/src/Python-3.8.3/Python/dtoa.c
Line  | Count  | Source  | 
1  |  | /****************************************************************  | 
2  |  |  *  | 
3  |  |  * The author of this software is David M. Gay.  | 
4  |  |  *  | 
5  |  |  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.  | 
6  |  |  *  | 
7  |  |  * Permission to use, copy, modify, and distribute this software for any  | 
8  |  |  * purpose without fee is hereby granted, provided that this entire notice  | 
9  |  |  * is included in all copies of any software which is or includes a copy  | 
10  |  |  * or modification of this software and in all copies of the supporting  | 
11  |  |  * documentation for such software.  | 
12  |  |  *  | 
13  |  |  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED  | 
14  |  |  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY  | 
15  |  |  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY  | 
16  |  |  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.  | 
17  |  |  *  | 
18  |  |  ***************************************************************/  | 
19  |  |  | 
20  |  | /****************************************************************  | 
21  |  |  * This is dtoa.c by David M. Gay, downloaded from  | 
22  |  |  * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for  | 
23  |  |  * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.  | 
24  |  |  *  | 
25  |  |  * Please remember to check http://www.netlib.org/fp regularly (and especially  | 
26  |  |  * before any Python release) for bugfixes and updates.  | 
27  |  |  *  | 
28  |  |  * The major modifications from Gay's original code are as follows:  | 
29  |  |  *  | 
30  |  |  *  0. The original code has been specialized to Python's needs by removing  | 
31  |  |  *     many of the #ifdef'd sections.  In particular, code to support VAX and  | 
32  |  |  *     IBM floating-point formats, hex NaNs, hex floats, locale-aware  | 
33  |  |  *     treatment of the decimal point, and setting of the inexact flag have  | 
34  |  |  *     been removed.  | 
35  |  |  *  | 
36  |  |  *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.  | 
37  |  |  *  | 
38  |  |  *  2. The public functions strtod, dtoa and freedtoa all now have  | 
39  |  |  *     a _Py_dg_ prefix.  | 
40  |  |  *  | 
41  |  |  *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread  | 
42  |  |  *     PyMem_Malloc failures through the code.  The functions  | 
43  |  |  *  | 
44  |  |  *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b  | 
45  |  |  *  | 
46  |  |  *     of return type *Bigint all return NULL to indicate a malloc failure.  | 
47  |  |  *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on  | 
48  |  |  *     failure.  bigcomp now has return type int (it used to be void) and  | 
49  |  |  *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL  | 
50  |  |  *     on failure.  _Py_dg_strtod indicates failure due to malloc failure  | 
51  |  |  *     by returning -1.0, setting errno=ENOMEM and *se to s00.  | 
52  |  |  *  | 
53  |  |  *  4. The static variable dtoa_result has been removed.  Callers of  | 
54  |  |  *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free  | 
55  |  |  *     the memory allocated by _Py_dg_dtoa.  | 
56  |  |  *  | 
57  |  |  *  5. The code has been reformatted to better fit with Python's  | 
58  |  |  *     C style guide (PEP 7).  | 
59  |  |  *  | 
60  |  |  *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory  | 
61  |  |  *     that hasn't been MALLOC'ed, private_mem should only be used when k <=  | 
62  |  |  *     Kmax.  | 
63  |  |  *  | 
64  |  |  *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with  | 
65  |  |  *     leading whitespace.  | 
66  |  |  *  | 
67  |  |  ***************************************************************/  | 
68  |  |  | 
69  |  | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg  | 
70  |  |  * at acm dot org, with " at " changed at "@" and " dot " changed to ".").  | 
71  |  |  * Please report bugs for this modified version using the Python issue tracker  | 
72  |  |  * (http://bugs.python.org). */  | 
73  |  |  | 
74  |  | /* On a machine with IEEE extended-precision registers, it is  | 
75  |  |  * necessary to specify double-precision (53-bit) rounding precision  | 
76  |  |  * before invoking strtod or dtoa.  If the machine uses (the equivalent  | 
77  |  |  * of) Intel 80x87 arithmetic, the call  | 
78  |  |  *      _control87(PC_53, MCW_PC);  | 
79  |  |  * does this with many compilers.  Whether this or another call is  | 
80  |  |  * appropriate depends on the compiler; for this to work, it may be  | 
81  |  |  * necessary to #include "float.h" or another system-dependent header  | 
82  |  |  * file.  | 
83  |  |  */  | 
84  |  |  | 
85  |  | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.  | 
86  |  |  *  | 
87  |  |  * This strtod returns a nearest machine number to the input decimal  | 
88  |  |  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are  | 
89  |  |  * broken by the IEEE round-even rule.  Otherwise ties are broken by  | 
90  |  |  * biased rounding (add half and chop).  | 
91  |  |  *  | 
92  |  |  * Inspired loosely by William D. Clinger's paper "How to Read Floating  | 
93  |  |  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].  | 
94  |  |  *  | 
95  |  |  * Modifications:  | 
96  |  |  *  | 
97  |  |  *      1. We only require IEEE, IBM, or VAX double-precision  | 
98  |  |  *              arithmetic (not IEEE double-extended).  | 
99  |  |  *      2. We get by with floating-point arithmetic in a case that  | 
100  |  |  *              Clinger missed -- when we're computing d * 10^n  | 
101  |  |  *              for a small integer d and the integer n is not too  | 
102  |  |  *              much larger than 22 (the maximum integer k for which  | 
103  |  |  *              we can represent 10^k exactly), we may be able to  | 
104  |  |  *              compute (d*10^k) * 10^(e-k) with just one roundoff.  | 
105  |  |  *      3. Rather than a bit-at-a-time adjustment of the binary  | 
106  |  |  *              result in the hard case, we use floating-point  | 
107  |  |  *              arithmetic to determine the adjustment to within  | 
108  |  |  *              one bit; only in really hard cases do we need to  | 
109  |  |  *              compute a second residual.  | 
110  |  |  *      4. Because of 3., we don't need a large table of powers of 10  | 
111  |  |  *              for ten-to-e (just some small tables, e.g. of 10^k  | 
112  |  |  *              for 0 <= k <= 22).  | 
113  |  |  */  | 
114  |  |  | 
115  |  | /* Linking of Python's #defines to Gay's #defines starts here. */  | 
116  |  |  | 
117  |  | #include "Python.h"  | 
118  |  |  | 
119  |  | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile  | 
120  |  |    the following code */  | 
121  |  | #ifndef PY_NO_SHORT_FLOAT_REPR  | 
122  |  |  | 
123  |  | #include "float.h"  | 
124  |  |  | 
125  | 0  | #define MALLOC PyMem_Malloc  | 
126  | 0  | #define FREE PyMem_Free  | 
127  |  |  | 
128  |  | /* This code should also work for ARM mixed-endian format on little-endian  | 
129  |  |    machines, where doubles have byte order 45670123 (in increasing address  | 
130  |  |    order, 0 being the least significant byte). */  | 
131  |  | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754  | 
132  |  | #  define IEEE_8087  | 
133  |  | #endif  | 
134  |  | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \  | 
135  |  |   defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)  | 
136  |  | #  define IEEE_MC68k  | 
137  |  | #endif  | 
138  |  | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1  | 
139  |  | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."  | 
140  |  | #endif  | 
141  |  |  | 
142  |  | /* The code below assumes that the endianness of integers matches the  | 
143  |  |    endianness of the two 32-bit words of a double.  Check this. */  | 
144  |  | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \  | 
145  |  |                                  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))  | 
146  |  | #error "doubles and ints have incompatible endianness"  | 
147  |  | #endif  | 
148  |  |  | 
149  |  | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)  | 
150  |  | #error "doubles and ints have incompatible endianness"  | 
151  |  | #endif  | 
152  |  |  | 
153  |  |  | 
154  |  | typedef uint32_t ULong;  | 
155  |  | typedef int32_t Long;  | 
156  |  | typedef uint64_t ULLong;  | 
157  |  |  | 
158  |  | #undef DEBUG  | 
159  |  | #ifdef Py_DEBUG  | 
160  |  | #define DEBUG  | 
161  |  | #endif  | 
162  |  |  | 
163  |  | /* End Python #define linking */  | 
164  |  |  | 
165  |  | #ifdef DEBUG  | 
166  |  | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | 
167  |  | #endif  | 
168  |  |  | 
169  |  | #ifndef PRIVATE_MEM  | 
170  | 0  | #define PRIVATE_MEM 2304  | 
171  |  | #endif  | 
172  | 0  | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))  | 
173  |  | static double private_mem[PRIVATE_mem], *pmem_next = private_mem;  | 
174  |  |  | 
175  |  | #ifdef __cplusplus  | 
176  |  | extern "C" { | 
177  |  | #endif  | 
178  |  |  | 
179  |  | typedef union { double d; ULong L[2]; } U; | 
180  |  |  | 
181  |  | #ifdef IEEE_8087  | 
182  | 0  | #define word0(x) (x)->L[1]  | 
183  | 0  | #define word1(x) (x)->L[0]  | 
184  |  | #else  | 
185  |  | #define word0(x) (x)->L[0]  | 
186  |  | #define word1(x) (x)->L[1]  | 
187  |  | #endif  | 
188  | 10  | #define dval(x) (x)->d  | 
189  |  |  | 
190  |  | #ifndef STRTOD_DIGLIM  | 
191  | 0  | #define STRTOD_DIGLIM 40  | 
192  |  | #endif  | 
193  |  |  | 
194  |  | /* maximum permitted exponent value for strtod; exponents larger than  | 
195  |  |    MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP  | 
196  |  |    should fit into an int. */  | 
197  |  | #ifndef MAX_ABS_EXP  | 
198  | 0  | #define MAX_ABS_EXP 1100000000U  | 
199  |  | #endif  | 
200  |  | /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,  | 
201  |  |    this is used to bound the total number of digits ignoring leading zeros and  | 
202  |  |    the number of digits that follow the decimal point.  Ideally, MAX_DIGITS  | 
203  |  |    should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the  | 
204  |  |    exponent clipping in _Py_dg_strtod can't affect the value of the output. */  | 
205  |  | #ifndef MAX_DIGITS  | 
206  | 6  | #define MAX_DIGITS 1000000000U  | 
207  |  | #endif  | 
208  |  |  | 
209  |  | /* Guard against trying to use the above values on unusual platforms with ints  | 
210  |  |  * of width less than 32 bits. */  | 
211  |  | #if MAX_ABS_EXP > INT_MAX  | 
212  |  | #error "MAX_ABS_EXP should fit in an int"  | 
213  |  | #endif  | 
214  |  | #if MAX_DIGITS > INT_MAX  | 
215  |  | #error "MAX_DIGITS should fit in an int"  | 
216  |  | #endif  | 
217  |  |  | 
218  |  | /* The following definition of Storeinc is appropriate for MIPS processors.  | 
219  |  |  * An alternative that might be better on some machines is  | 
220  |  |  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)  | 
221  |  |  */  | 
222  |  | #if defined(IEEE_8087)  | 
223  |  | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \  | 
224  |  |                          ((unsigned short *)a)[0] = (unsigned short)c, a++)  | 
225  |  | #else  | 
226  |  | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \  | 
227  |  |                          ((unsigned short *)a)[1] = (unsigned short)c, a++)  | 
228  |  | #endif  | 
229  |  |  | 
230  |  | /* #define P DBL_MANT_DIG */  | 
231  |  | /* Ten_pmax = floor(P*log(2)/log(5)) */  | 
232  |  | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */  | 
233  |  | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */  | 
234  |  | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */  | 
235  |  |  | 
236  | 0  | #define Exp_shift  20  | 
237  | 0  | #define Exp_shift1 20  | 
238  | 0  | #define Exp_msk1    0x100000  | 
239  |  | #define Exp_msk11   0x100000  | 
240  | 0  | #define Exp_mask  0x7ff00000  | 
241  | 0  | #define P 53  | 
242  |  | #define Nbits 53  | 
243  | 0  | #define Bias 1023  | 
244  |  | #define Emax 1023  | 
245  |  | #define Emin (-1022)  | 
246  | 0  | #define Etiny (-1074)  /* smallest denormal is 2**Etiny */  | 
247  | 0  | #define Exp_1  0x3ff00000  | 
248  | 0  | #define Exp_11 0x3ff00000  | 
249  | 0  | #define Ebits 11  | 
250  | 0  | #define Frac_mask  0xfffff  | 
251  | 0  | #define Frac_mask1 0xfffff  | 
252  | 2  | #define Ten_pmax 22  | 
253  | 0  | #define Bletch 0x10  | 
254  | 0  | #define Bndry_mask  0xfffff  | 
255  | 0  | #define Bndry_mask1 0xfffff  | 
256  | 0  | #define Sign_bit 0x80000000  | 
257  | 0  | #define Log2P 1  | 
258  |  | #define Tiny0 0  | 
259  | 0  | #define Tiny1 1  | 
260  | 0  | #define Quick_max 14  | 
261  | 0  | #define Int_max 14  | 
262  |  |  | 
263  |  | #ifndef Flt_Rounds  | 
264  |  | #ifdef FLT_ROUNDS  | 
265  | 2  | #define Flt_Rounds FLT_ROUNDS  | 
266  |  | #else  | 
267  |  | #define Flt_Rounds 1  | 
268  |  | #endif  | 
269  |  | #endif /*Flt_Rounds*/  | 
270  |  |  | 
271  |  | #define Rounding Flt_Rounds  | 
272  |  |  | 
273  | 0  | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))  | 
274  | 0  | #define Big1 0xffffffff  | 
275  |  |  | 
276  |  | /* Standard NaN used by _Py_dg_stdnan. */  | 
277  |  |  | 
278  | 0  | #define NAN_WORD0 0x7ff80000  | 
279  | 0  | #define NAN_WORD1 0  | 
280  |  |  | 
281  |  | /* Bits of the representation of positive infinity. */  | 
282  |  |  | 
283  | 0  | #define POSINF_WORD0 0x7ff00000  | 
284  | 0  | #define POSINF_WORD1 0  | 
285  |  |  | 
286  |  | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */  | 
287  |  |  | 
288  |  | typedef struct BCinfo BCinfo;  | 
289  |  | struct  | 
290  |  | BCinfo { | 
291  |  |     int e0, nd, nd0, scale;  | 
292  |  | };  | 
293  |  |  | 
294  | 0  | #define FFFFFFFF 0xffffffffUL  | 
295  |  |  | 
296  | 0  | #define Kmax 7  | 
297  |  |  | 
298  |  | /* struct Bigint is used to represent arbitrary-precision integers.  These  | 
299  |  |    integers are stored in sign-magnitude format, with the magnitude stored as  | 
300  |  |    an array of base 2**32 digits.  Bigints are always normalized: if x is a  | 
301  |  |    Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.  | 
302  |  |  | 
303  |  |    The Bigint fields are as follows:  | 
304  |  |  | 
305  |  |      - next is a header used by Balloc and Bfree to keep track of lists  | 
306  |  |          of freed Bigints;  it's also used for the linked list of  | 
307  |  |          powers of 5 of the form 5**2**i used by pow5mult.  | 
308  |  |      - k indicates which pool this Bigint was allocated from  | 
309  |  |      - maxwds is the maximum number of words space was allocated for  | 
310  |  |        (usually maxwds == 2**k)  | 
311  |  |      - sign is 1 for negative Bigints, 0 for positive.  The sign is unused  | 
312  |  |        (ignored on inputs, set to 0 on outputs) in almost all operations  | 
313  |  |        involving Bigints: a notable exception is the diff function, which  | 
314  |  |        ignores signs on inputs but sets the sign of the output correctly.  | 
315  |  |      - wds is the actual number of significant words  | 
316  |  |      - x contains the vector of words (digits) for this Bigint, from least  | 
317  |  |        significant (x[0]) to most significant (x[wds-1]).  | 
318  |  | */  | 
319  |  |  | 
320  |  | struct  | 
321  |  | Bigint { | 
322  |  |     struct Bigint *next;  | 
323  |  |     int k, maxwds, sign, wds;  | 
324  |  |     ULong x[1];  | 
325  |  | };  | 
326  |  |  | 
327  |  | typedef struct Bigint Bigint;  | 
328  |  |  | 
329  |  | #ifndef Py_USING_MEMORY_DEBUGGER  | 
330  |  |  | 
331  |  | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools  | 
332  |  |    of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==  | 
333  |  |    1 << k.  These pools are maintained as linked lists, with freelist[k]  | 
334  |  |    pointing to the head of the list for pool k.  | 
335  |  |  | 
336  |  |    On allocation, if there's no free slot in the appropriate pool, MALLOC is  | 
337  |  |    called to get more memory.  This memory is not returned to the system until  | 
338  |  |    Python quits.  There's also a private memory pool that's allocated from  | 
339  |  |    in preference to using MALLOC.  | 
340  |  |  | 
341  |  |    For Bigints with more than (1 << Kmax) digits (which implies at least 1233  | 
342  |  |    decimal digits), memory is directly allocated using MALLOC, and freed using  | 
343  |  |    FREE.  | 
344  |  |  | 
345  |  |    XXX: it would be easy to bypass this memory-management system and  | 
346  |  |    translate each call to Balloc into a call to PyMem_Malloc, and each  | 
347  |  |    Bfree to PyMem_Free.  Investigate whether this has any significant  | 
348  |  |    performance on impact. */  | 
349  |  |  | 
350  |  | static Bigint *freelist[Kmax+1];  | 
351  |  |  | 
352  |  | /* Allocate space for a Bigint with up to 1<<k digits */  | 
353  |  |  | 
354  |  | static Bigint *  | 
355  |  | Balloc(int k)  | 
356  | 0  | { | 
357  | 0  |     int x;  | 
358  | 0  |     Bigint *rv;  | 
359  | 0  |     unsigned int len;  | 
360  |  | 
  | 
361  | 0  |     if (k <= Kmax && (rv = freelist[k]))  | 
362  | 0  |         freelist[k] = rv->next;  | 
363  | 0  |     else { | 
364  | 0  |         x = 1 << k;  | 
365  | 0  |         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)  | 
366  | 0  |             /sizeof(double);  | 
367  | 0  |         if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { | 
368  | 0  |             rv = (Bigint*)pmem_next;  | 
369  | 0  |             pmem_next += len;  | 
370  | 0  |         }  | 
371  | 0  |         else { | 
372  | 0  |             rv = (Bigint*)MALLOC(len*sizeof(double));  | 
373  | 0  |             if (rv == NULL)  | 
374  | 0  |                 return NULL;  | 
375  | 0  |         }  | 
376  | 0  |         rv->k = k;  | 
377  | 0  |         rv->maxwds = x;  | 
378  | 0  |     }  | 
379  | 0  |     rv->sign = rv->wds = 0;  | 
380  | 0  |     return rv;  | 
381  | 0  | }  | 
382  |  |  | 
383  |  | /* Free a Bigint allocated with Balloc */  | 
384  |  |  | 
385  |  | static void  | 
386  |  | Bfree(Bigint *v)  | 
387  | 10  | { | 
388  | 10  |     if (v) { | 
389  | 0  |         if (v->k > Kmax)  | 
390  | 0  |             FREE((void*)v);  | 
391  | 0  |         else { | 
392  | 0  |             v->next = freelist[v->k];  | 
393  | 0  |             freelist[v->k] = v;  | 
394  | 0  |         }  | 
395  | 0  |     }  | 
396  | 10  | }  | 
397  |  |  | 
398  |  | #else  | 
399  |  |  | 
400  |  | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and  | 
401  |  |    PyMem_Free directly in place of the custom memory allocation scheme above.  | 
402  |  |    These are provided for the benefit of memory debugging tools like  | 
403  |  |    Valgrind. */  | 
404  |  |  | 
405  |  | /* Allocate space for a Bigint with up to 1<<k digits */  | 
406  |  |  | 
407  |  | static Bigint *  | 
408  |  | Balloc(int k)  | 
409  |  | { | 
410  |  |     int x;  | 
411  |  |     Bigint *rv;  | 
412  |  |     unsigned int len;  | 
413  |  |  | 
414  |  |     x = 1 << k;  | 
415  |  |     len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)  | 
416  |  |         /sizeof(double);  | 
417  |  |  | 
418  |  |     rv = (Bigint*)MALLOC(len*sizeof(double));  | 
419  |  |     if (rv == NULL)  | 
420  |  |         return NULL;  | 
421  |  |  | 
422  |  |     rv->k = k;  | 
423  |  |     rv->maxwds = x;  | 
424  |  |     rv->sign = rv->wds = 0;  | 
425  |  |     return rv;  | 
426  |  | }  | 
427  |  |  | 
428  |  | /* Free a Bigint allocated with Balloc */  | 
429  |  |  | 
430  |  | static void  | 
431  |  | Bfree(Bigint *v)  | 
432  |  | { | 
433  |  |     if (v) { | 
434  |  |         FREE((void*)v);  | 
435  |  |     }  | 
436  |  | }  | 
437  |  |  | 
438  |  | #endif /* Py_USING_MEMORY_DEBUGGER */  | 
439  |  |  | 
440  | 0  | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \  | 
441  | 0  |                           y->wds*sizeof(Long) + 2*sizeof(int))  | 
442  |  |  | 
443  |  | /* Multiply a Bigint b by m and add a.  Either modifies b in place and returns  | 
444  |  |    a pointer to the modified b, or Bfrees b and returns a pointer to a copy.  | 
445  |  |    On failure, return NULL.  In this case, b will have been already freed. */  | 
446  |  |  | 
447  |  | static Bigint *  | 
448  |  | multadd(Bigint *b, int m, int a)       /* multiply by m and add a */  | 
449  | 0  | { | 
450  | 0  |     int i, wds;  | 
451  | 0  |     ULong *x;  | 
452  | 0  |     ULLong carry, y;  | 
453  | 0  |     Bigint *b1;  | 
454  |  | 
  | 
455  | 0  |     wds = b->wds;  | 
456  | 0  |     x = b->x;  | 
457  | 0  |     i = 0;  | 
458  | 0  |     carry = a;  | 
459  | 0  |     do { | 
460  | 0  |         y = *x * (ULLong)m + carry;  | 
461  | 0  |         carry = y >> 32;  | 
462  | 0  |         *x++ = (ULong)(y & FFFFFFFF);  | 
463  | 0  |     }  | 
464  | 0  |     while(++i < wds);  | 
465  | 0  |     if (carry) { | 
466  | 0  |         if (wds >= b->maxwds) { | 
467  | 0  |             b1 = Balloc(b->k+1);  | 
468  | 0  |             if (b1 == NULL){ | 
469  | 0  |                 Bfree(b);  | 
470  | 0  |                 return NULL;  | 
471  | 0  |             }  | 
472  | 0  |             Bcopy(b1, b);  | 
473  | 0  |             Bfree(b);  | 
474  | 0  |             b = b1;  | 
475  | 0  |         }  | 
476  | 0  |         b->x[wds++] = (ULong)carry;  | 
477  | 0  |         b->wds = wds;  | 
478  | 0  |     }  | 
479  | 0  |     return b;  | 
480  | 0  | }  | 
481  |  |  | 
482  |  | /* convert a string s containing nd decimal digits (possibly containing a  | 
483  |  |    decimal separator at position nd0, which is ignored) to a Bigint.  This  | 
484  |  |    function carries on where the parsing code in _Py_dg_strtod leaves off: on  | 
485  |  |    entry, y9 contains the result of converting the first 9 digits.  Returns  | 
486  |  |    NULL on failure. */  | 
487  |  |  | 
488  |  | static Bigint *  | 
489  |  | s2b(const char *s, int nd0, int nd, ULong y9)  | 
490  | 0  | { | 
491  | 0  |     Bigint *b;  | 
492  | 0  |     int i, k;  | 
493  | 0  |     Long x, y;  | 
494  |  | 
  | 
495  | 0  |     x = (nd + 8) / 9;  | 
496  | 0  |     for(k = 0, y = 1; x > y; y <<= 1, k++) ;  | 
497  | 0  |     b = Balloc(k);  | 
498  | 0  |     if (b == NULL)  | 
499  | 0  |         return NULL;  | 
500  | 0  |     b->x[0] = y9;  | 
501  | 0  |     b->wds = 1;  | 
502  |  | 
  | 
503  | 0  |     if (nd <= 9)  | 
504  | 0  |       return b;  | 
505  |  |  | 
506  | 0  |     s += 9;  | 
507  | 0  |     for (i = 9; i < nd0; i++) { | 
508  | 0  |         b = multadd(b, 10, *s++ - '0');  | 
509  | 0  |         if (b == NULL)  | 
510  | 0  |             return NULL;  | 
511  | 0  |     }  | 
512  | 0  |     s++;  | 
513  | 0  |     for(; i < nd; i++) { | 
514  | 0  |         b = multadd(b, 10, *s++ - '0');  | 
515  | 0  |         if (b == NULL)  | 
516  | 0  |             return NULL;  | 
517  | 0  |     }  | 
518  | 0  |     return b;  | 
519  | 0  | }  | 
520  |  |  | 
521  |  | /* count leading 0 bits in the 32-bit integer x. */  | 
522  |  |  | 
523  |  | static int  | 
524  |  | hi0bits(ULong x)  | 
525  | 0  | { | 
526  | 0  |     int k = 0;  | 
527  |  | 
  | 
528  | 0  |     if (!(x & 0xffff0000)) { | 
529  | 0  |         k = 16;  | 
530  | 0  |         x <<= 16;  | 
531  | 0  |     }  | 
532  | 0  |     if (!(x & 0xff000000)) { | 
533  | 0  |         k += 8;  | 
534  | 0  |         x <<= 8;  | 
535  | 0  |     }  | 
536  | 0  |     if (!(x & 0xf0000000)) { | 
537  | 0  |         k += 4;  | 
538  | 0  |         x <<= 4;  | 
539  | 0  |     }  | 
540  | 0  |     if (!(x & 0xc0000000)) { | 
541  | 0  |         k += 2;  | 
542  | 0  |         x <<= 2;  | 
543  | 0  |     }  | 
544  | 0  |     if (!(x & 0x80000000)) { | 
545  | 0  |         k++;  | 
546  | 0  |         if (!(x & 0x40000000))  | 
547  | 0  |             return 32;  | 
548  | 0  |     }  | 
549  | 0  |     return k;  | 
550  | 0  | }  | 
551  |  |  | 
552  |  | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that  | 
553  |  |    number of bits. */  | 
554  |  |  | 
555  |  | static int  | 
556  |  | lo0bits(ULong *y)  | 
557  | 0  | { | 
558  | 0  |     int k;  | 
559  | 0  |     ULong x = *y;  | 
560  |  | 
  | 
561  | 0  |     if (x & 7) { | 
562  | 0  |         if (x & 1)  | 
563  | 0  |             return 0;  | 
564  | 0  |         if (x & 2) { | 
565  | 0  |             *y = x >> 1;  | 
566  | 0  |             return 1;  | 
567  | 0  |         }  | 
568  | 0  |         *y = x >> 2;  | 
569  | 0  |         return 2;  | 
570  | 0  |     }  | 
571  | 0  |     k = 0;  | 
572  | 0  |     if (!(x & 0xffff)) { | 
573  | 0  |         k = 16;  | 
574  | 0  |         x >>= 16;  | 
575  | 0  |     }  | 
576  | 0  |     if (!(x & 0xff)) { | 
577  | 0  |         k += 8;  | 
578  | 0  |         x >>= 8;  | 
579  | 0  |     }  | 
580  | 0  |     if (!(x & 0xf)) { | 
581  | 0  |         k += 4;  | 
582  | 0  |         x >>= 4;  | 
583  | 0  |     }  | 
584  | 0  |     if (!(x & 0x3)) { | 
585  | 0  |         k += 2;  | 
586  | 0  |         x >>= 2;  | 
587  | 0  |     }  | 
588  | 0  |     if (!(x & 1)) { | 
589  | 0  |         k++;  | 
590  | 0  |         x >>= 1;  | 
591  | 0  |         if (!x)  | 
592  | 0  |             return 32;  | 
593  | 0  |     }  | 
594  | 0  |     *y = x;  | 
595  | 0  |     return k;  | 
596  | 0  | }  | 
597  |  |  | 
598  |  | /* convert a small nonnegative integer to a Bigint */  | 
599  |  |  | 
600  |  | static Bigint *  | 
601  |  | i2b(int i)  | 
602  | 0  | { | 
603  | 0  |     Bigint *b;  | 
604  |  | 
  | 
605  | 0  |     b = Balloc(1);  | 
606  | 0  |     if (b == NULL)  | 
607  | 0  |         return NULL;  | 
608  | 0  |     b->x[0] = i;  | 
609  | 0  |     b->wds = 1;  | 
610  | 0  |     return b;  | 
611  | 0  | }  | 
612  |  |  | 
613  |  | /* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores  | 
614  |  |    the signs of a and b. */  | 
615  |  |  | 
616  |  | static Bigint *  | 
617  |  | mult(Bigint *a, Bigint *b)  | 
618  | 0  | { | 
619  | 0  |     Bigint *c;  | 
620  | 0  |     int k, wa, wb, wc;  | 
621  | 0  |     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;  | 
622  | 0  |     ULong y;  | 
623  | 0  |     ULLong carry, z;  | 
624  |  | 
  | 
625  | 0  |     if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { | 
626  | 0  |         c = Balloc(0);  | 
627  | 0  |         if (c == NULL)  | 
628  | 0  |             return NULL;  | 
629  | 0  |         c->wds = 1;  | 
630  | 0  |         c->x[0] = 0;  | 
631  | 0  |         return c;  | 
632  | 0  |     }  | 
633  |  |  | 
634  | 0  |     if (a->wds < b->wds) { | 
635  | 0  |         c = a;  | 
636  | 0  |         a = b;  | 
637  | 0  |         b = c;  | 
638  | 0  |     }  | 
639  | 0  |     k = a->k;  | 
640  | 0  |     wa = a->wds;  | 
641  | 0  |     wb = b->wds;  | 
642  | 0  |     wc = wa + wb;  | 
643  | 0  |     if (wc > a->maxwds)  | 
644  | 0  |         k++;  | 
645  | 0  |     c = Balloc(k);  | 
646  | 0  |     if (c == NULL)  | 
647  | 0  |         return NULL;  | 
648  | 0  |     for(x = c->x, xa = x + wc; x < xa; x++)  | 
649  | 0  |         *x = 0;  | 
650  | 0  |     xa = a->x;  | 
651  | 0  |     xae = xa + wa;  | 
652  | 0  |     xb = b->x;  | 
653  | 0  |     xbe = xb + wb;  | 
654  | 0  |     xc0 = c->x;  | 
655  | 0  |     for(; xb < xbe; xc0++) { | 
656  | 0  |         if ((y = *xb++)) { | 
657  | 0  |             x = xa;  | 
658  | 0  |             xc = xc0;  | 
659  | 0  |             carry = 0;  | 
660  | 0  |             do { | 
661  | 0  |                 z = *x++ * (ULLong)y + *xc + carry;  | 
662  | 0  |                 carry = z >> 32;  | 
663  | 0  |                 *xc++ = (ULong)(z & FFFFFFFF);  | 
664  | 0  |             }  | 
665  | 0  |             while(x < xae);  | 
666  | 0  |             *xc = (ULong)carry;  | 
667  | 0  |         }  | 
668  | 0  |     }  | 
669  | 0  |     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;  | 
670  | 0  |     c->wds = wc;  | 
671  | 0  |     return c;  | 
672  | 0  | }  | 
673  |  |  | 
674  |  | #ifndef Py_USING_MEMORY_DEBUGGER  | 
675  |  |  | 
676  |  | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */  | 
677  |  |  | 
678  |  | static Bigint *p5s;  | 
679  |  |  | 
680  |  | /* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on  | 
681  |  |    failure; if the returned pointer is distinct from b then the original  | 
682  |  |    Bigint b will have been Bfree'd.   Ignores the sign of b. */  | 
683  |  |  | 
684  |  | static Bigint *  | 
685  |  | pow5mult(Bigint *b, int k)  | 
686  | 0  | { | 
687  | 0  |     Bigint *b1, *p5, *p51;  | 
688  | 0  |     int i;  | 
689  | 0  |     static const int p05[3] = { 5, 25, 125 }; | 
690  |  | 
  | 
691  | 0  |     if ((i = k & 3)) { | 
692  | 0  |         b = multadd(b, p05[i-1], 0);  | 
693  | 0  |         if (b == NULL)  | 
694  | 0  |             return NULL;  | 
695  | 0  |     }  | 
696  |  |  | 
697  | 0  |     if (!(k >>= 2))  | 
698  | 0  |         return b;  | 
699  | 0  |     p5 = p5s;  | 
700  | 0  |     if (!p5) { | 
701  |  |         /* first time */  | 
702  | 0  |         p5 = i2b(625);  | 
703  | 0  |         if (p5 == NULL) { | 
704  | 0  |             Bfree(b);  | 
705  | 0  |             return NULL;  | 
706  | 0  |         }  | 
707  | 0  |         p5s = p5;  | 
708  | 0  |         p5->next = 0;  | 
709  | 0  |     }  | 
710  | 0  |     for(;;) { | 
711  | 0  |         if (k & 1) { | 
712  | 0  |             b1 = mult(b, p5);  | 
713  | 0  |             Bfree(b);  | 
714  | 0  |             b = b1;  | 
715  | 0  |             if (b == NULL)  | 
716  | 0  |                 return NULL;  | 
717  | 0  |         }  | 
718  | 0  |         if (!(k >>= 1))  | 
719  | 0  |             break;  | 
720  | 0  |         p51 = p5->next;  | 
721  | 0  |         if (!p51) { | 
722  | 0  |             p51 = mult(p5,p5);  | 
723  | 0  |             if (p51 == NULL) { | 
724  | 0  |                 Bfree(b);  | 
725  | 0  |                 return NULL;  | 
726  | 0  |             }  | 
727  | 0  |             p51->next = 0;  | 
728  | 0  |             p5->next = p51;  | 
729  | 0  |         }  | 
730  | 0  |         p5 = p51;  | 
731  | 0  |     }  | 
732  | 0  |     return b;  | 
733  | 0  | }  | 
734  |  |  | 
735  |  | #else  | 
736  |  |  | 
737  |  | /* Version of pow5mult that doesn't cache powers of 5. Provided for  | 
738  |  |    the benefit of memory debugging tools like Valgrind. */  | 
739  |  |  | 
740  |  | static Bigint *  | 
741  |  | pow5mult(Bigint *b, int k)  | 
742  |  | { | 
743  |  |     Bigint *b1, *p5, *p51;  | 
744  |  |     int i;  | 
745  |  |     static const int p05[3] = { 5, 25, 125 }; | 
746  |  |  | 
747  |  |     if ((i = k & 3)) { | 
748  |  |         b = multadd(b, p05[i-1], 0);  | 
749  |  |         if (b == NULL)  | 
750  |  |             return NULL;  | 
751  |  |     }  | 
752  |  |  | 
753  |  |     if (!(k >>= 2))  | 
754  |  |         return b;  | 
755  |  |     p5 = i2b(625);  | 
756  |  |     if (p5 == NULL) { | 
757  |  |         Bfree(b);  | 
758  |  |         return NULL;  | 
759  |  |     }  | 
760  |  |  | 
761  |  |     for(;;) { | 
762  |  |         if (k & 1) { | 
763  |  |             b1 = mult(b, p5);  | 
764  |  |             Bfree(b);  | 
765  |  |             b = b1;  | 
766  |  |             if (b == NULL) { | 
767  |  |                 Bfree(p5);  | 
768  |  |                 return NULL;  | 
769  |  |             }  | 
770  |  |         }  | 
771  |  |         if (!(k >>= 1))  | 
772  |  |             break;  | 
773  |  |         p51 = mult(p5, p5);  | 
774  |  |         Bfree(p5);  | 
775  |  |         p5 = p51;  | 
776  |  |         if (p5 == NULL) { | 
777  |  |             Bfree(b);  | 
778  |  |             return NULL;  | 
779  |  |         }  | 
780  |  |     }  | 
781  |  |     Bfree(p5);  | 
782  |  |     return b;  | 
783  |  | }  | 
784  |  |  | 
785  |  | #endif /* Py_USING_MEMORY_DEBUGGER */  | 
786  |  |  | 
787  |  | /* shift a Bigint b left by k bits.  Return a pointer to the shifted result,  | 
788  |  |    or NULL on failure.  If the returned pointer is distinct from b then the  | 
789  |  |    original b will have been Bfree'd.   Ignores the sign of b. */  | 
790  |  |  | 
791  |  | static Bigint *  | 
792  |  | lshift(Bigint *b, int k)  | 
793  | 0  | { | 
794  | 0  |     int i, k1, n, n1;  | 
795  | 0  |     Bigint *b1;  | 
796  | 0  |     ULong *x, *x1, *xe, z;  | 
797  |  | 
  | 
798  | 0  |     if (!k || (!b->x[0] && b->wds == 1))  | 
799  | 0  |         return b;  | 
800  |  |  | 
801  | 0  |     n = k >> 5;  | 
802  | 0  |     k1 = b->k;  | 
803  | 0  |     n1 = n + b->wds + 1;  | 
804  | 0  |     for(i = b->maxwds; n1 > i; i <<= 1)  | 
805  | 0  |         k1++;  | 
806  | 0  |     b1 = Balloc(k1);  | 
807  | 0  |     if (b1 == NULL) { | 
808  | 0  |         Bfree(b);  | 
809  | 0  |         return NULL;  | 
810  | 0  |     }  | 
811  | 0  |     x1 = b1->x;  | 
812  | 0  |     for(i = 0; i < n; i++)  | 
813  | 0  |         *x1++ = 0;  | 
814  | 0  |     x = b->x;  | 
815  | 0  |     xe = x + b->wds;  | 
816  | 0  |     if (k &= 0x1f) { | 
817  | 0  |         k1 = 32 - k;  | 
818  | 0  |         z = 0;  | 
819  | 0  |         do { | 
820  | 0  |             *x1++ = *x << k | z;  | 
821  | 0  |             z = *x++ >> k1;  | 
822  | 0  |         }  | 
823  | 0  |         while(x < xe);  | 
824  | 0  |         if ((*x1 = z))  | 
825  | 0  |             ++n1;  | 
826  | 0  |     }  | 
827  | 0  |     else do  | 
828  | 0  |              *x1++ = *x++;  | 
829  | 0  |         while(x < xe);  | 
830  | 0  |     b1->wds = n1 - 1;  | 
831  | 0  |     Bfree(b);  | 
832  | 0  |     return b1;  | 
833  | 0  | }  | 
834  |  |  | 
835  |  | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and  | 
836  |  |    1 if a > b.  Ignores signs of a and b. */  | 
837  |  |  | 
838  |  | static int  | 
839  |  | cmp(Bigint *a, Bigint *b)  | 
840  | 0  | { | 
841  | 0  |     ULong *xa, *xa0, *xb, *xb0;  | 
842  | 0  |     int i, j;  | 
843  |  | 
  | 
844  | 0  |     i = a->wds;  | 
845  | 0  |     j = b->wds;  | 
846  |  | #ifdef DEBUG  | 
847  |  |     if (i > 1 && !a->x[i-1])  | 
848  |  |         Bug("cmp called with a->x[a->wds-1] == 0"); | 
849  |  |     if (j > 1 && !b->x[j-1])  | 
850  |  |         Bug("cmp called with b->x[b->wds-1] == 0"); | 
851  |  | #endif  | 
852  | 0  |     if (i -= j)  | 
853  | 0  |         return i;  | 
854  | 0  |     xa0 = a->x;  | 
855  | 0  |     xa = xa0 + j;  | 
856  | 0  |     xb0 = b->x;  | 
857  | 0  |     xb = xb0 + j;  | 
858  | 0  |     for(;;) { | 
859  | 0  |         if (*--xa != *--xb)  | 
860  | 0  |             return *xa < *xb ? -1 : 1;  | 
861  | 0  |         if (xa <= xa0)  | 
862  | 0  |             break;  | 
863  | 0  |     }  | 
864  | 0  |     return 0;  | 
865  | 0  | }  | 
866  |  |  | 
867  |  | /* Take the difference of Bigints a and b, returning a new Bigint.  Returns  | 
868  |  |    NULL on failure.  The signs of a and b are ignored, but the sign of the  | 
869  |  |    result is set appropriately. */  | 
870  |  |  | 
871  |  | static Bigint *  | 
872  |  | diff(Bigint *a, Bigint *b)  | 
873  | 0  | { | 
874  | 0  |     Bigint *c;  | 
875  | 0  |     int i, wa, wb;  | 
876  | 0  |     ULong *xa, *xae, *xb, *xbe, *xc;  | 
877  | 0  |     ULLong borrow, y;  | 
878  |  | 
  | 
879  | 0  |     i = cmp(a,b);  | 
880  | 0  |     if (!i) { | 
881  | 0  |         c = Balloc(0);  | 
882  | 0  |         if (c == NULL)  | 
883  | 0  |             return NULL;  | 
884  | 0  |         c->wds = 1;  | 
885  | 0  |         c->x[0] = 0;  | 
886  | 0  |         return c;  | 
887  | 0  |     }  | 
888  | 0  |     if (i < 0) { | 
889  | 0  |         c = a;  | 
890  | 0  |         a = b;  | 
891  | 0  |         b = c;  | 
892  | 0  |         i = 1;  | 
893  | 0  |     }  | 
894  | 0  |     else  | 
895  | 0  |         i = 0;  | 
896  | 0  |     c = Balloc(a->k);  | 
897  | 0  |     if (c == NULL)  | 
898  | 0  |         return NULL;  | 
899  | 0  |     c->sign = i;  | 
900  | 0  |     wa = a->wds;  | 
901  | 0  |     xa = a->x;  | 
902  | 0  |     xae = xa + wa;  | 
903  | 0  |     wb = b->wds;  | 
904  | 0  |     xb = b->x;  | 
905  | 0  |     xbe = xb + wb;  | 
906  | 0  |     xc = c->x;  | 
907  | 0  |     borrow = 0;  | 
908  | 0  |     do { | 
909  | 0  |         y = (ULLong)*xa++ - *xb++ - borrow;  | 
910  | 0  |         borrow = y >> 32 & (ULong)1;  | 
911  | 0  |         *xc++ = (ULong)(y & FFFFFFFF);  | 
912  | 0  |     }  | 
913  | 0  |     while(xb < xbe);  | 
914  | 0  |     while(xa < xae) { | 
915  | 0  |         y = *xa++ - borrow;  | 
916  | 0  |         borrow = y >> 32 & (ULong)1;  | 
917  | 0  |         *xc++ = (ULong)(y & FFFFFFFF);  | 
918  | 0  |     }  | 
919  | 0  |     while(!*--xc)  | 
920  | 0  |         wa--;  | 
921  | 0  |     c->wds = wa;  | 
922  | 0  |     return c;  | 
923  | 0  | }  | 
924  |  |  | 
925  |  | /* Given a positive normal double x, return the difference between x and the  | 
926  |  |    next double up.  Doesn't give correct results for subnormals. */  | 
927  |  |  | 
928  |  | static double  | 
929  |  | ulp(U *x)  | 
930  | 0  | { | 
931  | 0  |     Long L;  | 
932  | 0  |     U u;  | 
933  |  | 
  | 
934  | 0  |     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;  | 
935  | 0  |     word0(&u) = L;  | 
936  | 0  |     word1(&u) = 0;  | 
937  | 0  |     return dval(&u);  | 
938  | 0  | }  | 
939  |  |  | 
940  |  | /* Convert a Bigint to a double plus an exponent */  | 
941  |  |  | 
942  |  | static double  | 
943  |  | b2d(Bigint *a, int *e)  | 
944  | 0  | { | 
945  | 0  |     ULong *xa, *xa0, w, y, z;  | 
946  | 0  |     int k;  | 
947  | 0  |     U d;  | 
948  |  | 
  | 
949  | 0  |     xa0 = a->x;  | 
950  | 0  |     xa = xa0 + a->wds;  | 
951  | 0  |     y = *--xa;  | 
952  |  | #ifdef DEBUG  | 
953  |  |     if (!y) Bug("zero y in b2d"); | 
954  |  | #endif  | 
955  | 0  |     k = hi0bits(y);  | 
956  | 0  |     *e = 32 - k;  | 
957  | 0  |     if (k < Ebits) { | 
958  | 0  |         word0(&d) = Exp_1 | y >> (Ebits - k);  | 
959  | 0  |         w = xa > xa0 ? *--xa : 0;  | 
960  | 0  |         word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);  | 
961  | 0  |         goto ret_d;  | 
962  | 0  |     }  | 
963  | 0  |     z = xa > xa0 ? *--xa : 0;  | 
964  | 0  |     if (k -= Ebits) { | 
965  | 0  |         word0(&d) = Exp_1 | y << k | z >> (32 - k);  | 
966  | 0  |         y = xa > xa0 ? *--xa : 0;  | 
967  | 0  |         word1(&d) = z << k | y >> (32 - k);  | 
968  | 0  |     }  | 
969  | 0  |     else { | 
970  | 0  |         word0(&d) = Exp_1 | y;  | 
971  | 0  |         word1(&d) = z;  | 
972  | 0  |     }  | 
973  | 0  |   ret_d:  | 
974  | 0  |     return dval(&d);  | 
975  | 0  | }  | 
976  |  |  | 
977  |  | /* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,  | 
978  |  |    except that it accepts the scale parameter used in _Py_dg_strtod (which  | 
979  |  |    should be either 0 or 2*P), and the normalization for the return value is  | 
980  |  |    different (see below).  On input, d should be finite and nonnegative, and d  | 
981  |  |    / 2**scale should be exactly representable as an IEEE 754 double.  | 
982  |  |  | 
983  |  |    Returns a Bigint b and an integer e such that  | 
984  |  |  | 
985  |  |      dval(d) / 2**scale = b * 2**e.  | 
986  |  |  | 
987  |  |    Unlike d2b, b is not necessarily odd: b and e are normalized so  | 
988  |  |    that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P  | 
989  |  |    and e == Etiny.  This applies equally to an input of 0.0: in that  | 
990  |  |    case the return values are b = 0 and e = Etiny.  | 
991  |  |  | 
992  |  |    The above normalization ensures that for all possible inputs d,  | 
993  |  |    2**e gives ulp(d/2**scale).  | 
994  |  |  | 
995  |  |    Returns NULL on failure.  | 
996  |  | */  | 
997  |  |  | 
998  |  | static Bigint *  | 
999  |  | sd2b(U *d, int scale, int *e)  | 
1000  | 0  | { | 
1001  | 0  |     Bigint *b;  | 
1002  |  | 
  | 
1003  | 0  |     b = Balloc(1);  | 
1004  | 0  |     if (b == NULL)  | 
1005  | 0  |         return NULL;  | 
1006  |  |  | 
1007  |  |     /* First construct b and e assuming that scale == 0. */  | 
1008  | 0  |     b->wds = 2;  | 
1009  | 0  |     b->x[0] = word1(d);  | 
1010  | 0  |     b->x[1] = word0(d) & Frac_mask;  | 
1011  | 0  |     *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);  | 
1012  | 0  |     if (*e < Etiny)  | 
1013  | 0  |         *e = Etiny;  | 
1014  | 0  |     else  | 
1015  | 0  |         b->x[1] |= Exp_msk1;  | 
1016  |  |  | 
1017  |  |     /* Now adjust for scale, provided that b != 0. */  | 
1018  | 0  |     if (scale && (b->x[0] || b->x[1])) { | 
1019  | 0  |         *e -= scale;  | 
1020  | 0  |         if (*e < Etiny) { | 
1021  | 0  |             scale = Etiny - *e;  | 
1022  | 0  |             *e = Etiny;  | 
1023  |  |             /* We can't shift more than P-1 bits without shifting out a 1. */  | 
1024  | 0  |             assert(0 < scale && scale <= P - 1);  | 
1025  | 0  |             if (scale >= 32) { | 
1026  |  |                 /* The bits shifted out should all be zero. */  | 
1027  | 0  |                 assert(b->x[0] == 0);  | 
1028  | 0  |                 b->x[0] = b->x[1];  | 
1029  | 0  |                 b->x[1] = 0;  | 
1030  | 0  |                 scale -= 32;  | 
1031  | 0  |             }  | 
1032  | 0  |             if (scale) { | 
1033  |  |                 /* The bits shifted out should all be zero. */  | 
1034  | 0  |                 assert(b->x[0] << (32 - scale) == 0);  | 
1035  | 0  |                 b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));  | 
1036  | 0  |                 b->x[1] >>= scale;  | 
1037  | 0  |             }  | 
1038  | 0  |         }  | 
1039  | 0  |     }  | 
1040  |  |     /* Ensure b is normalized. */  | 
1041  | 0  |     if (!b->x[1])  | 
1042  | 0  |         b->wds = 1;  | 
1043  |  | 
  | 
1044  | 0  |     return b;  | 
1045  | 0  | }  | 
1046  |  |  | 
1047  |  | /* Convert a double to a Bigint plus an exponent.  Return NULL on failure.  | 
1048  |  |  | 
1049  |  |    Given a finite nonzero double d, return an odd Bigint b and exponent *e  | 
1050  |  |    such that fabs(d) = b * 2**e.  On return, *bbits gives the number of  | 
1051  |  |    significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).  | 
1052  |  |  | 
1053  |  |    If d is zero, then b == 0, *e == -1010, *bbits = 0.  | 
1054  |  |  */  | 
1055  |  |  | 
1056  |  | static Bigint *  | 
1057  |  | d2b(U *d, int *e, int *bits)  | 
1058  | 0  | { | 
1059  | 0  |     Bigint *b;  | 
1060  | 0  |     int de, k;  | 
1061  | 0  |     ULong *x, y, z;  | 
1062  | 0  |     int i;  | 
1063  |  | 
  | 
1064  | 0  |     b = Balloc(1);  | 
1065  | 0  |     if (b == NULL)  | 
1066  | 0  |         return NULL;  | 
1067  | 0  |     x = b->x;  | 
1068  |  | 
  | 
1069  | 0  |     z = word0(d) & Frac_mask;  | 
1070  | 0  |     word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */  | 
1071  | 0  |     if ((de = (int)(word0(d) >> Exp_shift)))  | 
1072  | 0  |         z |= Exp_msk1;  | 
1073  | 0  |     if ((y = word1(d))) { | 
1074  | 0  |         if ((k = lo0bits(&y))) { | 
1075  | 0  |             x[0] = y | z << (32 - k);  | 
1076  | 0  |             z >>= k;  | 
1077  | 0  |         }  | 
1078  | 0  |         else  | 
1079  | 0  |             x[0] = y;  | 
1080  | 0  |         i =  | 
1081  | 0  |             b->wds = (x[1] = z) ? 2 : 1;  | 
1082  | 0  |     }  | 
1083  | 0  |     else { | 
1084  | 0  |         k = lo0bits(&z);  | 
1085  | 0  |         x[0] = z;  | 
1086  | 0  |         i =  | 
1087  | 0  |             b->wds = 1;  | 
1088  | 0  |         k += 32;  | 
1089  | 0  |     }  | 
1090  | 0  |     if (de) { | 
1091  | 0  |         *e = de - Bias - (P-1) + k;  | 
1092  | 0  |         *bits = P - k;  | 
1093  | 0  |     }  | 
1094  | 0  |     else { | 
1095  | 0  |         *e = de - Bias - (P-1) + 1 + k;  | 
1096  | 0  |         *bits = 32*i - hi0bits(x[i-1]);  | 
1097  | 0  |     }  | 
1098  | 0  |     return b;  | 
1099  | 0  | }  | 
1100  |  |  | 
1101  |  | /* Compute the ratio of two Bigints, as a double.  The result may have an  | 
1102  |  |    error of up to 2.5 ulps. */  | 
1103  |  |  | 
1104  |  | static double  | 
1105  |  | ratio(Bigint *a, Bigint *b)  | 
1106  | 0  | { | 
1107  | 0  |     U da, db;  | 
1108  | 0  |     int k, ka, kb;  | 
1109  |  | 
  | 
1110  | 0  |     dval(&da) = b2d(a, &ka);  | 
1111  | 0  |     dval(&db) = b2d(b, &kb);  | 
1112  | 0  |     k = ka - kb + 32*(a->wds - b->wds);  | 
1113  | 0  |     if (k > 0)  | 
1114  | 0  |         word0(&da) += k*Exp_msk1;  | 
1115  | 0  |     else { | 
1116  | 0  |         k = -k;  | 
1117  | 0  |         word0(&db) += k*Exp_msk1;  | 
1118  | 0  |     }  | 
1119  | 0  |     return dval(&da) / dval(&db);  | 
1120  | 0  | }  | 
1121  |  |  | 
1122  |  | static const double  | 
1123  |  | tens[] = { | 
1124  |  |     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,  | 
1125  |  |     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,  | 
1126  |  |     1e20, 1e21, 1e22  | 
1127  |  | };  | 
1128  |  |  | 
1129  |  | static const double  | 
1130  |  | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | 
1131  |  | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | 
1132  |  |                                    9007199254740992.*9007199254740992.e-256  | 
1133  |  |                                    /* = 2^106 * 1e-256 */  | 
1134  |  | };  | 
1135  |  | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */  | 
1136  |  | /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */  | 
1137  | 0  | #define Scale_Bit 0x10  | 
1138  | 0  | #define n_bigtens 5  | 
1139  |  |  | 
1140  |  | #define ULbits 32  | 
1141  |  | #define kshift 5  | 
1142  | 0  | #define kmask 31  | 
1143  |  |  | 
1144  |  |  | 
1145  |  | static int  | 
1146  |  | dshift(Bigint *b, int p2)  | 
1147  | 0  | { | 
1148  | 0  |     int rv = hi0bits(b->x[b->wds-1]) - 4;  | 
1149  | 0  |     if (p2 > 0)  | 
1150  | 0  |         rv -= p2;  | 
1151  | 0  |     return rv & kmask;  | 
1152  | 0  | }  | 
1153  |  |  | 
1154  |  | /* special case of Bigint division.  The quotient is always in the range 0 <=  | 
1155  |  |    quotient < 10, and on entry the divisor S is normalized so that its top 4  | 
1156  |  |    bits (28--31) are zero and bit 27 is set. */  | 
1157  |  |  | 
1158  |  | static int  | 
1159  |  | quorem(Bigint *b, Bigint *S)  | 
1160  | 0  | { | 
1161  | 0  |     int n;  | 
1162  | 0  |     ULong *bx, *bxe, q, *sx, *sxe;  | 
1163  | 0  |     ULLong borrow, carry, y, ys;  | 
1164  |  | 
  | 
1165  | 0  |     n = S->wds;  | 
1166  |  | #ifdef DEBUG  | 
1167  |  |     /*debug*/ if (b->wds > n)  | 
1168  |  |         /*debug*/       Bug("oversize b in quorem"); | 
1169  |  | #endif  | 
1170  | 0  |     if (b->wds < n)  | 
1171  | 0  |         return 0;  | 
1172  | 0  |     sx = S->x;  | 
1173  | 0  |     sxe = sx + --n;  | 
1174  | 0  |     bx = b->x;  | 
1175  | 0  |     bxe = bx + n;  | 
1176  | 0  |     q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */  | 
1177  |  | #ifdef DEBUG  | 
1178  |  |     /*debug*/ if (q > 9)  | 
1179  |  |         /*debug*/       Bug("oversized quotient in quorem"); | 
1180  |  | #endif  | 
1181  | 0  |     if (q) { | 
1182  | 0  |         borrow = 0;  | 
1183  | 0  |         carry = 0;  | 
1184  | 0  |         do { | 
1185  | 0  |             ys = *sx++ * (ULLong)q + carry;  | 
1186  | 0  |             carry = ys >> 32;  | 
1187  | 0  |             y = *bx - (ys & FFFFFFFF) - borrow;  | 
1188  | 0  |             borrow = y >> 32 & (ULong)1;  | 
1189  | 0  |             *bx++ = (ULong)(y & FFFFFFFF);  | 
1190  | 0  |         }  | 
1191  | 0  |         while(sx <= sxe);  | 
1192  | 0  |         if (!*bxe) { | 
1193  | 0  |             bx = b->x;  | 
1194  | 0  |             while(--bxe > bx && !*bxe)  | 
1195  | 0  |                 --n;  | 
1196  | 0  |             b->wds = n;  | 
1197  | 0  |         }  | 
1198  | 0  |     }  | 
1199  | 0  |     if (cmp(b, S) >= 0) { | 
1200  | 0  |         q++;  | 
1201  | 0  |         borrow = 0;  | 
1202  | 0  |         carry = 0;  | 
1203  | 0  |         bx = b->x;  | 
1204  | 0  |         sx = S->x;  | 
1205  | 0  |         do { | 
1206  | 0  |             ys = *sx++ + carry;  | 
1207  | 0  |             carry = ys >> 32;  | 
1208  | 0  |             y = *bx - (ys & FFFFFFFF) - borrow;  | 
1209  | 0  |             borrow = y >> 32 & (ULong)1;  | 
1210  | 0  |             *bx++ = (ULong)(y & FFFFFFFF);  | 
1211  | 0  |         }  | 
1212  | 0  |         while(sx <= sxe);  | 
1213  | 0  |         bx = b->x;  | 
1214  | 0  |         bxe = bx + n;  | 
1215  | 0  |         if (!*bxe) { | 
1216  | 0  |             while(--bxe > bx && !*bxe)  | 
1217  | 0  |                 --n;  | 
1218  | 0  |             b->wds = n;  | 
1219  | 0  |         }  | 
1220  | 0  |     }  | 
1221  | 0  |     return q;  | 
1222  | 0  | }  | 
1223  |  |  | 
1224  |  | /* sulp(x) is a version of ulp(x) that takes bc.scale into account.  | 
1225  |  |  | 
1226  |  |    Assuming that x is finite and nonnegative (positive zero is fine  | 
1227  |  |    here) and x / 2^bc.scale is exactly representable as a double,  | 
1228  |  |    sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */  | 
1229  |  |  | 
1230  |  | static double  | 
1231  |  | sulp(U *x, BCinfo *bc)  | 
1232  | 0  | { | 
1233  | 0  |     U u;  | 
1234  |  | 
  | 
1235  | 0  |     if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { | 
1236  |  |         /* rv/2^bc->scale is subnormal */  | 
1237  | 0  |         word0(&u) = (P+2)*Exp_msk1;  | 
1238  | 0  |         word1(&u) = 0;  | 
1239  | 0  |         return u.d;  | 
1240  | 0  |     }  | 
1241  | 0  |     else { | 
1242  | 0  |         assert(word0(x) || word1(x)); /* x != 0.0 */  | 
1243  | 0  |         return ulp(x);  | 
1244  | 0  |     }  | 
1245  | 0  | }  | 
1246  |  |  | 
1247  |  | /* The bigcomp function handles some hard cases for strtod, for inputs  | 
1248  |  |    with more than STRTOD_DIGLIM digits.  It's called once an initial  | 
1249  |  |    estimate for the double corresponding to the input string has  | 
1250  |  |    already been obtained by the code in _Py_dg_strtod.  | 
1251  |  |  | 
1252  |  |    The bigcomp function is only called after _Py_dg_strtod has found a  | 
1253  |  |    double value rv such that either rv or rv + 1ulp represents the  | 
1254  |  |    correctly rounded value corresponding to the original string.  It  | 
1255  |  |    determines which of these two values is the correct one by  | 
1256  |  |    computing the decimal digits of rv + 0.5ulp and comparing them with  | 
1257  |  |    the corresponding digits of s0.  | 
1258  |  |  | 
1259  |  |    In the following, write dv for the absolute value of the number represented  | 
1260  |  |    by the input string.  | 
1261  |  |  | 
1262  |  |    Inputs:  | 
1263  |  |  | 
1264  |  |      s0 points to the first significant digit of the input string.  | 
1265  |  |  | 
1266  |  |      rv is a (possibly scaled) estimate for the closest double value to the  | 
1267  |  |         value represented by the original input to _Py_dg_strtod.  If  | 
1268  |  |         bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to  | 
1269  |  |         the input value.  | 
1270  |  |  | 
1271  |  |      bc is a struct containing information gathered during the parsing and  | 
1272  |  |         estimation steps of _Py_dg_strtod.  Description of fields follows:  | 
1273  |  |  | 
1274  |  |         bc->e0 gives the exponent of the input value, such that dv = (integer  | 
1275  |  |            given by the bd->nd digits of s0) * 10**e0  | 
1276  |  |  | 
1277  |  |         bc->nd gives the total number of significant digits of s0.  It will  | 
1278  |  |            be at least 1.  | 
1279  |  |  | 
1280  |  |         bc->nd0 gives the number of significant digits of s0 before the  | 
1281  |  |            decimal separator.  If there's no decimal separator, bc->nd0 ==  | 
1282  |  |            bc->nd.  | 
1283  |  |  | 
1284  |  |         bc->scale is the value used to scale rv to avoid doing arithmetic with  | 
1285  |  |            subnormal values.  It's either 0 or 2*P (=106).  | 
1286  |  |  | 
1287  |  |    Outputs:  | 
1288  |  |  | 
1289  |  |      On successful exit, rv/2^(bc->scale) is the closest double to dv.  | 
1290  |  |  | 
1291  |  |      Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */  | 
1292  |  |  | 
1293  |  | static int  | 
1294  |  | bigcomp(U *rv, const char *s0, BCinfo *bc)  | 
1295  | 0  | { | 
1296  | 0  |     Bigint *b, *d;  | 
1297  | 0  |     int b2, d2, dd, i, nd, nd0, odd, p2, p5;  | 
1298  |  | 
  | 
1299  | 0  |     nd = bc->nd;  | 
1300  | 0  |     nd0 = bc->nd0;  | 
1301  | 0  |     p5 = nd + bc->e0;  | 
1302  | 0  |     b = sd2b(rv, bc->scale, &p2);  | 
1303  | 0  |     if (b == NULL)  | 
1304  | 0  |         return -1;  | 
1305  |  |  | 
1306  |  |     /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway  | 
1307  |  |        case, this is used for round to even. */  | 
1308  | 0  |     odd = b->x[0] & 1;  | 
1309  |  |  | 
1310  |  |     /* left shift b by 1 bit and or a 1 into the least significant bit;  | 
1311  |  |        this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */  | 
1312  | 0  |     b = lshift(b, 1);  | 
1313  | 0  |     if (b == NULL)  | 
1314  | 0  |         return -1;  | 
1315  | 0  |     b->x[0] |= 1;  | 
1316  | 0  |     p2--;  | 
1317  |  | 
  | 
1318  | 0  |     p2 -= p5;  | 
1319  | 0  |     d = i2b(1);  | 
1320  | 0  |     if (d == NULL) { | 
1321  | 0  |         Bfree(b);  | 
1322  | 0  |         return -1;  | 
1323  | 0  |     }  | 
1324  |  |     /* Arrange for convenient computation of quotients:  | 
1325  |  |      * shift left if necessary so divisor has 4 leading 0 bits.  | 
1326  |  |      */  | 
1327  | 0  |     if (p5 > 0) { | 
1328  | 0  |         d = pow5mult(d, p5);  | 
1329  | 0  |         if (d == NULL) { | 
1330  | 0  |             Bfree(b);  | 
1331  | 0  |             return -1;  | 
1332  | 0  |         }  | 
1333  | 0  |     }  | 
1334  | 0  |     else if (p5 < 0) { | 
1335  | 0  |         b = pow5mult(b, -p5);  | 
1336  | 0  |         if (b == NULL) { | 
1337  | 0  |             Bfree(d);  | 
1338  | 0  |             return -1;  | 
1339  | 0  |         }  | 
1340  | 0  |     }  | 
1341  | 0  |     if (p2 > 0) { | 
1342  | 0  |         b2 = p2;  | 
1343  | 0  |         d2 = 0;  | 
1344  | 0  |     }  | 
1345  | 0  |     else { | 
1346  | 0  |         b2 = 0;  | 
1347  | 0  |         d2 = -p2;  | 
1348  | 0  |     }  | 
1349  | 0  |     i = dshift(d, d2);  | 
1350  | 0  |     if ((b2 += i) > 0) { | 
1351  | 0  |         b = lshift(b, b2);  | 
1352  | 0  |         if (b == NULL) { | 
1353  | 0  |             Bfree(d);  | 
1354  | 0  |             return -1;  | 
1355  | 0  |         }  | 
1356  | 0  |     }  | 
1357  | 0  |     if ((d2 += i) > 0) { | 
1358  | 0  |         d = lshift(d, d2);  | 
1359  | 0  |         if (d == NULL) { | 
1360  | 0  |             Bfree(b);  | 
1361  | 0  |             return -1;  | 
1362  | 0  |         }  | 
1363  | 0  |     }  | 
1364  |  |  | 
1365  |  |     /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==  | 
1366  |  |      * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing  | 
1367  |  |      * a number in the range [0.1, 1). */  | 
1368  | 0  |     if (cmp(b, d) >= 0)  | 
1369  |  |         /* b/d >= 1 */  | 
1370  | 0  |         dd = -1;  | 
1371  | 0  |     else { | 
1372  | 0  |         i = 0;  | 
1373  | 0  |         for(;;) { | 
1374  | 0  |             b = multadd(b, 10, 0);  | 
1375  | 0  |             if (b == NULL) { | 
1376  | 0  |                 Bfree(d);  | 
1377  | 0  |                 return -1;  | 
1378  | 0  |             }  | 
1379  | 0  |             dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);  | 
1380  | 0  |             i++;  | 
1381  |  | 
  | 
1382  | 0  |             if (dd)  | 
1383  | 0  |                 break;  | 
1384  | 0  |             if (!b->x[0] && b->wds == 1) { | 
1385  |  |                 /* b/d == 0 */  | 
1386  | 0  |                 dd = i < nd;  | 
1387  | 0  |                 break;  | 
1388  | 0  |             }  | 
1389  | 0  |             if (!(i < nd)) { | 
1390  |  |                 /* b/d != 0, but digits of s0 exhausted */  | 
1391  | 0  |                 dd = -1;  | 
1392  | 0  |                 break;  | 
1393  | 0  |             }  | 
1394  | 0  |         }  | 
1395  | 0  |     }  | 
1396  | 0  |     Bfree(b);  | 
1397  | 0  |     Bfree(d);  | 
1398  | 0  |     if (dd > 0 || (dd == 0 && odd))  | 
1399  | 0  |         dval(rv) += sulp(rv, bc);  | 
1400  | 0  |     return 0;  | 
1401  | 0  | }  | 
1402  |  |  | 
1403  |  | /* Return a 'standard' NaN value.  | 
1404  |  |  | 
1405  |  |    There are exactly two quiet NaNs that don't arise by 'quieting' signaling  | 
1406  |  |    NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose  | 
1407  |  |    sign bit is cleared.  Otherwise, return the one whose sign bit is set.  | 
1408  |  | */  | 
1409  |  |  | 
1410  |  | double  | 
1411  |  | _Py_dg_stdnan(int sign)  | 
1412  | 0  | { | 
1413  | 0  |     U rv;  | 
1414  | 0  |     word0(&rv) = NAN_WORD0;  | 
1415  | 0  |     word1(&rv) = NAN_WORD1;  | 
1416  | 0  |     if (sign)  | 
1417  | 0  |         word0(&rv) |= Sign_bit;  | 
1418  | 0  |     return dval(&rv);  | 
1419  | 0  | }  | 
1420  |  |  | 
1421  |  | /* Return positive or negative infinity, according to the given sign (0 for  | 
1422  |  |  * positive infinity, 1 for negative infinity). */  | 
1423  |  |  | 
1424  |  | double  | 
1425  |  | _Py_dg_infinity(int sign)  | 
1426  | 0  | { | 
1427  | 0  |     U rv;  | 
1428  | 0  |     word0(&rv) = POSINF_WORD0;  | 
1429  | 0  |     word1(&rv) = POSINF_WORD1;  | 
1430  | 0  |     return sign ? -dval(&rv) : dval(&rv);  | 
1431  | 0  | }  | 
1432  |  |  | 
1433  |  | double  | 
1434  |  | _Py_dg_strtod(const char *s00, char **se)  | 
1435  | 2  | { | 
1436  | 2  |     int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;  | 
1437  | 2  |     int esign, i, j, k, lz, nd, nd0, odd, sign;  | 
1438  | 2  |     const char *s, *s0, *s1;  | 
1439  | 2  |     double aadj, aadj1;  | 
1440  | 2  |     U aadj2, adj, rv, rv0;  | 
1441  | 2  |     ULong y, z, abs_exp;  | 
1442  | 2  |     Long L;  | 
1443  | 2  |     BCinfo bc;  | 
1444  | 2  |     Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;  | 
1445  | 2  |     size_t ndigits, fraclen;  | 
1446  | 2  |     double result;  | 
1447  |  |  | 
1448  | 2  |     dval(&rv) = 0.;  | 
1449  |  |  | 
1450  |  |     /* Start parsing. */  | 
1451  | 2  |     c = *(s = s00);  | 
1452  |  |  | 
1453  |  |     /* Parse optional sign, if present. */  | 
1454  | 2  |     sign = 0;  | 
1455  | 2  |     switch (c) { | 
1456  | 0  |     case '-':  | 
1457  | 0  |         sign = 1;  | 
1458  |  |         /* fall through */  | 
1459  | 0  |     case '+':  | 
1460  | 0  |         c = *++s;  | 
1461  | 2  |     }  | 
1462  |  |  | 
1463  |  |     /* Skip leading zeros: lz is true iff there were leading zeros. */  | 
1464  | 2  |     s1 = s;  | 
1465  | 4  |     while (c == '0')  | 
1466  | 2  |         c = *++s;  | 
1467  | 2  |     lz = s != s1;  | 
1468  |  |  | 
1469  |  |     /* Point s0 at the first nonzero digit (if any).  fraclen will be the  | 
1470  |  |        number of digits between the decimal point and the end of the  | 
1471  |  |        digit string.  ndigits will be the total number of digits ignoring  | 
1472  |  |        leading zeros. */  | 
1473  | 2  |     s0 = s1 = s;  | 
1474  | 2  |     while ('0' <= c && c <= '9') | 
1475  | 0  |         c = *++s;  | 
1476  | 2  |     ndigits = s - s1;  | 
1477  | 2  |     fraclen = 0;  | 
1478  |  |  | 
1479  |  |     /* Parse decimal point and following digits. */  | 
1480  | 2  |     if (c == '.') { | 
1481  | 2  |         c = *++s;  | 
1482  | 2  |         if (!ndigits) { | 
1483  | 2  |             s1 = s;  | 
1484  | 2  |             while (c == '0')  | 
1485  | 0  |                 c = *++s;  | 
1486  | 2  |             lz = lz || s != s1;  | 
1487  | 2  |             fraclen += (s - s1);  | 
1488  | 2  |             s0 = s;  | 
1489  | 2  |         }  | 
1490  | 2  |         s1 = s;  | 
1491  | 4  |         while ('0' <= c && c <= '9') | 
1492  | 2  |             c = *++s;  | 
1493  | 2  |         ndigits += s - s1;  | 
1494  | 2  |         fraclen += s - s1;  | 
1495  | 2  |     }  | 
1496  |  |  | 
1497  |  |     /* Now lz is true if and only if there were leading zero digits, and  | 
1498  |  |        ndigits gives the total number of digits ignoring leading zeros.  A  | 
1499  |  |        valid input must have at least one digit. */  | 
1500  | 2  |     if (!ndigits && !lz) { | 
1501  | 0  |         if (se)  | 
1502  | 0  |             *se = (char *)s00;  | 
1503  | 0  |         goto parse_error;  | 
1504  | 0  |     }  | 
1505  |  |  | 
1506  |  |     /* Range check ndigits and fraclen to make sure that they, and values  | 
1507  |  |        computed with them, can safely fit in an int. */  | 
1508  | 2  |     if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { | 
1509  | 0  |         if (se)  | 
1510  | 0  |             *se = (char *)s00;  | 
1511  | 0  |         goto parse_error;  | 
1512  | 0  |     }  | 
1513  | 2  |     nd = (int)ndigits;  | 
1514  | 2  |     nd0 = (int)ndigits - (int)fraclen;  | 
1515  |  |  | 
1516  |  |     /* Parse exponent. */  | 
1517  | 2  |     e = 0;  | 
1518  | 2  |     if (c == 'e' || c == 'E') { | 
1519  | 0  |         s00 = s;  | 
1520  | 0  |         c = *++s;  | 
1521  |  |  | 
1522  |  |         /* Exponent sign. */  | 
1523  | 0  |         esign = 0;  | 
1524  | 0  |         switch (c) { | 
1525  | 0  |         case '-':  | 
1526  | 0  |             esign = 1;  | 
1527  |  |             /* fall through */  | 
1528  | 0  |         case '+':  | 
1529  | 0  |             c = *++s;  | 
1530  | 0  |         }  | 
1531  |  |  | 
1532  |  |         /* Skip zeros.  lz is true iff there are leading zeros. */  | 
1533  | 0  |         s1 = s;  | 
1534  | 0  |         while (c == '0')  | 
1535  | 0  |             c = *++s;  | 
1536  | 0  |         lz = s != s1;  | 
1537  |  |  | 
1538  |  |         /* Get absolute value of the exponent. */  | 
1539  | 0  |         s1 = s;  | 
1540  | 0  |         abs_exp = 0;  | 
1541  | 0  |         while ('0' <= c && c <= '9') { | 
1542  | 0  |             abs_exp = 10*abs_exp + (c - '0');  | 
1543  | 0  |             c = *++s;  | 
1544  | 0  |         }  | 
1545  |  |  | 
1546  |  |         /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if  | 
1547  |  |            there are at most 9 significant exponent digits then overflow is  | 
1548  |  |            impossible. */  | 
1549  | 0  |         if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)  | 
1550  | 0  |             e = (int)MAX_ABS_EXP;  | 
1551  | 0  |         else  | 
1552  | 0  |             e = (int)abs_exp;  | 
1553  | 0  |         if (esign)  | 
1554  | 0  |             e = -e;  | 
1555  |  |  | 
1556  |  |         /* A valid exponent must have at least one digit. */  | 
1557  | 0  |         if (s == s1 && !lz)  | 
1558  | 0  |             s = s00;  | 
1559  | 0  |     }  | 
1560  |  |  | 
1561  |  |     /* Adjust exponent to take into account position of the point. */  | 
1562  | 2  |     e -= nd - nd0;  | 
1563  | 2  |     if (nd0 <= 0)  | 
1564  | 2  |         nd0 = nd;  | 
1565  |  |  | 
1566  |  |     /* Finished parsing.  Set se to indicate how far we parsed */  | 
1567  | 2  |     if (se)  | 
1568  | 2  |         *se = (char *)s;  | 
1569  |  |  | 
1570  |  |     /* If all digits were zero, exit with return value +-0.0.  Otherwise,  | 
1571  |  |        strip trailing zeros: scan back until we hit a nonzero digit. */  | 
1572  | 2  |     if (!nd)  | 
1573  | 0  |         goto ret;  | 
1574  | 2  |     for (i = nd; i > 0; ) { | 
1575  | 2  |         --i;  | 
1576  | 2  |         if (s0[i < nd0 ? i : i+1] != '0') { | 
1577  | 2  |             ++i;  | 
1578  | 2  |             break;  | 
1579  | 2  |         }  | 
1580  | 2  |     }  | 
1581  | 2  |     e += nd - i;  | 
1582  | 2  |     nd = i;  | 
1583  | 2  |     if (nd0 > nd)  | 
1584  | 0  |         nd0 = nd;  | 
1585  |  |  | 
1586  |  |     /* Summary of parsing results.  After parsing, and dealing with zero  | 
1587  |  |      * inputs, we have values s0, nd0, nd, e, sign, where:  | 
1588  |  |      *  | 
1589  |  |      *  - s0 points to the first significant digit of the input string  | 
1590  |  |      *  | 
1591  |  |      *  - nd is the total number of significant digits (here, and  | 
1592  |  |      *    below, 'significant digits' means the set of digits of the  | 
1593  |  |      *    significand of the input that remain after ignoring leading  | 
1594  |  |      *    and trailing zeros).  | 
1595  |  |      *  | 
1596  |  |      *  - nd0 indicates the position of the decimal point, if present; it  | 
1597  |  |      *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in  | 
1598  |  |      *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice  | 
1599  |  |      *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if  | 
1600  |  |      *    nd0 == nd, then s0[nd0] could be any non-digit character.)  | 
1601  |  |      *  | 
1602  |  |      *  - e is the adjusted exponent: the absolute value of the number  | 
1603  |  |      *    represented by the original input string is n * 10**e, where  | 
1604  |  |      *    n is the integer represented by the concatenation of  | 
1605  |  |      *    s0[0:nd0] and s0[nd0+1:nd+1]  | 
1606  |  |      *  | 
1607  |  |      *  - sign gives the sign of the input:  1 for negative, 0 for positive  | 
1608  |  |      *  | 
1609  |  |      *  - the first and last significant digits are nonzero  | 
1610  |  |      */  | 
1611  |  |  | 
1612  |  |     /* put first DBL_DIG+1 digits into integer y and z.  | 
1613  |  |      *  | 
1614  |  |      *  - y contains the value represented by the first min(9, nd)  | 
1615  |  |      *    significant digits  | 
1616  |  |      *  | 
1617  |  |      *  - if nd > 9, z contains the value represented by significant digits  | 
1618  |  |      *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z  | 
1619  |  |      *    gives the value represented by the first min(16, nd) sig. digits.  | 
1620  |  |      */  | 
1621  |  |  | 
1622  | 2  |     bc.e0 = e1 = e;  | 
1623  | 2  |     y = z = 0;  | 
1624  | 4  |     for (i = 0; i < nd; i++) { | 
1625  | 2  |         if (i < 9)  | 
1626  | 2  |             y = 10*y + s0[i < nd0 ? i : i+1] - '0';  | 
1627  | 0  |         else if (i < DBL_DIG+1)  | 
1628  | 0  |             z = 10*z + s0[i < nd0 ? i : i+1] - '0';  | 
1629  | 0  |         else  | 
1630  | 0  |             break;  | 
1631  | 2  |     }  | 
1632  |  |  | 
1633  | 2  |     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;  | 
1634  | 2  |     dval(&rv) = y;  | 
1635  | 2  |     if (k > 9) { | 
1636  | 0  |         dval(&rv) = tens[k - 9] * dval(&rv) + z;  | 
1637  | 0  |     }  | 
1638  | 2  |     if (nd <= DBL_DIG  | 
1639  | 2  |         && Flt_Rounds == 1  | 
1640  | 2  |         ) { | 
1641  | 2  |         if (!e)  | 
1642  | 0  |             goto ret;  | 
1643  | 2  |         if (e > 0) { | 
1644  | 0  |             if (e <= Ten_pmax) { | 
1645  | 0  |                 dval(&rv) *= tens[e];  | 
1646  | 0  |                 goto ret;  | 
1647  | 0  |             }  | 
1648  | 0  |             i = DBL_DIG - nd;  | 
1649  | 0  |             if (e <= Ten_pmax + i) { | 
1650  |  |                 /* A fancier test would sometimes let us do  | 
1651  |  |                  * this for larger i values.  | 
1652  |  |                  */  | 
1653  | 0  |                 e -= i;  | 
1654  | 0  |                 dval(&rv) *= tens[i];  | 
1655  | 0  |                 dval(&rv) *= tens[e];  | 
1656  | 0  |                 goto ret;  | 
1657  | 0  |             }  | 
1658  | 0  |         }  | 
1659  | 2  |         else if (e >= -Ten_pmax) { | 
1660  | 2  |             dval(&rv) /= tens[-e];  | 
1661  | 2  |             goto ret;  | 
1662  | 2  |         }  | 
1663  | 2  |     }  | 
1664  | 0  |     e1 += nd - k;  | 
1665  |  | 
  | 
1666  | 0  |     bc.scale = 0;  | 
1667  |  |  | 
1668  |  |     /* Get starting approximation = rv * 10**e1 */  | 
1669  |  | 
  | 
1670  | 0  |     if (e1 > 0) { | 
1671  | 0  |         if ((i = e1 & 15))  | 
1672  | 0  |             dval(&rv) *= tens[i];  | 
1673  | 0  |         if (e1 &= ~15) { | 
1674  | 0  |             if (e1 > DBL_MAX_10_EXP)  | 
1675  | 0  |                 goto ovfl;  | 
1676  | 0  |             e1 >>= 4;  | 
1677  | 0  |             for(j = 0; e1 > 1; j++, e1 >>= 1)  | 
1678  | 0  |                 if (e1 & 1)  | 
1679  | 0  |                     dval(&rv) *= bigtens[j];  | 
1680  |  |             /* The last multiplication could overflow. */  | 
1681  | 0  |             word0(&rv) -= P*Exp_msk1;  | 
1682  | 0  |             dval(&rv) *= bigtens[j];  | 
1683  | 0  |             if ((z = word0(&rv) & Exp_mask)  | 
1684  | 0  |                 > Exp_msk1*(DBL_MAX_EXP+Bias-P))  | 
1685  | 0  |                 goto ovfl;  | 
1686  | 0  |             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { | 
1687  |  |                 /* set to largest number */  | 
1688  |  |                 /* (Can't trust DBL_MAX) */  | 
1689  | 0  |                 word0(&rv) = Big0;  | 
1690  | 0  |                 word1(&rv) = Big1;  | 
1691  | 0  |             }  | 
1692  | 0  |             else  | 
1693  | 0  |                 word0(&rv) += P*Exp_msk1;  | 
1694  | 0  |         }  | 
1695  | 0  |     }  | 
1696  | 0  |     else if (e1 < 0) { | 
1697  |  |         /* The input decimal value lies in [10**e1, 10**(e1+16)).  | 
1698  |  |  | 
1699  |  |            If e1 <= -512, underflow immediately.  | 
1700  |  |            If e1 <= -256, set bc.scale to 2*P.  | 
1701  |  |  | 
1702  |  |            So for input value < 1e-256, bc.scale is always set;  | 
1703  |  |            for input value >= 1e-240, bc.scale is never set.  | 
1704  |  |            For input values in [1e-256, 1e-240), bc.scale may or may  | 
1705  |  |            not be set. */  | 
1706  |  | 
  | 
1707  | 0  |         e1 = -e1;  | 
1708  | 0  |         if ((i = e1 & 15))  | 
1709  | 0  |             dval(&rv) /= tens[i];  | 
1710  | 0  |         if (e1 >>= 4) { | 
1711  | 0  |             if (e1 >= 1 << n_bigtens)  | 
1712  | 0  |                 goto undfl;  | 
1713  | 0  |             if (e1 & Scale_Bit)  | 
1714  | 0  |                 bc.scale = 2*P;  | 
1715  | 0  |             for(j = 0; e1 > 0; j++, e1 >>= 1)  | 
1716  | 0  |                 if (e1 & 1)  | 
1717  | 0  |                     dval(&rv) *= tinytens[j];  | 
1718  | 0  |             if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)  | 
1719  | 0  |                                             >> Exp_shift)) > 0) { | 
1720  |  |                 /* scaled rv is denormal; clear j low bits */  | 
1721  | 0  |                 if (j >= 32) { | 
1722  | 0  |                     word1(&rv) = 0;  | 
1723  | 0  |                     if (j >= 53)  | 
1724  | 0  |                         word0(&rv) = (P+2)*Exp_msk1;  | 
1725  | 0  |                     else  | 
1726  | 0  |                         word0(&rv) &= 0xffffffff << (j-32);  | 
1727  | 0  |                 }  | 
1728  | 0  |                 else  | 
1729  | 0  |                     word1(&rv) &= 0xffffffff << j;  | 
1730  | 0  |             }  | 
1731  | 0  |             if (!dval(&rv))  | 
1732  | 0  |                 goto undfl;  | 
1733  | 0  |         }  | 
1734  | 0  |     }  | 
1735  |  |  | 
1736  |  |     /* Now the hard part -- adjusting rv to the correct value.*/  | 
1737  |  |  | 
1738  |  |     /* Put digits into bd: true value = bd * 10^e */  | 
1739  |  |  | 
1740  | 0  |     bc.nd = nd;  | 
1741  | 0  |     bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */  | 
1742  |  |                         /* to silence an erroneous warning about bc.nd0 */  | 
1743  |  |                         /* possibly not being initialized. */  | 
1744  | 0  |     if (nd > STRTOD_DIGLIM) { | 
1745  |  |         /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */  | 
1746  |  |         /* minimum number of decimal digits to distinguish double values */  | 
1747  |  |         /* in IEEE arithmetic. */  | 
1748  |  |  | 
1749  |  |         /* Truncate input to 18 significant digits, then discard any trailing  | 
1750  |  |            zeros on the result by updating nd, nd0, e and y suitably. (There's  | 
1751  |  |            no need to update z; it's not reused beyond this point.) */  | 
1752  | 0  |         for (i = 18; i > 0; ) { | 
1753  |  |             /* scan back until we hit a nonzero digit.  significant digit 'i'  | 
1754  |  |             is s0[i] if i < nd0, s0[i+1] if i >= nd0. */  | 
1755  | 0  |             --i;  | 
1756  | 0  |             if (s0[i < nd0 ? i : i+1] != '0') { | 
1757  | 0  |                 ++i;  | 
1758  | 0  |                 break;  | 
1759  | 0  |             }  | 
1760  | 0  |         }  | 
1761  | 0  |         e += nd - i;  | 
1762  | 0  |         nd = i;  | 
1763  | 0  |         if (nd0 > nd)  | 
1764  | 0  |             nd0 = nd;  | 
1765  | 0  |         if (nd < 9) { /* must recompute y */ | 
1766  | 0  |             y = 0;  | 
1767  | 0  |             for(i = 0; i < nd0; ++i)  | 
1768  | 0  |                 y = 10*y + s0[i] - '0';  | 
1769  | 0  |             for(; i < nd; ++i)  | 
1770  | 0  |                 y = 10*y + s0[i+1] - '0';  | 
1771  | 0  |         }  | 
1772  | 0  |     }  | 
1773  | 0  |     bd0 = s2b(s0, nd0, nd, y);  | 
1774  | 0  |     if (bd0 == NULL)  | 
1775  | 0  |         goto failed_malloc;  | 
1776  |  |  | 
1777  |  |     /* Notation for the comments below.  Write:  | 
1778  |  |  | 
1779  |  |          - dv for the absolute value of the number represented by the original  | 
1780  |  |            decimal input string.  | 
1781  |  |  | 
1782  |  |          - if we've truncated dv, write tdv for the truncated value.  | 
1783  |  |            Otherwise, set tdv == dv.  | 
1784  |  |  | 
1785  |  |          - srv for the quantity rv/2^bc.scale; so srv is the current binary  | 
1786  |  |            approximation to tdv (and dv).  It should be exactly representable  | 
1787  |  |            in an IEEE 754 double.  | 
1788  |  |     */  | 
1789  |  |  | 
1790  | 0  |     for(;;) { | 
1791  |  |  | 
1792  |  |         /* This is the main correction loop for _Py_dg_strtod.  | 
1793  |  |  | 
1794  |  |            We've got a decimal value tdv, and a floating-point approximation  | 
1795  |  |            srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is  | 
1796  |  |            close enough (i.e., within 0.5 ulps) to tdv, and to compute a new  | 
1797  |  |            approximation if not.  | 
1798  |  |  | 
1799  |  |            To determine whether srv is close enough to tdv, compute integers  | 
1800  |  |            bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)  | 
1801  |  |            respectively, and then use integer arithmetic to determine whether  | 
1802  |  |            |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).  | 
1803  |  |         */  | 
1804  |  | 
  | 
1805  | 0  |         bd = Balloc(bd0->k);  | 
1806  | 0  |         if (bd == NULL) { | 
1807  | 0  |             goto failed_malloc;  | 
1808  | 0  |         }  | 
1809  | 0  |         Bcopy(bd, bd0);  | 
1810  | 0  |         bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */  | 
1811  | 0  |         if (bb == NULL) { | 
1812  | 0  |             goto failed_malloc;  | 
1813  | 0  |         }  | 
1814  |  |         /* Record whether lsb of bb is odd, in case we need this  | 
1815  |  |            for the round-to-even step later. */  | 
1816  | 0  |         odd = bb->x[0] & 1;  | 
1817  |  |  | 
1818  |  |         /* tdv = bd * 10**e;  srv = bb * 2**bbe */  | 
1819  | 0  |         bs = i2b(1);  | 
1820  | 0  |         if (bs == NULL) { | 
1821  | 0  |             goto failed_malloc;  | 
1822  | 0  |         }  | 
1823  |  |  | 
1824  | 0  |         if (e >= 0) { | 
1825  | 0  |             bb2 = bb5 = 0;  | 
1826  | 0  |             bd2 = bd5 = e;  | 
1827  | 0  |         }  | 
1828  | 0  |         else { | 
1829  | 0  |             bb2 = bb5 = -e;  | 
1830  | 0  |             bd2 = bd5 = 0;  | 
1831  | 0  |         }  | 
1832  | 0  |         if (bbe >= 0)  | 
1833  | 0  |             bb2 += bbe;  | 
1834  | 0  |         else  | 
1835  | 0  |             bd2 -= bbe;  | 
1836  | 0  |         bs2 = bb2;  | 
1837  | 0  |         bb2++;  | 
1838  | 0  |         bd2++;  | 
1839  |  |  | 
1840  |  |         /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,  | 
1841  |  |            and bs == 1, so:  | 
1842  |  |  | 
1843  |  |               tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)  | 
1844  |  |               srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)  | 
1845  |  |               0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)  | 
1846  |  |  | 
1847  |  |            It follows that:  | 
1848  |  |  | 
1849  |  |               M * tdv = bd * 2**bd2 * 5**bd5  | 
1850  |  |               M * srv = bb * 2**bb2 * 5**bb5  | 
1851  |  |               M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5  | 
1852  |  |  | 
1853  |  |            for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but  | 
1854  |  |            this fact is not needed below.)  | 
1855  |  |         */  | 
1856  |  |  | 
1857  |  |         /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */  | 
1858  | 0  |         i = bb2 < bd2 ? bb2 : bd2;  | 
1859  | 0  |         if (i > bs2)  | 
1860  | 0  |             i = bs2;  | 
1861  | 0  |         if (i > 0) { | 
1862  | 0  |             bb2 -= i;  | 
1863  | 0  |             bd2 -= i;  | 
1864  | 0  |             bs2 -= i;  | 
1865  | 0  |         }  | 
1866  |  |  | 
1867  |  |         /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */  | 
1868  | 0  |         if (bb5 > 0) { | 
1869  | 0  |             bs = pow5mult(bs, bb5);  | 
1870  | 0  |             if (bs == NULL) { | 
1871  | 0  |                 goto failed_malloc;  | 
1872  | 0  |             }  | 
1873  | 0  |             Bigint *bb1 = mult(bs, bb);  | 
1874  | 0  |             Bfree(bb);  | 
1875  | 0  |             bb = bb1;  | 
1876  | 0  |             if (bb == NULL) { | 
1877  | 0  |                 goto failed_malloc;  | 
1878  | 0  |             }  | 
1879  | 0  |         }  | 
1880  | 0  |         if (bb2 > 0) { | 
1881  | 0  |             bb = lshift(bb, bb2);  | 
1882  | 0  |             if (bb == NULL) { | 
1883  | 0  |                 goto failed_malloc;  | 
1884  | 0  |             }  | 
1885  | 0  |         }  | 
1886  | 0  |         if (bd5 > 0) { | 
1887  | 0  |             bd = pow5mult(bd, bd5);  | 
1888  | 0  |             if (bd == NULL) { | 
1889  | 0  |                 goto failed_malloc;  | 
1890  | 0  |             }  | 
1891  | 0  |         }  | 
1892  | 0  |         if (bd2 > 0) { | 
1893  | 0  |             bd = lshift(bd, bd2);  | 
1894  | 0  |             if (bd == NULL) { | 
1895  | 0  |                 goto failed_malloc;  | 
1896  | 0  |             }  | 
1897  | 0  |         }  | 
1898  | 0  |         if (bs2 > 0) { | 
1899  | 0  |             bs = lshift(bs, bs2);  | 
1900  | 0  |             if (bs == NULL) { | 
1901  | 0  |                 goto failed_malloc;  | 
1902  | 0  |             }  | 
1903  | 0  |         }  | 
1904  |  |  | 
1905  |  |         /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),  | 
1906  |  |            respectively.  Compute the difference |tdv - srv|, and compare  | 
1907  |  |            with 0.5 ulp(srv). */  | 
1908  |  |  | 
1909  | 0  |         delta = diff(bb, bd);  | 
1910  | 0  |         if (delta == NULL) { | 
1911  | 0  |             goto failed_malloc;  | 
1912  | 0  |         }  | 
1913  | 0  |         dsign = delta->sign;  | 
1914  | 0  |         delta->sign = 0;  | 
1915  | 0  |         i = cmp(delta, bs);  | 
1916  | 0  |         if (bc.nd > nd && i <= 0) { | 
1917  | 0  |             if (dsign)  | 
1918  | 0  |                 break;  /* Must use bigcomp(). */  | 
1919  |  |  | 
1920  |  |             /* Here rv overestimates the truncated decimal value by at most  | 
1921  |  |                0.5 ulp(rv).  Hence rv either overestimates the true decimal  | 
1922  |  |                value by <= 0.5 ulp(rv), or underestimates it by some small  | 
1923  |  |                amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of  | 
1924  |  |                the true decimal value, so it's possible to exit.  | 
1925  |  |  | 
1926  |  |                Exception: if scaled rv is a normal exact power of 2, but not  | 
1927  |  |                DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the  | 
1928  |  |                next double, so the correctly rounded result is either rv - 0.5  | 
1929  |  |                ulp(rv) or rv; in this case, use bigcomp to distinguish. */  | 
1930  |  |  | 
1931  | 0  |             if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { | 
1932  |  |                 /* rv can't be 0, since it's an overestimate for some  | 
1933  |  |                    nonzero value.  So rv is a normal power of 2. */  | 
1934  | 0  |                 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;  | 
1935  |  |                 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if  | 
1936  |  |                    rv / 2^bc.scale >= 2^-1021. */  | 
1937  | 0  |                 if (j - bc.scale >= 2) { | 
1938  | 0  |                     dval(&rv) -= 0.5 * sulp(&rv, &bc);  | 
1939  | 0  |                     break; /* Use bigcomp. */  | 
1940  | 0  |                 }  | 
1941  | 0  |             }  | 
1942  |  |  | 
1943  | 0  |             { | 
1944  | 0  |                 bc.nd = nd;  | 
1945  | 0  |                 i = -1; /* Discarded digits make delta smaller. */  | 
1946  | 0  |             }  | 
1947  | 0  |         }  | 
1948  |  |  | 
1949  | 0  |         if (i < 0) { | 
1950  |  |             /* Error is less than half an ulp -- check for  | 
1951  |  |              * special case of mantissa a power of two.  | 
1952  |  |              */  | 
1953  | 0  |             if (dsign || word1(&rv) || word0(&rv) & Bndry_mask  | 
1954  | 0  |                 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1  | 
1955  | 0  |                 ) { | 
1956  | 0  |                 break;  | 
1957  | 0  |             }  | 
1958  | 0  |             if (!delta->x[0] && delta->wds <= 1) { | 
1959  |  |                 /* exact result */  | 
1960  | 0  |                 break;  | 
1961  | 0  |             }  | 
1962  | 0  |             delta = lshift(delta,Log2P);  | 
1963  | 0  |             if (delta == NULL) { | 
1964  | 0  |                 goto failed_malloc;  | 
1965  | 0  |             }  | 
1966  | 0  |             if (cmp(delta, bs) > 0)  | 
1967  | 0  |                 goto drop_down;  | 
1968  | 0  |             break;  | 
1969  | 0  |         }  | 
1970  | 0  |         if (i == 0) { | 
1971  |  |             /* exactly half-way between */  | 
1972  | 0  |             if (dsign) { | 
1973  | 0  |                 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1  | 
1974  | 0  |                     &&  word1(&rv) == (  | 
1975  | 0  |                         (bc.scale &&  | 
1976  | 0  |                          (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?  | 
1977  | 0  |                         (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :  | 
1978  | 0  |                         0xffffffff)) { | 
1979  |  |                     /*boundary case -- increment exponent*/  | 
1980  | 0  |                     word0(&rv) = (word0(&rv) & Exp_mask)  | 
1981  | 0  |                         + Exp_msk1  | 
1982  | 0  |                         ;  | 
1983  | 0  |                     word1(&rv) = 0;  | 
1984  |  |                     /* dsign = 0; */  | 
1985  | 0  |                     break;  | 
1986  | 0  |                 }  | 
1987  | 0  |             }  | 
1988  | 0  |             else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | 
1989  | 0  |               drop_down:  | 
1990  |  |                 /* boundary case -- decrement exponent */  | 
1991  | 0  |                 if (bc.scale) { | 
1992  | 0  |                     L = word0(&rv) & Exp_mask;  | 
1993  | 0  |                     if (L <= (2*P+1)*Exp_msk1) { | 
1994  | 0  |                         if (L > (P+2)*Exp_msk1)  | 
1995  |  |                             /* round even ==> */  | 
1996  |  |                             /* accept rv */  | 
1997  | 0  |                             break;  | 
1998  |  |                         /* rv = smallest denormal */  | 
1999  | 0  |                         if (bc.nd > nd)  | 
2000  | 0  |                             break;  | 
2001  | 0  |                         goto undfl;  | 
2002  | 0  |                     }  | 
2003  | 0  |                 }  | 
2004  | 0  |                 L = (word0(&rv) & Exp_mask) - Exp_msk1;  | 
2005  | 0  |                 word0(&rv) = L | Bndry_mask1;  | 
2006  | 0  |                 word1(&rv) = 0xffffffff;  | 
2007  | 0  |                 break;  | 
2008  | 0  |             }  | 
2009  | 0  |             if (!odd)  | 
2010  | 0  |                 break;  | 
2011  | 0  |             if (dsign)  | 
2012  | 0  |                 dval(&rv) += sulp(&rv, &bc);  | 
2013  | 0  |             else { | 
2014  | 0  |                 dval(&rv) -= sulp(&rv, &bc);  | 
2015  | 0  |                 if (!dval(&rv)) { | 
2016  | 0  |                     if (bc.nd >nd)  | 
2017  | 0  |                         break;  | 
2018  | 0  |                     goto undfl;  | 
2019  | 0  |                 }  | 
2020  | 0  |             }  | 
2021  |  |             /* dsign = 1 - dsign; */  | 
2022  | 0  |             break;  | 
2023  | 0  |         }  | 
2024  | 0  |         if ((aadj = ratio(delta, bs)) <= 2.) { | 
2025  | 0  |             if (dsign)  | 
2026  | 0  |                 aadj = aadj1 = 1.;  | 
2027  | 0  |             else if (word1(&rv) || word0(&rv) & Bndry_mask) { | 
2028  | 0  |                 if (word1(&rv) == Tiny1 && !word0(&rv)) { | 
2029  | 0  |                     if (bc.nd >nd)  | 
2030  | 0  |                         break;  | 
2031  | 0  |                     goto undfl;  | 
2032  | 0  |                 }  | 
2033  | 0  |                 aadj = 1.;  | 
2034  | 0  |                 aadj1 = -1.;  | 
2035  | 0  |             }  | 
2036  | 0  |             else { | 
2037  |  |                 /* special case -- power of FLT_RADIX to be */  | 
2038  |  |                 /* rounded down... */  | 
2039  |  | 
  | 
2040  | 0  |                 if (aadj < 2./FLT_RADIX)  | 
2041  | 0  |                     aadj = 1./FLT_RADIX;  | 
2042  | 0  |                 else  | 
2043  | 0  |                     aadj *= 0.5;  | 
2044  | 0  |                 aadj1 = -aadj;  | 
2045  | 0  |             }  | 
2046  | 0  |         }  | 
2047  | 0  |         else { | 
2048  | 0  |             aadj *= 0.5;  | 
2049  | 0  |             aadj1 = dsign ? aadj : -aadj;  | 
2050  | 0  |             if (Flt_Rounds == 0)  | 
2051  | 0  |                 aadj1 += 0.5;  | 
2052  | 0  |         }  | 
2053  | 0  |         y = word0(&rv) & Exp_mask;  | 
2054  |  |  | 
2055  |  |         /* Check for overflow */  | 
2056  |  | 
  | 
2057  | 0  |         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { | 
2058  | 0  |             dval(&rv0) = dval(&rv);  | 
2059  | 0  |             word0(&rv) -= P*Exp_msk1;  | 
2060  | 0  |             adj.d = aadj1 * ulp(&rv);  | 
2061  | 0  |             dval(&rv) += adj.d;  | 
2062  | 0  |             if ((word0(&rv) & Exp_mask) >=  | 
2063  | 0  |                 Exp_msk1*(DBL_MAX_EXP+Bias-P)) { | 
2064  | 0  |                 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { | 
2065  | 0  |                     goto ovfl;  | 
2066  | 0  |                 }  | 
2067  | 0  |                 word0(&rv) = Big0;  | 
2068  | 0  |                 word1(&rv) = Big1;  | 
2069  | 0  |                 goto cont;  | 
2070  | 0  |             }  | 
2071  | 0  |             else  | 
2072  | 0  |                 word0(&rv) += P*Exp_msk1;  | 
2073  | 0  |         }  | 
2074  | 0  |         else { | 
2075  | 0  |             if (bc.scale && y <= 2*P*Exp_msk1) { | 
2076  | 0  |                 if (aadj <= 0x7fffffff) { | 
2077  | 0  |                     if ((z = (ULong)aadj) <= 0)  | 
2078  | 0  |                         z = 1;  | 
2079  | 0  |                     aadj = z;  | 
2080  | 0  |                     aadj1 = dsign ? aadj : -aadj;  | 
2081  | 0  |                 }  | 
2082  | 0  |                 dval(&aadj2) = aadj1;  | 
2083  | 0  |                 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;  | 
2084  | 0  |                 aadj1 = dval(&aadj2);  | 
2085  | 0  |             }  | 
2086  | 0  |             adj.d = aadj1 * ulp(&rv);  | 
2087  | 0  |             dval(&rv) += adj.d;  | 
2088  | 0  |         }  | 
2089  | 0  |         z = word0(&rv) & Exp_mask;  | 
2090  | 0  |         if (bc.nd == nd) { | 
2091  | 0  |             if (!bc.scale)  | 
2092  | 0  |                 if (y == z) { | 
2093  |  |                     /* Can we stop now? */  | 
2094  | 0  |                     L = (Long)aadj;  | 
2095  | 0  |                     aadj -= L;  | 
2096  |  |                     /* The tolerances below are conservative. */  | 
2097  | 0  |                     if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | 
2098  | 0  |                         if (aadj < .4999999 || aadj > .5000001)  | 
2099  | 0  |                             break;  | 
2100  | 0  |                     }  | 
2101  | 0  |                     else if (aadj < .4999999/FLT_RADIX)  | 
2102  | 0  |                         break;  | 
2103  | 0  |                 }  | 
2104  | 0  |         }  | 
2105  | 0  |       cont:  | 
2106  | 0  |         Bfree(bb); bb = NULL;  | 
2107  | 0  |         Bfree(bd); bd = NULL;  | 
2108  | 0  |         Bfree(bs); bs = NULL;  | 
2109  | 0  |         Bfree(delta); delta = NULL;  | 
2110  | 0  |     }  | 
2111  | 0  |     if (bc.nd > nd) { | 
2112  | 0  |         error = bigcomp(&rv, s0, &bc);  | 
2113  | 0  |         if (error)  | 
2114  | 0  |             goto failed_malloc;  | 
2115  | 0  |     }  | 
2116  |  |  | 
2117  | 0  |     if (bc.scale) { | 
2118  | 0  |         word0(&rv0) = Exp_1 - 2*P*Exp_msk1;  | 
2119  | 0  |         word1(&rv0) = 0;  | 
2120  | 0  |         dval(&rv) *= dval(&rv0);  | 
2121  | 0  |     }  | 
2122  |  | 
  | 
2123  | 2  |   ret:  | 
2124  | 2  |     result = sign ? -dval(&rv) : dval(&rv);  | 
2125  | 2  |     goto done;  | 
2126  |  |  | 
2127  | 0  |   parse_error:  | 
2128  | 0  |     result = 0.0;  | 
2129  | 0  |     goto done;  | 
2130  |  |  | 
2131  | 0  |   failed_malloc:  | 
2132  | 0  |     errno = ENOMEM;  | 
2133  | 0  |     result = -1.0;  | 
2134  | 0  |     goto done;  | 
2135  |  |  | 
2136  | 0  |   undfl:  | 
2137  | 0  |     result = sign ? -0.0 : 0.0;  | 
2138  | 0  |     goto done;  | 
2139  |  |  | 
2140  | 0  |   ovfl:  | 
2141  | 0  |     errno = ERANGE;  | 
2142  |  |     /* Can't trust HUGE_VAL */  | 
2143  | 0  |     word0(&rv) = Exp_mask;  | 
2144  | 0  |     word1(&rv) = 0;  | 
2145  | 0  |     result = sign ? -dval(&rv) : dval(&rv);  | 
2146  | 0  |     goto done;  | 
2147  |  |  | 
2148  | 2  |   done:  | 
2149  | 2  |     Bfree(bb);  | 
2150  | 2  |     Bfree(bd);  | 
2151  | 2  |     Bfree(bs);  | 
2152  | 2  |     Bfree(bd0);  | 
2153  | 2  |     Bfree(delta);  | 
2154  | 2  |     return result;  | 
2155  |  | 
  | 
2156  | 0  | }  | 
2157  |  |  | 
2158  |  | static char *  | 
2159  |  | rv_alloc(int i)  | 
2160  | 0  | { | 
2161  | 0  |     int j, k, *r;  | 
2162  |  | 
  | 
2163  | 0  |     j = sizeof(ULong);  | 
2164  | 0  |     for(k = 0;  | 
2165  | 0  |         sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;  | 
2166  | 0  |         j <<= 1)  | 
2167  | 0  |         k++;  | 
2168  | 0  |     r = (int*)Balloc(k);  | 
2169  | 0  |     if (r == NULL)  | 
2170  | 0  |         return NULL;  | 
2171  | 0  |     *r = k;  | 
2172  | 0  |     return (char *)(r+1);  | 
2173  | 0  | }  | 
2174  |  |  | 
2175  |  | static char *  | 
2176  |  | nrv_alloc(const char *s, char **rve, int n)  | 
2177  | 0  | { | 
2178  | 0  |     char *rv, *t;  | 
2179  |  | 
  | 
2180  | 0  |     rv = rv_alloc(n);  | 
2181  | 0  |     if (rv == NULL)  | 
2182  | 0  |         return NULL;  | 
2183  | 0  |     t = rv;  | 
2184  | 0  |     while((*t = *s++)) t++;  | 
2185  | 0  |     if (rve)  | 
2186  | 0  |         *rve = t;  | 
2187  | 0  |     return rv;  | 
2188  | 0  | }  | 
2189  |  |  | 
2190  |  | /* freedtoa(s) must be used to free values s returned by dtoa  | 
2191  |  |  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,  | 
2192  |  |  * but for consistency with earlier versions of dtoa, it is optional  | 
2193  |  |  * when MULTIPLE_THREADS is not defined.  | 
2194  |  |  */  | 
2195  |  |  | 
2196  |  | void  | 
2197  |  | _Py_dg_freedtoa(char *s)  | 
2198  | 0  | { | 
2199  | 0  |     Bigint *b = (Bigint *)((int *)s - 1);  | 
2200  | 0  |     b->maxwds = 1 << (b->k = *(int*)b);  | 
2201  | 0  |     Bfree(b);  | 
2202  | 0  | }  | 
2203  |  |  | 
2204  |  | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.  | 
2205  |  |  *  | 
2206  |  |  * Inspired by "How to Print Floating-Point Numbers Accurately" by  | 
2207  |  |  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].  | 
2208  |  |  *  | 
2209  |  |  * Modifications:  | 
2210  |  |  *      1. Rather than iterating, we use a simple numeric overestimate  | 
2211  |  |  *         to determine k = floor(log10(d)).  We scale relevant  | 
2212  |  |  *         quantities using O(log2(k)) rather than O(k) multiplications.  | 
2213  |  |  *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't  | 
2214  |  |  *         try to generate digits strictly left to right.  Instead, we  | 
2215  |  |  *         compute with fewer bits and propagate the carry if necessary  | 
2216  |  |  *         when rounding the final digit up.  This is often faster.  | 
2217  |  |  *      3. Under the assumption that input will be rounded nearest,  | 
2218  |  |  *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.  | 
2219  |  |  *         That is, we allow equality in stopping tests when the  | 
2220  |  |  *         round-nearest rule will give the same floating-point value  | 
2221  |  |  *         as would satisfaction of the stopping test with strict  | 
2222  |  |  *         inequality.  | 
2223  |  |  *      4. We remove common factors of powers of 2 from relevant  | 
2224  |  |  *         quantities.  | 
2225  |  |  *      5. When converting floating-point integers less than 1e16,  | 
2226  |  |  *         we use floating-point arithmetic rather than resorting  | 
2227  |  |  *         to multiple-precision integers.  | 
2228  |  |  *      6. When asked to produce fewer than 15 digits, we first try  | 
2229  |  |  *         to get by with floating-point arithmetic; we resort to  | 
2230  |  |  *         multiple-precision integer arithmetic only if we cannot  | 
2231  |  |  *         guarantee that the floating-point calculation has given  | 
2232  |  |  *         the correctly rounded result.  For k requested digits and  | 
2233  |  |  *         "uniformly" distributed input, the probability is  | 
2234  |  |  *         something like 10^(k-15) that we must resort to the Long  | 
2235  |  |  *         calculation.  | 
2236  |  |  */  | 
2237  |  |  | 
2238  |  | /* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory  | 
2239  |  |    leakage, a successful call to _Py_dg_dtoa should always be matched by a  | 
2240  |  |    call to _Py_dg_freedtoa. */  | 
2241  |  |  | 
2242  |  | char *  | 
2243  |  | _Py_dg_dtoa(double dd, int mode, int ndigits,  | 
2244  |  |             int *decpt, int *sign, char **rve)  | 
2245  | 0  | { | 
2246  |  |     /*  Arguments ndigits, decpt, sign are similar to those  | 
2247  |  |         of ecvt and fcvt; trailing zeros are suppressed from  | 
2248  |  |         the returned string.  If not null, *rve is set to point  | 
2249  |  |         to the end of the return value.  If d is +-Infinity or NaN,  | 
2250  |  |         then *decpt is set to 9999.  | 
2251  |  |  | 
2252  |  |         mode:  | 
2253  |  |         0 ==> shortest string that yields d when read in  | 
2254  |  |         and rounded to nearest.  | 
2255  |  |         1 ==> like 0, but with Steele & White stopping rule;  | 
2256  |  |         e.g. with IEEE P754 arithmetic , mode 0 gives  | 
2257  |  |         1e23 whereas mode 1 gives 9.999999999999999e22.  | 
2258  |  |         2 ==> max(1,ndigits) significant digits.  This gives a  | 
2259  |  |         return value similar to that of ecvt, except  | 
2260  |  |         that trailing zeros are suppressed.  | 
2261  |  |         3 ==> through ndigits past the decimal point.  This  | 
2262  |  |         gives a return value similar to that from fcvt,  | 
2263  |  |         except that trailing zeros are suppressed, and  | 
2264  |  |         ndigits can be negative.  | 
2265  |  |         4,5 ==> similar to 2 and 3, respectively, but (in  | 
2266  |  |         round-nearest mode) with the tests of mode 0 to  | 
2267  |  |         possibly return a shorter string that rounds to d.  | 
2268  |  |         With IEEE arithmetic and compilation with  | 
2269  |  |         -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same  | 
2270  |  |         as modes 2 and 3 when FLT_ROUNDS != 1.  | 
2271  |  |         6-9 ==> Debugging modes similar to mode - 4:  don't try  | 
2272  |  |         fast floating-point estimate (if applicable).  | 
2273  |  |  | 
2274  |  |         Values of mode other than 0-9 are treated as mode 0.  | 
2275  |  |  | 
2276  |  |         Sufficient space is allocated to the return value  | 
2277  |  |         to hold the suppressed trailing zeros.  | 
2278  |  |     */  | 
2279  |  | 
  | 
2280  | 0  |     int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,  | 
2281  | 0  |         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,  | 
2282  | 0  |         spec_case, try_quick;  | 
2283  | 0  |     Long L;  | 
2284  | 0  |     int denorm;  | 
2285  | 0  |     ULong x;  | 
2286  | 0  |     Bigint *b, *b1, *delta, *mlo, *mhi, *S;  | 
2287  | 0  |     U d2, eps, u;  | 
2288  | 0  |     double ds;  | 
2289  | 0  |     char *s, *s0;  | 
2290  |  |  | 
2291  |  |     /* set pointers to NULL, to silence gcc compiler warnings and make  | 
2292  |  |        cleanup easier on error */  | 
2293  | 0  |     mlo = mhi = S = 0;  | 
2294  | 0  |     s0 = 0;  | 
2295  |  | 
  | 
2296  | 0  |     u.d = dd;  | 
2297  | 0  |     if (word0(&u) & Sign_bit) { | 
2298  |  |         /* set sign for everything, including 0's and NaNs */  | 
2299  | 0  |         *sign = 1;  | 
2300  | 0  |         word0(&u) &= ~Sign_bit; /* clear sign bit */  | 
2301  | 0  |     }  | 
2302  | 0  |     else  | 
2303  | 0  |         *sign = 0;  | 
2304  |  |  | 
2305  |  |     /* quick return for Infinities, NaNs and zeros */  | 
2306  | 0  |     if ((word0(&u) & Exp_mask) == Exp_mask)  | 
2307  | 0  |     { | 
2308  |  |         /* Infinity or NaN */  | 
2309  | 0  |         *decpt = 9999;  | 
2310  | 0  |         if (!word1(&u) && !(word0(&u) & 0xfffff))  | 
2311  | 0  |             return nrv_alloc("Infinity", rve, 8); | 
2312  | 0  |         return nrv_alloc("NaN", rve, 3); | 
2313  | 0  |     }  | 
2314  | 0  |     if (!dval(&u)) { | 
2315  | 0  |         *decpt = 1;  | 
2316  | 0  |         return nrv_alloc("0", rve, 1); | 
2317  | 0  |     }  | 
2318  |  |  | 
2319  |  |     /* compute k = floor(log10(d)).  The computation may leave k  | 
2320  |  |        one too large, but should never leave k too small. */  | 
2321  | 0  |     b = d2b(&u, &be, &bbits);  | 
2322  | 0  |     if (b == NULL)  | 
2323  | 0  |         goto failed_malloc;  | 
2324  | 0  |     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { | 
2325  | 0  |         dval(&d2) = dval(&u);  | 
2326  | 0  |         word0(&d2) &= Frac_mask1;  | 
2327  | 0  |         word0(&d2) |= Exp_11;  | 
2328  |  |  | 
2329  |  |         /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5  | 
2330  |  |          * log10(x)      =  log(x) / log(10)  | 
2331  |  |          *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))  | 
2332  |  |          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)  | 
2333  |  |          *  | 
2334  |  |          * This suggests computing an approximation k to log10(d) by  | 
2335  |  |          *  | 
2336  |  |          * k = (i - Bias)*0.301029995663981  | 
2337  |  |          *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );  | 
2338  |  |          *  | 
2339  |  |          * We want k to be too large rather than too small.  | 
2340  |  |          * The error in the first-order Taylor series approximation  | 
2341  |  |          * is in our favor, so we just round up the constant enough  | 
2342  |  |          * to compensate for any error in the multiplication of  | 
2343  |  |          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,  | 
2344  |  |          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,  | 
2345  |  |          * adding 1e-13 to the constant term more than suffices.  | 
2346  |  |          * Hence we adjust the constant term to 0.1760912590558.  | 
2347  |  |          * (We could get a more accurate k by invoking log10,  | 
2348  |  |          *  but this is probably not worthwhile.)  | 
2349  |  |          */  | 
2350  |  | 
  | 
2351  | 0  |         i -= Bias;  | 
2352  | 0  |         denorm = 0;  | 
2353  | 0  |     }  | 
2354  | 0  |     else { | 
2355  |  |         /* d is denormalized */  | 
2356  |  | 
  | 
2357  | 0  |         i = bbits + be + (Bias + (P-1) - 1);  | 
2358  | 0  |         x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)  | 
2359  | 0  |             : word1(&u) << (32 - i);  | 
2360  | 0  |         dval(&d2) = x;  | 
2361  | 0  |         word0(&d2) -= 31*Exp_msk1; /* adjust exponent */  | 
2362  | 0  |         i -= (Bias + (P-1) - 1) + 1;  | 
2363  | 0  |         denorm = 1;  | 
2364  | 0  |     }  | 
2365  | 0  |     ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +  | 
2366  | 0  |         i*0.301029995663981;  | 
2367  | 0  |     k = (int)ds;  | 
2368  | 0  |     if (ds < 0. && ds != k)  | 
2369  | 0  |         k--;    /* want k = floor(ds) */  | 
2370  | 0  |     k_check = 1;  | 
2371  | 0  |     if (k >= 0 && k <= Ten_pmax) { | 
2372  | 0  |         if (dval(&u) < tens[k])  | 
2373  | 0  |             k--;  | 
2374  | 0  |         k_check = 0;  | 
2375  | 0  |     }  | 
2376  | 0  |     j = bbits - i - 1;  | 
2377  | 0  |     if (j >= 0) { | 
2378  | 0  |         b2 = 0;  | 
2379  | 0  |         s2 = j;  | 
2380  | 0  |     }  | 
2381  | 0  |     else { | 
2382  | 0  |         b2 = -j;  | 
2383  | 0  |         s2 = 0;  | 
2384  | 0  |     }  | 
2385  | 0  |     if (k >= 0) { | 
2386  | 0  |         b5 = 0;  | 
2387  | 0  |         s5 = k;  | 
2388  | 0  |         s2 += k;  | 
2389  | 0  |     }  | 
2390  | 0  |     else { | 
2391  | 0  |         b2 -= k;  | 
2392  | 0  |         b5 = -k;  | 
2393  | 0  |         s5 = 0;  | 
2394  | 0  |     }  | 
2395  | 0  |     if (mode < 0 || mode > 9)  | 
2396  | 0  |         mode = 0;  | 
2397  |  | 
  | 
2398  | 0  |     try_quick = 1;  | 
2399  |  | 
  | 
2400  | 0  |     if (mode > 5) { | 
2401  | 0  |         mode -= 4;  | 
2402  | 0  |         try_quick = 0;  | 
2403  | 0  |     }  | 
2404  | 0  |     leftright = 1;  | 
2405  | 0  |     ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */  | 
2406  |  |     /* silence erroneous "gcc -Wall" warning. */  | 
2407  | 0  |     switch(mode) { | 
2408  | 0  |     case 0:  | 
2409  | 0  |     case 1:  | 
2410  | 0  |         i = 18;  | 
2411  | 0  |         ndigits = 0;  | 
2412  | 0  |         break;  | 
2413  | 0  |     case 2:  | 
2414  | 0  |         leftright = 0;  | 
2415  |  |         /* fall through */  | 
2416  | 0  |     case 4:  | 
2417  | 0  |         if (ndigits <= 0)  | 
2418  | 0  |             ndigits = 1;  | 
2419  | 0  |         ilim = ilim1 = i = ndigits;  | 
2420  | 0  |         break;  | 
2421  | 0  |     case 3:  | 
2422  | 0  |         leftright = 0;  | 
2423  |  |         /* fall through */  | 
2424  | 0  |     case 5:  | 
2425  | 0  |         i = ndigits + k + 1;  | 
2426  | 0  |         ilim = i;  | 
2427  | 0  |         ilim1 = i - 1;  | 
2428  | 0  |         if (i <= 0)  | 
2429  | 0  |             i = 1;  | 
2430  | 0  |     }  | 
2431  | 0  |     s0 = rv_alloc(i);  | 
2432  | 0  |     if (s0 == NULL)  | 
2433  | 0  |         goto failed_malloc;  | 
2434  | 0  |     s = s0;  | 
2435  |  |  | 
2436  |  | 
  | 
2437  | 0  |     if (ilim >= 0 && ilim <= Quick_max && try_quick) { | 
2438  |  |  | 
2439  |  |         /* Try to get by with floating-point arithmetic. */  | 
2440  |  | 
  | 
2441  | 0  |         i = 0;  | 
2442  | 0  |         dval(&d2) = dval(&u);  | 
2443  | 0  |         k0 = k;  | 
2444  | 0  |         ilim0 = ilim;  | 
2445  | 0  |         ieps = 2; /* conservative */  | 
2446  | 0  |         if (k > 0) { | 
2447  | 0  |             ds = tens[k&0xf];  | 
2448  | 0  |             j = k >> 4;  | 
2449  | 0  |             if (j & Bletch) { | 
2450  |  |                 /* prevent overflows */  | 
2451  | 0  |                 j &= Bletch - 1;  | 
2452  | 0  |                 dval(&u) /= bigtens[n_bigtens-1];  | 
2453  | 0  |                 ieps++;  | 
2454  | 0  |             }  | 
2455  | 0  |             for(; j; j >>= 1, i++)  | 
2456  | 0  |                 if (j & 1) { | 
2457  | 0  |                     ieps++;  | 
2458  | 0  |                     ds *= bigtens[i];  | 
2459  | 0  |                 }  | 
2460  | 0  |             dval(&u) /= ds;  | 
2461  | 0  |         }  | 
2462  | 0  |         else if ((j1 = -k)) { | 
2463  | 0  |             dval(&u) *= tens[j1 & 0xf];  | 
2464  | 0  |             for(j = j1 >> 4; j; j >>= 1, i++)  | 
2465  | 0  |                 if (j & 1) { | 
2466  | 0  |                     ieps++;  | 
2467  | 0  |                     dval(&u) *= bigtens[i];  | 
2468  | 0  |                 }  | 
2469  | 0  |         }  | 
2470  | 0  |         if (k_check && dval(&u) < 1. && ilim > 0) { | 
2471  | 0  |             if (ilim1 <= 0)  | 
2472  | 0  |                 goto fast_failed;  | 
2473  | 0  |             ilim = ilim1;  | 
2474  | 0  |             k--;  | 
2475  | 0  |             dval(&u) *= 10.;  | 
2476  | 0  |             ieps++;  | 
2477  | 0  |         }  | 
2478  | 0  |         dval(&eps) = ieps*dval(&u) + 7.;  | 
2479  | 0  |         word0(&eps) -= (P-1)*Exp_msk1;  | 
2480  | 0  |         if (ilim == 0) { | 
2481  | 0  |             S = mhi = 0;  | 
2482  | 0  |             dval(&u) -= 5.;  | 
2483  | 0  |             if (dval(&u) > dval(&eps))  | 
2484  | 0  |                 goto one_digit;  | 
2485  | 0  |             if (dval(&u) < -dval(&eps))  | 
2486  | 0  |                 goto no_digits;  | 
2487  | 0  |             goto fast_failed;  | 
2488  | 0  |         }  | 
2489  | 0  |         if (leftright) { | 
2490  |  |             /* Use Steele & White method of only  | 
2491  |  |              * generating digits needed.  | 
2492  |  |              */  | 
2493  | 0  |             dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);  | 
2494  | 0  |             for(i = 0;;) { | 
2495  | 0  |                 L = (Long)dval(&u);  | 
2496  | 0  |                 dval(&u) -= L;  | 
2497  | 0  |                 *s++ = '0' + (int)L;  | 
2498  | 0  |                 if (dval(&u) < dval(&eps))  | 
2499  | 0  |                     goto ret1;  | 
2500  | 0  |                 if (1. - dval(&u) < dval(&eps))  | 
2501  | 0  |                     goto bump_up;  | 
2502  | 0  |                 if (++i >= ilim)  | 
2503  | 0  |                     break;  | 
2504  | 0  |                 dval(&eps) *= 10.;  | 
2505  | 0  |                 dval(&u) *= 10.;  | 
2506  | 0  |             }  | 
2507  | 0  |         }  | 
2508  | 0  |         else { | 
2509  |  |             /* Generate ilim digits, then fix them up. */  | 
2510  | 0  |             dval(&eps) *= tens[ilim-1];  | 
2511  | 0  |             for(i = 1;; i++, dval(&u) *= 10.) { | 
2512  | 0  |                 L = (Long)(dval(&u));  | 
2513  | 0  |                 if (!(dval(&u) -= L))  | 
2514  | 0  |                     ilim = i;  | 
2515  | 0  |                 *s++ = '0' + (int)L;  | 
2516  | 0  |                 if (i == ilim) { | 
2517  | 0  |                     if (dval(&u) > 0.5 + dval(&eps))  | 
2518  | 0  |                         goto bump_up;  | 
2519  | 0  |                     else if (dval(&u) < 0.5 - dval(&eps)) { | 
2520  | 0  |                         while(*--s == '0');  | 
2521  | 0  |                         s++;  | 
2522  | 0  |                         goto ret1;  | 
2523  | 0  |                     }  | 
2524  | 0  |                     break;  | 
2525  | 0  |                 }  | 
2526  | 0  |             }  | 
2527  | 0  |         }  | 
2528  | 0  |       fast_failed:  | 
2529  | 0  |         s = s0;  | 
2530  | 0  |         dval(&u) = dval(&d2);  | 
2531  | 0  |         k = k0;  | 
2532  | 0  |         ilim = ilim0;  | 
2533  | 0  |     }  | 
2534  |  |  | 
2535  |  |     /* Do we have a "small" integer? */  | 
2536  |  |  | 
2537  | 0  |     if (be >= 0 && k <= Int_max) { | 
2538  |  |         /* Yes. */  | 
2539  | 0  |         ds = tens[k];  | 
2540  | 0  |         if (ndigits < 0 && ilim <= 0) { | 
2541  | 0  |             S = mhi = 0;  | 
2542  | 0  |             if (ilim < 0 || dval(&u) <= 5*ds)  | 
2543  | 0  |                 goto no_digits;  | 
2544  | 0  |             goto one_digit;  | 
2545  | 0  |         }  | 
2546  | 0  |         for(i = 1;; i++, dval(&u) *= 10.) { | 
2547  | 0  |             L = (Long)(dval(&u) / ds);  | 
2548  | 0  |             dval(&u) -= L*ds;  | 
2549  | 0  |             *s++ = '0' + (int)L;  | 
2550  | 0  |             if (!dval(&u)) { | 
2551  | 0  |                 break;  | 
2552  | 0  |             }  | 
2553  | 0  |             if (i == ilim) { | 
2554  | 0  |                 dval(&u) += dval(&u);  | 
2555  | 0  |                 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { | 
2556  | 0  |                   bump_up:  | 
2557  | 0  |                     while(*--s == '9')  | 
2558  | 0  |                         if (s == s0) { | 
2559  | 0  |                             k++;  | 
2560  | 0  |                             *s = '0';  | 
2561  | 0  |                             break;  | 
2562  | 0  |                         }  | 
2563  | 0  |                     ++*s++;  | 
2564  | 0  |                 }  | 
2565  | 0  |                 break;  | 
2566  | 0  |             }  | 
2567  | 0  |         }  | 
2568  | 0  |         goto ret1;  | 
2569  | 0  |     }  | 
2570  |  |  | 
2571  | 0  |     m2 = b2;  | 
2572  | 0  |     m5 = b5;  | 
2573  | 0  |     if (leftright) { | 
2574  | 0  |         i =  | 
2575  | 0  |             denorm ? be + (Bias + (P-1) - 1 + 1) :  | 
2576  | 0  |             1 + P - bbits;  | 
2577  | 0  |         b2 += i;  | 
2578  | 0  |         s2 += i;  | 
2579  | 0  |         mhi = i2b(1);  | 
2580  | 0  |         if (mhi == NULL)  | 
2581  | 0  |             goto failed_malloc;  | 
2582  | 0  |     }  | 
2583  | 0  |     if (m2 > 0 && s2 > 0) { | 
2584  | 0  |         i = m2 < s2 ? m2 : s2;  | 
2585  | 0  |         b2 -= i;  | 
2586  | 0  |         m2 -= i;  | 
2587  | 0  |         s2 -= i;  | 
2588  | 0  |     }  | 
2589  | 0  |     if (b5 > 0) { | 
2590  | 0  |         if (leftright) { | 
2591  | 0  |             if (m5 > 0) { | 
2592  | 0  |                 mhi = pow5mult(mhi, m5);  | 
2593  | 0  |                 if (mhi == NULL)  | 
2594  | 0  |                     goto failed_malloc;  | 
2595  | 0  |                 b1 = mult(mhi, b);  | 
2596  | 0  |                 Bfree(b);  | 
2597  | 0  |                 b = b1;  | 
2598  | 0  |                 if (b == NULL)  | 
2599  | 0  |                     goto failed_malloc;  | 
2600  | 0  |             }  | 
2601  | 0  |             if ((j = b5 - m5)) { | 
2602  | 0  |                 b = pow5mult(b, j);  | 
2603  | 0  |                 if (b == NULL)  | 
2604  | 0  |                     goto failed_malloc;  | 
2605  | 0  |             }  | 
2606  | 0  |         }  | 
2607  | 0  |         else { | 
2608  | 0  |             b = pow5mult(b, b5);  | 
2609  | 0  |             if (b == NULL)  | 
2610  | 0  |                 goto failed_malloc;  | 
2611  | 0  |         }  | 
2612  | 0  |     }  | 
2613  | 0  |     S = i2b(1);  | 
2614  | 0  |     if (S == NULL)  | 
2615  | 0  |         goto failed_malloc;  | 
2616  | 0  |     if (s5 > 0) { | 
2617  | 0  |         S = pow5mult(S, s5);  | 
2618  | 0  |         if (S == NULL)  | 
2619  | 0  |             goto failed_malloc;  | 
2620  | 0  |     }  | 
2621  |  |  | 
2622  |  |     /* Check for special case that d is a normalized power of 2. */  | 
2623  |  |  | 
2624  | 0  |     spec_case = 0;  | 
2625  | 0  |     if ((mode < 2 || leftright)  | 
2626  | 0  |         ) { | 
2627  | 0  |         if (!word1(&u) && !(word0(&u) & Bndry_mask)  | 
2628  | 0  |             && word0(&u) & (Exp_mask & ~Exp_msk1)  | 
2629  | 0  |             ) { | 
2630  |  |             /* The special case */  | 
2631  | 0  |             b2 += Log2P;  | 
2632  | 0  |             s2 += Log2P;  | 
2633  | 0  |             spec_case = 1;  | 
2634  | 0  |         }  | 
2635  | 0  |     }  | 
2636  |  |  | 
2637  |  |     /* Arrange for convenient computation of quotients:  | 
2638  |  |      * shift left if necessary so divisor has 4 leading 0 bits.  | 
2639  |  |      *  | 
2640  |  |      * Perhaps we should just compute leading 28 bits of S once  | 
2641  |  |      * and for all and pass them and a shift to quorem, so it  | 
2642  |  |      * can do shifts and ors to compute the numerator for q.  | 
2643  |  |      */  | 
2644  | 0  | #define iInc 28  | 
2645  | 0  |     i = dshift(S, s2);  | 
2646  | 0  |     b2 += i;  | 
2647  | 0  |     m2 += i;  | 
2648  | 0  |     s2 += i;  | 
2649  | 0  |     if (b2 > 0) { | 
2650  | 0  |         b = lshift(b, b2);  | 
2651  | 0  |         if (b == NULL)  | 
2652  | 0  |             goto failed_malloc;  | 
2653  | 0  |     }  | 
2654  | 0  |     if (s2 > 0) { | 
2655  | 0  |         S = lshift(S, s2);  | 
2656  | 0  |         if (S == NULL)  | 
2657  | 0  |             goto failed_malloc;  | 
2658  | 0  |     }  | 
2659  | 0  |     if (k_check) { | 
2660  | 0  |         if (cmp(b,S) < 0) { | 
2661  | 0  |             k--;  | 
2662  | 0  |             b = multadd(b, 10, 0);      /* we botched the k estimate */  | 
2663  | 0  |             if (b == NULL)  | 
2664  | 0  |                 goto failed_malloc;  | 
2665  | 0  |             if (leftright) { | 
2666  | 0  |                 mhi = multadd(mhi, 10, 0);  | 
2667  | 0  |                 if (mhi == NULL)  | 
2668  | 0  |                     goto failed_malloc;  | 
2669  | 0  |             }  | 
2670  | 0  |             ilim = ilim1;  | 
2671  | 0  |         }  | 
2672  | 0  |     }  | 
2673  | 0  |     if (ilim <= 0 && (mode == 3 || mode == 5)) { | 
2674  | 0  |         if (ilim < 0) { | 
2675  |  |             /* no digits, fcvt style */  | 
2676  | 0  |           no_digits:  | 
2677  | 0  |             k = -1 - ndigits;  | 
2678  | 0  |             goto ret;  | 
2679  | 0  |         }  | 
2680  | 0  |         else { | 
2681  | 0  |             S = multadd(S, 5, 0);  | 
2682  | 0  |             if (S == NULL)  | 
2683  | 0  |                 goto failed_malloc;  | 
2684  | 0  |             if (cmp(b, S) <= 0)  | 
2685  | 0  |                 goto no_digits;  | 
2686  | 0  |         }  | 
2687  | 0  |       one_digit:  | 
2688  | 0  |         *s++ = '1';  | 
2689  | 0  |         k++;  | 
2690  | 0  |         goto ret;  | 
2691  | 0  |     }  | 
2692  | 0  |     if (leftright) { | 
2693  | 0  |         if (m2 > 0) { | 
2694  | 0  |             mhi = lshift(mhi, m2);  | 
2695  | 0  |             if (mhi == NULL)  | 
2696  | 0  |                 goto failed_malloc;  | 
2697  | 0  |         }  | 
2698  |  |  | 
2699  |  |         /* Compute mlo -- check for special case  | 
2700  |  |          * that d is a normalized power of 2.  | 
2701  |  |          */  | 
2702  |  |  | 
2703  | 0  |         mlo = mhi;  | 
2704  | 0  |         if (spec_case) { | 
2705  | 0  |             mhi = Balloc(mhi->k);  | 
2706  | 0  |             if (mhi == NULL)  | 
2707  | 0  |                 goto failed_malloc;  | 
2708  | 0  |             Bcopy(mhi, mlo);  | 
2709  | 0  |             mhi = lshift(mhi, Log2P);  | 
2710  | 0  |             if (mhi == NULL)  | 
2711  | 0  |                 goto failed_malloc;  | 
2712  | 0  |         }  | 
2713  |  |  | 
2714  | 0  |         for(i = 1;;i++) { | 
2715  | 0  |             dig = quorem(b,S) + '0';  | 
2716  |  |             /* Do we yet have the shortest decimal string  | 
2717  |  |              * that will round to d?  | 
2718  |  |              */  | 
2719  | 0  |             j = cmp(b, mlo);  | 
2720  | 0  |             delta = diff(S, mhi);  | 
2721  | 0  |             if (delta == NULL)  | 
2722  | 0  |                 goto failed_malloc;  | 
2723  | 0  |             j1 = delta->sign ? 1 : cmp(b, delta);  | 
2724  | 0  |             Bfree(delta);  | 
2725  | 0  |             if (j1 == 0 && mode != 1 && !(word1(&u) & 1)  | 
2726  | 0  |                 ) { | 
2727  | 0  |                 if (dig == '9')  | 
2728  | 0  |                     goto round_9_up;  | 
2729  | 0  |                 if (j > 0)  | 
2730  | 0  |                     dig++;  | 
2731  | 0  |                 *s++ = dig;  | 
2732  | 0  |                 goto ret;  | 
2733  | 0  |             }  | 
2734  | 0  |             if (j < 0 || (j == 0 && mode != 1  | 
2735  | 0  |                           && !(word1(&u) & 1)  | 
2736  | 0  |                     )) { | 
2737  | 0  |                 if (!b->x[0] && b->wds <= 1) { | 
2738  | 0  |                     goto accept_dig;  | 
2739  | 0  |                 }  | 
2740  | 0  |                 if (j1 > 0) { | 
2741  | 0  |                     b = lshift(b, 1);  | 
2742  | 0  |                     if (b == NULL)  | 
2743  | 0  |                         goto failed_malloc;  | 
2744  | 0  |                     j1 = cmp(b, S);  | 
2745  | 0  |                     if ((j1 > 0 || (j1 == 0 && dig & 1))  | 
2746  | 0  |                         && dig++ == '9')  | 
2747  | 0  |                         goto round_9_up;  | 
2748  | 0  |                 }  | 
2749  | 0  |               accept_dig:  | 
2750  | 0  |                 *s++ = dig;  | 
2751  | 0  |                 goto ret;  | 
2752  | 0  |             }  | 
2753  | 0  |             if (j1 > 0) { | 
2754  | 0  |                 if (dig == '9') { /* possible if i == 1 */ | 
2755  | 0  |                   round_9_up:  | 
2756  | 0  |                     *s++ = '9';  | 
2757  | 0  |                     goto roundoff;  | 
2758  | 0  |                 }  | 
2759  | 0  |                 *s++ = dig + 1;  | 
2760  | 0  |                 goto ret;  | 
2761  | 0  |             }  | 
2762  | 0  |             *s++ = dig;  | 
2763  | 0  |             if (i == ilim)  | 
2764  | 0  |                 break;  | 
2765  | 0  |             b = multadd(b, 10, 0);  | 
2766  | 0  |             if (b == NULL)  | 
2767  | 0  |                 goto failed_malloc;  | 
2768  | 0  |             if (mlo == mhi) { | 
2769  | 0  |                 mlo = mhi = multadd(mhi, 10, 0);  | 
2770  | 0  |                 if (mlo == NULL)  | 
2771  | 0  |                     goto failed_malloc;  | 
2772  | 0  |             }  | 
2773  | 0  |             else { | 
2774  | 0  |                 mlo = multadd(mlo, 10, 0);  | 
2775  | 0  |                 if (mlo == NULL)  | 
2776  | 0  |                     goto failed_malloc;  | 
2777  | 0  |                 mhi = multadd(mhi, 10, 0);  | 
2778  | 0  |                 if (mhi == NULL)  | 
2779  | 0  |                     goto failed_malloc;  | 
2780  | 0  |             }  | 
2781  | 0  |         }  | 
2782  | 0  |     }  | 
2783  | 0  |     else  | 
2784  | 0  |         for(i = 1;; i++) { | 
2785  | 0  |             *s++ = dig = quorem(b,S) + '0';  | 
2786  | 0  |             if (!b->x[0] && b->wds <= 1) { | 
2787  | 0  |                 goto ret;  | 
2788  | 0  |             }  | 
2789  | 0  |             if (i >= ilim)  | 
2790  | 0  |                 break;  | 
2791  | 0  |             b = multadd(b, 10, 0);  | 
2792  | 0  |             if (b == NULL)  | 
2793  | 0  |                 goto failed_malloc;  | 
2794  | 0  |         }  | 
2795  |  |  | 
2796  |  |     /* Round off last digit */  | 
2797  |  |  | 
2798  | 0  |     b = lshift(b, 1);  | 
2799  | 0  |     if (b == NULL)  | 
2800  | 0  |         goto failed_malloc;  | 
2801  | 0  |     j = cmp(b, S);  | 
2802  | 0  |     if (j > 0 || (j == 0 && dig & 1)) { | 
2803  | 0  |       roundoff:  | 
2804  | 0  |         while(*--s == '9')  | 
2805  | 0  |             if (s == s0) { | 
2806  | 0  |                 k++;  | 
2807  | 0  |                 *s++ = '1';  | 
2808  | 0  |                 goto ret;  | 
2809  | 0  |             }  | 
2810  | 0  |         ++*s++;  | 
2811  | 0  |     }  | 
2812  | 0  |     else { | 
2813  | 0  |         while(*--s == '0');  | 
2814  | 0  |         s++;  | 
2815  | 0  |     }  | 
2816  | 0  |   ret:  | 
2817  | 0  |     Bfree(S);  | 
2818  | 0  |     if (mhi) { | 
2819  | 0  |         if (mlo && mlo != mhi)  | 
2820  | 0  |             Bfree(mlo);  | 
2821  | 0  |         Bfree(mhi);  | 
2822  | 0  |     }  | 
2823  | 0  |   ret1:  | 
2824  | 0  |     Bfree(b);  | 
2825  | 0  |     *s = 0;  | 
2826  | 0  |     *decpt = k + 1;  | 
2827  | 0  |     if (rve)  | 
2828  | 0  |         *rve = s;  | 
2829  | 0  |     return s0;  | 
2830  | 0  |   failed_malloc:  | 
2831  | 0  |     if (S)  | 
2832  | 0  |         Bfree(S);  | 
2833  | 0  |     if (mlo && mlo != mhi)  | 
2834  | 0  |         Bfree(mlo);  | 
2835  | 0  |     if (mhi)  | 
2836  | 0  |         Bfree(mhi);  | 
2837  | 0  |     if (b)  | 
2838  | 0  |         Bfree(b);  | 
2839  | 0  |     if (s0)  | 
2840  | 0  |         _Py_dg_freedtoa(s0);  | 
2841  |  |     return NULL;  | 
2842  | 0  | }  | 
2843  |  | #ifdef __cplusplus  | 
2844  |  | }  | 
2845  |  | #endif  | 
2846  |  |  | 
2847  |  | #endif  /* PY_NO_SHORT_FLOAT_REPR */  |