_DebugCheckGIL(void)  | 
2293  | 0  | { | 
2294  | 0  |     if (!PyGILState_Check())  | 
2295  | 0  |         Py_FatalError("Python memory allocator called " | 
2296  | 0  |                       "without holding the GIL");  | 
2297  | 0  | }  | 
2298  |  |  | 
2299  |  | static void *  | 
2300  |  | _PyMem_DebugMalloc(void *ctx, size_t nbytes)  | 
2301  | 0  | { | 
2302  | 0  |     _PyMem_DebugCheckGIL();  | 
2303  | 0  |     return _PyMem_DebugRawMalloc(ctx, nbytes);  | 
2304  | 0  | }  | 
2305  |  |  | 
2306  |  | static void *  | 
2307  |  | _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)  | 
2308  | 0  | { | 
2309  | 0  |     _PyMem_DebugCheckGIL();  | 
2310  | 0  |     return _PyMem_DebugRawCalloc(ctx, nelem, elsize);  | 
2311  | 0  | }  | 
2312  |  |  | 
2313  |  |  | 
2314  |  | static void  | 
2315  |  | _PyMem_DebugFree(void *ctx, void *ptr)  | 
2316  | 0  | { | 
2317  | 0  |     _PyMem_DebugCheckGIL();  | 
2318  | 0  |     _PyMem_DebugRawFree(ctx, ptr);  | 
2319  | 0  | }  | 
2320  |  |  | 
2321  |  |  | 
2322  |  | static void *  | 
2323  |  | _PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)  | 
2324  | 0  | { | 
2325  | 0  |     _PyMem_DebugCheckGIL();  | 
2326  | 0  |     return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);  | 
2327  | 0  | }  | 
2328  |  |  | 
2329  |  | /* Check the forbidden bytes on both ends of the memory allocated for p.  | 
2330  |  |  * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,  | 
2331  |  |  * and call Py_FatalError to kill the program.  | 
2332  |  |  * The API id, is also checked.  | 
2333  |  |  */  | 
2334  |  | static void  | 
2335  |  | _PyMem_DebugCheckAddress(char api, const void *p)  | 
2336  | 0  | { | 
2337  | 0  |     const uint8_t *q = (const uint8_t *)p;  | 
2338  | 0  |     char msgbuf[64];  | 
2339  | 0  |     const char *msg;  | 
2340  | 0  |     size_t nbytes;  | 
2341  | 0  |     const uint8_t *tail;  | 
2342  | 0  |     int i;  | 
2343  | 0  |     char id;  | 
2344  |  | 
  | 
2345  | 0  |     if (p == NULL) { | 
2346  | 0  |         msg = "didn't expect a NULL pointer";  | 
2347  | 0  |         goto error;  | 
2348  | 0  |     }  | 
2349  |  |  | 
2350  |  |     /* Check the API id */  | 
2351  | 0  |     id = (char)q[-SST];  | 
2352  | 0  |     if (id != api) { | 
2353  | 0  |         msg = msgbuf;  | 
2354  | 0  |         snprintf(msgbuf, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);  | 
2355  | 0  |         msgbuf[sizeof(msgbuf)-1] = 0;  | 
2356  | 0  |         goto error;  | 
2357  | 0  |     }  | 
2358  |  |  | 
2359  |  |     /* Check the stuff at the start of p first:  if there's underwrite  | 
2360  |  |      * corruption, the number-of-bytes field may be nuts, and checking  | 
2361  |  |      * the tail could lead to a segfault then.  | 
2362  |  |      */  | 
2363  | 0  |     for (i = SST-1; i >= 1; --i) { | 
2364  | 0  |         if (*(q-i) != PYMEM_FORBIDDENBYTE) { | 
2365  | 0  |             msg = "bad leading pad byte";  | 
2366  | 0  |             goto error;  | 
2367  | 0  |         }  | 
2368  | 0  |     }  | 
2369  |  |  | 
2370  | 0  |     nbytes = read_size_t(q - 2*SST);  | 
2371  | 0  |     tail = q + nbytes;  | 
2372  | 0  |     for (i = 0; i < SST; ++i) { | 
2373  | 0  |         if (tail[i] != PYMEM_FORBIDDENBYTE) { | 
2374  | 0  |             msg = "bad trailing pad byte";  | 
2375  | 0  |             goto error;  | 
2376  | 0  |         }  | 
2377  | 0  |     }  | 
2378  |  |  | 
2379  | 0  |     return;  | 
2380  |  |  | 
2381  | 0  | error:  | 
2382  | 0  |     _PyObject_DebugDumpAddress(p);  | 
2383  | 0  |     Py_FatalError(msg);  | 
2384  | 0  | }  | 
2385  |  |  | 
2386  |  | /* Display info to stderr about the memory block at p. */  | 
2387  |  | static void  | 
2388  |  | _PyObject_DebugDumpAddress(const void *p)  | 
2389  | 0  | { | 
2390  | 0  |     const uint8_t *q = (const uint8_t *)p;  | 
2391  | 0  |     const uint8_t *tail;  | 
2392  | 0  |     size_t nbytes;  | 
2393  | 0  |     int i;  | 
2394  | 0  |     int ok;  | 
2395  | 0  |     char id;  | 
2396  |  | 
  | 
2397  | 0  |     fprintf(stderr, "Debug memory block at address p=%p:", p);  | 
2398  | 0  |     if (p == NULL) { | 
2399  | 0  |         fprintf(stderr, "\n");  | 
2400  | 0  |         return;  | 
2401  | 0  |     }  | 
2402  | 0  |     id = (char)q[-SST];  | 
2403  | 0  |     fprintf(stderr, " API '%c'\n", id);  | 
2404  |  | 
  | 
2405  | 0  |     nbytes = read_size_t(q - 2*SST);  | 
2406  | 0  |     fprintf(stderr, "    %" PY_FORMAT_SIZE_T "u bytes originally "  | 
2407  | 0  |                     "requested\n", nbytes);  | 
2408  |  |  | 
2409  |  |     /* In case this is nuts, check the leading pad bytes first. */  | 
2410  | 0  |     fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);  | 
2411  | 0  |     ok = 1;  | 
2412  | 0  |     for (i = 1; i <= SST-1; ++i) { | 
2413  | 0  |         if (*(q-i) != PYMEM_FORBIDDENBYTE) { | 
2414  | 0  |             ok = 0;  | 
2415  | 0  |             break;  | 
2416  | 0  |         }  | 
2417  | 0  |     }  | 
2418  | 0  |     if (ok)  | 
2419  | 0  |         fputs("FORBIDDENBYTE, as expected.\n", stderr); | 
2420  | 0  |     else { | 
2421  | 0  |         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",  | 
2422  | 0  |             PYMEM_FORBIDDENBYTE);  | 
2423  | 0  |         for (i = SST-1; i >= 1; --i) { | 
2424  | 0  |             const uint8_t byte = *(q-i);  | 
2425  | 0  |             fprintf(stderr, "        at p-%d: 0x%02x", i, byte);  | 
2426  | 0  |             if (byte != PYMEM_FORBIDDENBYTE)  | 
2427  | 0  |                 fputs(" *** OUCH", stderr); | 
2428  | 0  |             fputc('\n', stderr); | 
2429  | 0  |         }  | 
2430  |  | 
  | 
2431  | 0  |         fputs("    Because memory is corrupted at the start, the " | 
2432  | 0  |               "count of bytes requested\n"  | 
2433  | 0  |               "       may be bogus, and checking the trailing pad "  | 
2434  | 0  |               "bytes may segfault.\n", stderr);  | 
2435  | 0  |     }  | 
2436  |  | 
  | 
2437  | 0  |     tail = q + nbytes;  | 
2438  | 0  |     fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, (void *)tail);  | 
2439  | 0  |     ok = 1;  | 
2440  | 0  |     for (i = 0; i < SST; ++i) { | 
2441  | 0  |         if (tail[i] != PYMEM_FORBIDDENBYTE) { | 
2442  | 0  |             ok = 0;  | 
2443  | 0  |             break;  | 
2444  | 0  |         }  | 
2445  | 0  |     }  | 
2446  | 0  |     if (ok)  | 
2447  | 0  |         fputs("FORBIDDENBYTE, as expected.\n", stderr); | 
2448  | 0  |     else { | 
2449  | 0  |         fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",  | 
2450  | 0  |                 PYMEM_FORBIDDENBYTE);  | 
2451  | 0  |         for (i = 0; i < SST; ++i) { | 
2452  | 0  |             const uint8_t byte = tail[i];  | 
2453  | 0  |             fprintf(stderr, "        at tail+%d: 0x%02x",  | 
2454  | 0  |                     i, byte);  | 
2455  | 0  |             if (byte != PYMEM_FORBIDDENBYTE)  | 
2456  | 0  |                 fputs(" *** OUCH", stderr); | 
2457  | 0  |             fputc('\n', stderr); | 
2458  | 0  |         }  | 
2459  | 0  |     }  | 
2460  |  | 
  | 
2461  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2462  |  |     size_t serial = read_size_t(tail + SST);  | 
2463  |  |     fprintf(stderr, "    The block was made by call #%" PY_FORMAT_SIZE_T  | 
2464  |  |                     "u to debug malloc/realloc.\n", serial);  | 
2465  |  | #endif  | 
2466  |  | 
  | 
2467  | 0  |     if (nbytes > 0) { | 
2468  | 0  |         i = 0;  | 
2469  | 0  |         fputs("    Data at p:", stderr); | 
2470  |  |         /* print up to 8 bytes at the start */  | 
2471  | 0  |         while (q < tail && i < 8) { | 
2472  | 0  |             fprintf(stderr, " %02x", *q);  | 
2473  | 0  |             ++i;  | 
2474  | 0  |             ++q;  | 
2475  | 0  |         }  | 
2476  |  |         /* and up to 8 at the end */  | 
2477  | 0  |         if (q < tail) { | 
2478  | 0  |             if (tail - q > 8) { | 
2479  | 0  |                 fputs(" ...", stderr); | 
2480  | 0  |                 q = tail - 8;  | 
2481  | 0  |             }  | 
2482  | 0  |             while (q < tail) { | 
2483  | 0  |                 fprintf(stderr, " %02x", *q);  | 
2484  | 0  |                 ++q;  | 
2485  | 0  |             }  | 
2486  | 0  |         }  | 
2487  | 0  |         fputc('\n', stderr); | 
2488  | 0  |     }  | 
2489  | 0  |     fputc('\n', stderr); | 
2490  |  | 
  | 
2491  | 0  |     fflush(stderr);  | 
2492  | 0  |     _PyMem_DumpTraceback(fileno(stderr), p);  | 
2493  | 0  | }  | 
2494  |  |  | 
2495  |  |  | 
2496  |  | static size_t  | 
2497  |  | printone(FILE *out, const char* msg, size_t value)  | 
2498  | 0  | { | 
2499  | 0  |     int i, k;  | 
2500  | 0  |     char buf[100];  | 
2501  | 0  |     size_t origvalue = value;  | 
2502  |  | 
  | 
2503  | 0  |     fputs(msg, out);  | 
2504  | 0  |     for (i = (int)strlen(msg); i < 35; ++i)  | 
2505  | 0  |         fputc(' ', out); | 
2506  | 0  |     fputc('=', out); | 
2507  |  |  | 
2508  |  |     /* Write the value with commas. */  | 
2509  | 0  |     i = 22;  | 
2510  | 0  |     buf[i--] = '\0';  | 
2511  | 0  |     buf[i--] = '\n';  | 
2512  | 0  |     k = 3;  | 
2513  | 0  |     do { | 
2514  | 0  |         size_t nextvalue = value / 10;  | 
2515  | 0  |         unsigned int digit = (unsigned int)(value - nextvalue * 10);  | 
2516  | 0  |         value = nextvalue;  | 
2517  | 0  |         buf[i--] = (char)(digit + '0');  | 
2518  | 0  |         --k;  | 
2519  | 0  |         if (k == 0 && value && i >= 0) { | 
2520  | 0  |             k = 3;  | 
2521  | 0  |             buf[i--] = ',';  | 
2522  | 0  |         }  | 
2523  | 0  |     } while (value && i >= 0);  | 
2524  |  | 
  | 
2525  | 0  |     while (i >= 0)  | 
2526  | 0  |         buf[i--] = ' ';  | 
2527  | 0  |     fputs(buf, out);  | 
2528  |  | 
  | 
2529  | 0  |     return origvalue;  | 
2530  | 0  | }  | 
2531  |  |  | 
2532  |  | void  | 
2533  |  | _PyDebugAllocatorStats(FILE *out,  | 
2534  |  |                        const char *block_name, int num_blocks, size_t sizeof_block)  | 
2535  | 0  | { | 
2536  | 0  |     char buf1[128];  | 
2537  | 0  |     char buf2[128];  | 
2538  | 0  |     PyOS_snprintf(buf1, sizeof(buf1),  | 
2539  | 0  |                   "%d %ss * %" PY_FORMAT_SIZE_T "d bytes each",  | 
2540  | 0  |                   num_blocks, block_name, sizeof_block);  | 
2541  | 0  |     PyOS_snprintf(buf2, sizeof(buf2),  | 
2542  | 0  |                   "%48s ", buf1);  | 
2543  | 0  |     (void)printone(out, buf2, num_blocks * sizeof_block);  | 
2544  | 0  | }  | 
2545  |  |  | 
2546  |  |  | 
2547  |  | #ifdef WITH_PYMALLOC  | 
2548  |  |  | 
2549  |  | #ifdef Py_DEBUG  | 
2550  |  | /* Is target in the list?  The list is traversed via the nextpool pointers.  | 
2551  |  |  * The list may be NULL-terminated, or circular.  Return 1 if target is in  | 
2552  |  |  * list, else 0.  | 
2553  |  |  */  | 
2554  |  | static int  | 
2555  |  | pool_is_in_list(const poolp target, poolp list)  | 
2556  |  | { | 
2557  |  |     poolp origlist = list;  | 
2558  |  |     assert(target != NULL);  | 
2559  |  |     if (list == NULL)  | 
2560  |  |         return 0;  | 
2561  |  |     do { | 
2562  |  |         if (target == list)  | 
2563  |  |             return 1;  | 
2564  |  |         list = list->nextpool;  | 
2565  |  |     } while (list != NULL && list != origlist);  | 
2566  |  |     return 0;  | 
2567  |  | }  | 
2568  |  | #endif  | 
2569  |  |  | 
2570  |  | /* Print summary info to "out" about the state of pymalloc's structures.  | 
2571  |  |  * In Py_DEBUG mode, also perform some expensive internal consistency  | 
2572  |  |  * checks.  | 
2573  |  |  *  | 
2574  |  |  * Return 0 if the memory debug hooks are not installed or no statistics was  | 
2575  |  |  * written into out, return 1 otherwise.  | 
2576  |  |  */  | 
2577  |  | int  | 
2578  |  | _PyObject_DebugMallocStats(FILE *out)  | 
2579  | 0  | { | 
2580  | 0  |     if (!_PyMem_PymallocEnabled()) { | 
2581  | 0  |         return 0;  | 
2582  | 0  |     }  | 
2583  |  |  | 
2584  | 0  |     uint i;  | 
2585  | 0  |     const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;  | 
2586  |  |     /* # of pools, allocated blocks, and free blocks per class index */  | 
2587  | 0  |     size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];  | 
2588  | 0  |     size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];  | 
2589  | 0  |     size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];  | 
2590  |  |     /* total # of allocated bytes in used and full pools */  | 
2591  | 0  |     size_t allocated_bytes = 0;  | 
2592  |  |     /* total # of available bytes in used pools */  | 
2593  | 0  |     size_t available_bytes = 0;  | 
2594  |  |     /* # of free pools + pools not yet carved out of current arena */  | 
2595  | 0  |     uint numfreepools = 0;  | 
2596  |  |     /* # of bytes for arena alignment padding */  | 
2597  | 0  |     size_t arena_alignment = 0;  | 
2598  |  |     /* # of bytes in used and full pools used for pool_headers */  | 
2599  | 0  |     size_t pool_header_bytes = 0;  | 
2600  |  |     /* # of bytes in used and full pools wasted due to quantization,  | 
2601  |  |      * i.e. the necessarily leftover space at the ends of used and  | 
2602  |  |      * full pools.  | 
2603  |  |      */  | 
2604  | 0  |     size_t quantization = 0;  | 
2605  |  |     /* # of arenas actually allocated. */  | 
2606  | 0  |     size_t narenas = 0;  | 
2607  |  |     /* running total -- should equal narenas * ARENA_SIZE */  | 
2608  | 0  |     size_t total;  | 
2609  | 0  |     char buf[128];  | 
2610  |  | 
  | 
2611  | 0  |     fprintf(out, "Small block threshold = %d, in %u size classes.\n",  | 
2612  | 0  |             SMALL_REQUEST_THRESHOLD, numclasses);  | 
2613  |  | 
  | 
2614  | 0  |     for (i = 0; i < numclasses; ++i)  | 
2615  | 0  |         numpools[i] = numblocks[i] = numfreeblocks[i] = 0;  | 
2616  |  |  | 
2617  |  |     /* Because full pools aren't linked to from anything, it's easiest  | 
2618  |  |      * to march over all the arenas.  If we're lucky, most of the memory  | 
2619  |  |      * will be living in full pools -- would be a shame to miss them.  | 
2620  |  |      */  | 
2621  | 0  |     for (i = 0; i < maxarenas; ++i) { | 
2622  | 0  |         uint j;  | 
2623  | 0  |         uintptr_t base = arenas[i].address;  | 
2624  |  |  | 
2625  |  |         /* Skip arenas which are not allocated. */  | 
2626  | 0  |         if (arenas[i].address == (uintptr_t)NULL)  | 
2627  | 0  |             continue;  | 
2628  | 0  |         narenas += 1;  | 
2629  |  | 
  | 
2630  | 0  |         numfreepools += arenas[i].nfreepools;  | 
2631  |  |  | 
2632  |  |         /* round up to pool alignment */  | 
2633  | 0  |         if (base & (uintptr_t)POOL_SIZE_MASK) { | 
2634  | 0  |             arena_alignment += POOL_SIZE;  | 
2635  | 0  |             base &= ~(uintptr_t)POOL_SIZE_MASK;  | 
2636  | 0  |             base += POOL_SIZE;  | 
2637  | 0  |         }  | 
2638  |  |  | 
2639  |  |         /* visit every pool in the arena */  | 
2640  | 0  |         assert(base <= (uintptr_t) arenas[i].pool_address);  | 
2641  | 0  |         for (j = 0; base < (uintptr_t) arenas[i].pool_address;  | 
2642  | 0  |              ++j, base += POOL_SIZE) { | 
2643  | 0  |             poolp p = (poolp)base;  | 
2644  | 0  |             const uint sz = p->szidx;  | 
2645  | 0  |             uint freeblocks;  | 
2646  |  | 
  | 
2647  | 0  |             if (p->ref.count == 0) { | 
2648  |  |                 /* currently unused */  | 
2649  |  | #ifdef Py_DEBUG  | 
2650  |  |                 assert(pool_is_in_list(p, arenas[i].freepools));  | 
2651  |  | #endif  | 
2652  | 0  |                 continue;  | 
2653  | 0  |             }  | 
2654  | 0  |             ++numpools[sz];  | 
2655  | 0  |             numblocks[sz] += p->ref.count;  | 
2656  | 0  |             freeblocks = NUMBLOCKS(sz) - p->ref.count;  | 
2657  | 0  |             numfreeblocks[sz] += freeblocks;  | 
2658  |  | #ifdef Py_DEBUG  | 
2659  |  |             if (freeblocks > 0)  | 
2660  |  |                 assert(pool_is_in_list(p, usedpools[sz + sz]));  | 
2661  |  | #endif  | 
2662  | 0  |         }  | 
2663  | 0  |     }  | 
2664  | 0  |     assert(narenas == narenas_currently_allocated);  | 
2665  |  | 
  | 
2666  | 0  |     fputc('\n', out); | 
2667  | 0  |     fputs("class   size   num pools   blocks in use  avail blocks\n" | 
2668  | 0  |           "-----   ----   ---------   -------------  ------------\n",  | 
2669  | 0  |           out);  | 
2670  |  | 
  | 
2671  | 0  |     for (i = 0; i < numclasses; ++i) { | 
2672  | 0  |         size_t p = numpools[i];  | 
2673  | 0  |         size_t b = numblocks[i];  | 
2674  | 0  |         size_t f = numfreeblocks[i];  | 
2675  | 0  |         uint size = INDEX2SIZE(i);  | 
2676  | 0  |         if (p == 0) { | 
2677  | 0  |             assert(b == 0 && f == 0);  | 
2678  | 0  |             continue;  | 
2679  | 0  |         }  | 
2680  | 0  |         fprintf(out, "%5u %6u "  | 
2681  | 0  |                         "%11" PY_FORMAT_SIZE_T "u "  | 
2682  | 0  |                         "%15" PY_FORMAT_SIZE_T "u "  | 
2683  | 0  |                         "%13" PY_FORMAT_SIZE_T "u\n",  | 
2684  | 0  |                 i, size, p, b, f);  | 
2685  | 0  |         allocated_bytes += b * size;  | 
2686  | 0  |         available_bytes += f * size;  | 
2687  | 0  |         pool_header_bytes += p * POOL_OVERHEAD;  | 
2688  | 0  |         quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);  | 
2689  | 0  |     }  | 
2690  | 0  |     fputc('\n', out); | 
2691  |  | #ifdef PYMEM_DEBUG_SERIALNO  | 
2692  |  |     if (_PyMem_DebugEnabled()) { | 
2693  |  |         (void)printone(out, "# times object malloc called", serialno);  | 
2694  |  |     }  | 
2695  |  | #endif  | 
2696  | 0  |     (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);  | 
2697  | 0  |     (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);  | 
2698  | 0  |     (void)printone(out, "# arenas highwater mark", narenas_highwater);  | 
2699  | 0  |     (void)printone(out, "# arenas allocated current", narenas);  | 
2700  |  | 
  | 
2701  | 0  |     PyOS_snprintf(buf, sizeof(buf),  | 
2702  | 0  |         "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",  | 
2703  | 0  |         narenas, ARENA_SIZE);  | 
2704  | 0  |     (void)printone(out, buf, narenas * ARENA_SIZE);  | 
2705  |  | 
  | 
2706  | 0  |     fputc('\n', out); | 
2707  |  | 
  | 
2708  | 0  |     total = printone(out, "# bytes in allocated blocks", allocated_bytes);  | 
2709  | 0  |     total += printone(out, "# bytes in available blocks", available_bytes);  | 
2710  |  | 
  | 
2711  | 0  |     PyOS_snprintf(buf, sizeof(buf),  | 
2712  | 0  |         "%u unused pools * %d bytes", numfreepools, POOL_SIZE);  | 
2713  | 0  |     total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);  | 
2714  |  | 
  | 
2715  | 0  |     total += printone(out, "# bytes lost to pool headers", pool_header_bytes);  | 
2716  | 0  |     total += printone(out, "# bytes lost to quantization", quantization);  | 
2717  | 0  |     total += printone(out, "# bytes lost to arena alignment", arena_alignment);  | 
2718  | 0  |     (void)printone(out, "Total", total);  | 
2719  | 0  |     return 1;  | 
2720  | 0  | }  | 
2721  |  |  | 
2722  |  | #endif /* #ifdef WITH_PYMALLOC */  |