/src/Python-3.8.3/Python/pyhash.c
Line  | Count  | Source  | 
1  |  | /* Set of hash utility functions to help maintaining the invariant that  | 
2  |  |     if a==b then hash(a)==hash(b)  | 
3  |  |  | 
4  |  |    All the utility functions (_Py_Hash*()) return "-1" to signify an error.  | 
5  |  | */  | 
6  |  | #include "Python.h"  | 
7  |  |  | 
8  |  | #ifdef __APPLE__  | 
9  |  | #  include <libkern/OSByteOrder.h>  | 
10  |  | #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H)  | 
11  |  | #  include <endian.h>  | 
12  |  | #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H)  | 
13  |  | #  include <sys/endian.h>  | 
14  |  | #endif  | 
15  |  |  | 
16  |  | #ifdef __cplusplus  | 
17  |  | extern "C" { | 
18  |  | #endif  | 
19  |  |  | 
20  |  | _Py_HashSecret_t _Py_HashSecret = {{0}}; | 
21  |  |  | 
22  |  | #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL  | 
23  |  | extern PyHash_FuncDef PyHash_Func;  | 
24  |  | #else  | 
25  |  | static PyHash_FuncDef PyHash_Func;  | 
26  |  | #endif  | 
27  |  |  | 
28  |  | /* Count _Py_HashBytes() calls */  | 
29  |  | #ifdef Py_HASH_STATS  | 
30  |  | #define Py_HASH_STATS_MAX 32  | 
31  |  | static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; | 
32  |  | #endif  | 
33  |  |  | 
34  |  | /* For numeric types, the hash of a number x is based on the reduction  | 
35  |  |    of x modulo the prime P = 2**_PyHASH_BITS - 1.  It's designed so that  | 
36  |  |    hash(x) == hash(y) whenever x and y are numerically equal, even if  | 
37  |  |    x and y have different types.  | 
38  |  |  | 
39  |  |    A quick summary of the hashing strategy:  | 
40  |  |  | 
41  |  |    (1) First define the 'reduction of x modulo P' for any rational  | 
42  |  |    number x; this is a standard extension of the usual notion of  | 
43  |  |    reduction modulo P for integers.  If x == p/q (written in lowest  | 
44  |  |    terms), the reduction is interpreted as the reduction of p times  | 
45  |  |    the inverse of the reduction of q, all modulo P; if q is exactly  | 
46  |  |    divisible by P then define the reduction to be infinity.  So we've  | 
47  |  |    got a well-defined map  | 
48  |  |  | 
49  |  |       reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. | 
50  |  |  | 
51  |  |    (2) Now for a rational number x, define hash(x) by:  | 
52  |  |  | 
53  |  |       reduce(x)   if x >= 0  | 
54  |  |       -reduce(-x) if x < 0  | 
55  |  |  | 
56  |  |    If the result of the reduction is infinity (this is impossible for  | 
57  |  |    integers, floats and Decimals) then use the predefined hash value  | 
58  |  |    _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.  | 
59  |  |    _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the  | 
60  |  |    hashes of float and Decimal infinities and nans.  | 
61  |  |  | 
62  |  |    A selling point for the above strategy is that it makes it possible  | 
63  |  |    to compute hashes of decimal and binary floating-point numbers  | 
64  |  |    efficiently, even if the exponent of the binary or decimal number  | 
65  |  |    is large.  The key point is that  | 
66  |  |  | 
67  |  |       reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)  | 
68  |  |  | 
69  |  |    provided that {reduce(x), reduce(y)} != {0, infinity}.  The reduction of a | 
70  |  |    binary or decimal float is never infinity, since the denominator is a power  | 
71  |  |    of 2 (for binary) or a divisor of a power of 10 (for decimal).  So we have,  | 
72  |  |    for nonnegative x,  | 
73  |  |  | 
74  |  |       reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS  | 
75  |  |  | 
76  |  |       reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS  | 
77  |  |  | 
78  |  |    and reduce(10**e) can be computed efficiently by the usual modular  | 
79  |  |    exponentiation algorithm.  For reduce(2**e) it's even better: since  | 
80  |  |    P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication  | 
81  |  |    by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.  | 
82  |  |  | 
83  |  |    */  | 
84  |  |  | 
85  |  | Py_hash_t  | 
86  |  | _Py_HashDouble(double v)  | 
87  | 10  | { | 
88  | 10  |     int e, sign;  | 
89  | 10  |     double m;  | 
90  | 10  |     Py_uhash_t x, y;  | 
91  |  |  | 
92  | 10  |     if (!Py_IS_FINITE(v)) { | 
93  | 0  |         if (Py_IS_INFINITY(v))  | 
94  | 0  |             return v > 0 ? _PyHASH_INF : -_PyHASH_INF;  | 
95  | 0  |         else  | 
96  | 0  |             return _PyHASH_NAN;  | 
97  | 0  |     }  | 
98  |  |  | 
99  | 10  |     m = frexp(v, &e);  | 
100  |  |  | 
101  | 10  |     sign = 1;  | 
102  | 10  |     if (m < 0) { | 
103  | 0  |         sign = -1;  | 
104  | 0  |         m = -m;  | 
105  | 0  |     }  | 
106  |  |  | 
107  |  |     /* process 28 bits at a time;  this should work well both for binary  | 
108  |  |        and hexadecimal floating point. */  | 
109  | 10  |     x = 0;  | 
110  | 20  |     while (m) { | 
111  | 10  |         x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);  | 
112  | 10  |         m *= 268435456.0;  /* 2**28 */  | 
113  | 10  |         e -= 28;  | 
114  | 10  |         y = (Py_uhash_t)m;  /* pull out integer part */  | 
115  | 10  |         m -= y;  | 
116  | 10  |         x += y;  | 
117  | 10  |         if (x >= _PyHASH_MODULUS)  | 
118  | 0  |             x -= _PyHASH_MODULUS;  | 
119  | 10  |     }  | 
120  |  |  | 
121  |  |     /* adjust for the exponent;  first reduce it modulo _PyHASH_BITS */  | 
122  | 10  |     e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);  | 
123  | 10  |     x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);  | 
124  |  |  | 
125  | 10  |     x = x * sign;  | 
126  | 10  |     if (x == (Py_uhash_t)-1)  | 
127  | 0  |         x = (Py_uhash_t)-2;  | 
128  | 10  |     return (Py_hash_t)x;  | 
129  | 10  | }  | 
130  |  |  | 
131  |  | Py_hash_t  | 
132  |  | _Py_HashPointer(void *p)  | 
133  | 2.65k  | { | 
134  | 2.65k  |     Py_hash_t x;  | 
135  | 2.65k  |     size_t y = (size_t)p;  | 
136  |  |     /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid  | 
137  |  |        excessive hash collisions for dicts and sets */  | 
138  | 2.65k  |     y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));  | 
139  | 2.65k  |     x = (Py_hash_t)y;  | 
140  | 2.65k  |     if (x == -1)  | 
141  | 0  |         x = -2;  | 
142  | 2.65k  |     return x;  | 
143  | 2.65k  | }  | 
144  |  |  | 
145  |  | Py_hash_t  | 
146  |  | _Py_HashBytes(const void *src, Py_ssize_t len)  | 
147  | 197k  | { | 
148  | 197k  |     Py_hash_t x;  | 
149  |  |     /*  | 
150  |  |       We make the hash of the empty string be 0, rather than using  | 
151  |  |       (prefix ^ suffix), since this slightly obfuscates the hash secret  | 
152  |  |     */  | 
153  | 197k  |     if (len == 0) { | 
154  | 15  |         return 0;  | 
155  | 15  |     }  | 
156  |  |  | 
157  |  | #ifdef Py_HASH_STATS  | 
158  |  |     hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++;  | 
159  |  | #endif  | 
160  |  |  | 
161  |  | #if Py_HASH_CUTOFF > 0  | 
162  |  |     if (len < Py_HASH_CUTOFF) { | 
163  |  |         /* Optimize hashing of very small strings with inline DJBX33A. */  | 
164  |  |         Py_uhash_t hash;  | 
165  |  |         const unsigned char *p = src;  | 
166  |  |         hash = 5381; /* DJBX33A starts with 5381 */  | 
167  |  |  | 
168  |  |         switch(len) { | 
169  |  |             /* ((hash << 5) + hash) + *p == hash * 33 + *p */  | 
170  |  |             case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
171  |  |             case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
172  |  |             case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
173  |  |             case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
174  |  |             case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
175  |  |             case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */  | 
176  |  |             case 1: hash = ((hash << 5) + hash) + *p++; break;  | 
177  |  |             default:  | 
178  |  |                 Py_UNREACHABLE();  | 
179  |  |         }  | 
180  |  |         hash ^= len;  | 
181  |  |         hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix;  | 
182  |  |         x = (Py_hash_t)hash;  | 
183  |  |     }  | 
184  |  |     else  | 
185  |  | #endif /* Py_HASH_CUTOFF */  | 
186  | 197k  |         x = PyHash_Func.hash(src, len);  | 
187  |  |  | 
188  | 197k  |     if (x == -1)  | 
189  | 0  |         return -2;  | 
190  | 197k  |     return x;  | 
191  | 197k  | }  | 
192  |  |  | 
193  |  | void  | 
194  |  | _PyHash_Fini(void)  | 
195  | 0  | { | 
196  |  | #ifdef Py_HASH_STATS  | 
197  |  |     int i;  | 
198  |  |     Py_ssize_t total = 0;  | 
199  |  |     const char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n";  | 
200  |  |  | 
201  |  |     fprintf(stderr, "len   calls    total\n");  | 
202  |  |     for (i = 1; i <= Py_HASH_STATS_MAX; i++) { | 
203  |  |         total += hashstats[i];  | 
204  |  |         fprintf(stderr, fmt, i, hashstats[i], total);  | 
205  |  |     }  | 
206  |  |     total += hashstats[0];  | 
207  |  |     fprintf(stderr, ">  %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n",  | 
208  |  |             hashstats[0], total);  | 
209  |  | #endif  | 
210  | 0  | }  | 
211  |  |  | 
212  |  | PyHash_FuncDef *  | 
213  |  | PyHash_GetFuncDef(void)  | 
214  | 14  | { | 
215  | 14  |     return &PyHash_Func;  | 
216  | 14  | }  | 
217  |  |  | 
218  |  | /* Optimized memcpy() for Windows */  | 
219  |  | #ifdef _MSC_VER  | 
220  |  | #  if SIZEOF_PY_UHASH_T == 4  | 
221  |  | #    define PY_UHASH_CPY(dst, src) do {                                    \ | 
222  |  |        dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \  | 
223  |  |        } while(0)  | 
224  |  | #  elif SIZEOF_PY_UHASH_T == 8  | 
225  |  | #    define PY_UHASH_CPY(dst, src) do {                                    \ | 
226  |  |        dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \  | 
227  |  |        dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \  | 
228  |  |        } while(0)  | 
229  |  | #  else  | 
230  |  | #    error SIZEOF_PY_UHASH_T must be 4 or 8  | 
231  |  | #  endif /* SIZEOF_PY_UHASH_T */  | 
232  |  | #else /* not Windows */  | 
233  |  | #  define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T)  | 
234  |  | #endif /* _MSC_VER */  | 
235  |  |  | 
236  |  |  | 
237  |  | #if Py_HASH_ALGORITHM == Py_HASH_FNV  | 
238  |  | /* **************************************************************************  | 
239  |  |  * Modified Fowler-Noll-Vo (FNV) hash function  | 
240  |  |  */  | 
241  |  | static Py_hash_t  | 
242  |  | fnv(const void *src, Py_ssize_t len)  | 
243  |  | { | 
244  |  |     const unsigned char *p = src;  | 
245  |  |     Py_uhash_t x;  | 
246  |  |     Py_ssize_t remainder, blocks;  | 
247  |  |     union { | 
248  |  |         Py_uhash_t value;  | 
249  |  |         unsigned char bytes[SIZEOF_PY_UHASH_T];  | 
250  |  |     } block;  | 
251  |  |  | 
252  |  | #ifdef Py_DEBUG  | 
253  |  |     assert(_Py_HashSecret_Initialized);  | 
254  |  | #endif  | 
255  |  |     remainder = len % SIZEOF_PY_UHASH_T;  | 
256  |  |     if (remainder == 0) { | 
257  |  |         /* Process at least one block byte by byte to reduce hash collisions  | 
258  |  |          * for strings with common prefixes. */  | 
259  |  |         remainder = SIZEOF_PY_UHASH_T;  | 
260  |  |     }  | 
261  |  |     blocks = (len - remainder) / SIZEOF_PY_UHASH_T;  | 
262  |  |  | 
263  |  |     x = (Py_uhash_t) _Py_HashSecret.fnv.prefix;  | 
264  |  |     x ^= (Py_uhash_t) *p << 7;  | 
265  |  |     while (blocks--) { | 
266  |  |         PY_UHASH_CPY(block.bytes, p);  | 
267  |  |         x = (_PyHASH_MULTIPLIER * x) ^ block.value;  | 
268  |  |         p += SIZEOF_PY_UHASH_T;  | 
269  |  |     }  | 
270  |  |     /* add remainder */  | 
271  |  |     for (; remainder > 0; remainder--)  | 
272  |  |         x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++;  | 
273  |  |     x ^= (Py_uhash_t) len;  | 
274  |  |     x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix;  | 
275  |  |     if (x == (Py_uhash_t) -1) { | 
276  |  |         x = (Py_uhash_t) -2;  | 
277  |  |     }  | 
278  |  |     return x;  | 
279  |  | }  | 
280  |  |  | 
281  |  | static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, | 
282  |  |                                      16 * SIZEOF_PY_HASH_T};  | 
283  |  |  | 
284  |  | #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */  | 
285  |  |  | 
286  |  |  | 
287  |  | /* **************************************************************************  | 
288  |  |  <MIT License>  | 
289  |  |  Copyright (c) 2013  Marek Majkowski <marek@popcount.org>  | 
290  |  |  | 
291  |  |  Permission is hereby granted, free of charge, to any person obtaining a copy  | 
292  |  |  of this software and associated documentation files (the "Software"), to deal  | 
293  |  |  in the Software without restriction, including without limitation the rights  | 
294  |  |  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell  | 
295  |  |  copies of the Software, and to permit persons to whom the Software is  | 
296  |  |  furnished to do so, subject to the following conditions:  | 
297  |  |  | 
298  |  |  The above copyright notice and this permission notice shall be included in  | 
299  |  |  all copies or substantial portions of the Software.  | 
300  |  |  | 
301  |  |  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR  | 
302  |  |  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  | 
303  |  |  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE  | 
304  |  |  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER  | 
305  |  |  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,  | 
306  |  |  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN  | 
307  |  |  THE SOFTWARE.  | 
308  |  |  </MIT License>  | 
309  |  |  | 
310  |  |  Original location:  | 
311  |  |     https://github.com/majek/csiphash/  | 
312  |  |  | 
313  |  |  Solution inspired by code from:  | 
314  |  |     Samuel Neves (supercop/crypto_auth/siphash24/little)  | 
315  |  |     djb (supercop/crypto_auth/siphash24/little2)  | 
316  |  |     Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)  | 
317  |  |  | 
318  |  |  Modified for Python by Christian Heimes:  | 
319  |  |     - C89 / MSVC compatibility  | 
320  |  |     - _rotl64() on Windows  | 
321  |  |     - letoh64() fallback  | 
322  |  | */  | 
323  |  |  | 
324  |  | /* byte swap little endian to host endian  | 
325  |  |  * Endian conversion not only ensures that the hash function returns the same  | 
326  |  |  * value on all platforms. It is also required to for a good dispersion of  | 
327  |  |  * the hash values' least significant bits.  | 
328  |  |  */  | 
329  |  | #if PY_LITTLE_ENDIAN  | 
330  | 953k  | #  define _le64toh(x) ((uint64_t)(x))  | 
331  |  | #elif defined(__APPLE__)  | 
332  |  | #  define _le64toh(x) OSSwapLittleToHostInt64(x)  | 
333  |  | #elif defined(HAVE_LETOH64)  | 
334  |  | #  define _le64toh(x) le64toh(x)  | 
335  |  | #else  | 
336  |  | #  define _le64toh(x) (((uint64_t)(x) << 56) | \  | 
337  |  |                       (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \  | 
338  |  |                       (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \  | 
339  |  |                       (((uint64_t)(x) << 8)  & 0xff00000000ULL) | \  | 
340  |  |                       (((uint64_t)(x) >> 8)  & 0xff000000ULL) | \  | 
341  |  |                       (((uint64_t)(x) >> 24) & 0xff0000ULL) | \  | 
342  |  |                       (((uint64_t)(x) >> 40) & 0xff00ULL) | \  | 
343  |  |                       ((uint64_t)(x)  >> 56))  | 
344  |  | #endif  | 
345  |  |  | 
346  |  |  | 
347  |  | #ifdef _MSC_VER  | 
348  |  | #  define ROTATE(x, b)  _rotl64(x, b)  | 
349  |  | #else  | 
350  | 11.4M  | #  define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) )  | 
351  |  | #endif  | 
352  |  |  | 
353  |  | #define HALF_ROUND(a,b,c,d,s,t)         \  | 
354  | 3.81M  |     a += b; c += d;             \  | 
355  | 3.81M  |     b = ROTATE(b, s) ^ a;           \  | 
356  | 3.81M  |     d = ROTATE(d, t) ^ c;           \  | 
357  | 3.81M  |     a = ROTATE(a, 32);  | 
358  |  |  | 
359  |  | #define DOUBLE_ROUND(v0,v1,v2,v3)       \  | 
360  | 953k  |     HALF_ROUND(v0,v1,v2,v3,13,16);      \  | 
361  | 953k  |     HALF_ROUND(v2,v1,v0,v3,17,21);      \  | 
362  | 953k  |     HALF_ROUND(v0,v1,v2,v3,13,16);      \  | 
363  | 953k  |     HALF_ROUND(v2,v1,v0,v3,17,21);  | 
364  |  |  | 
365  |  |  | 
366  |  | static uint64_t  | 
367  | 197k  | siphash24(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) { | 
368  | 197k  |     uint64_t b = (uint64_t)src_sz << 56;  | 
369  | 197k  |     const uint8_t *in = (const uint8_t*)src;  | 
370  |  |  | 
371  | 197k  |     uint64_t v0 = k0 ^ 0x736f6d6570736575ULL;  | 
372  | 197k  |     uint64_t v1 = k1 ^ 0x646f72616e646f6dULL;  | 
373  | 197k  |     uint64_t v2 = k0 ^ 0x6c7967656e657261ULL;  | 
374  | 197k  |     uint64_t v3 = k1 ^ 0x7465646279746573ULL;  | 
375  |  |  | 
376  | 197k  |     uint64_t t;  | 
377  | 197k  |     uint8_t *pt;  | 
378  |  |  | 
379  | 558k  |     while (src_sz >= 8) { | 
380  | 361k  |         uint64_t mi;  | 
381  | 361k  |         memcpy(&mi, in, sizeof(mi));  | 
382  | 361k  |         mi = _le64toh(mi);  | 
383  | 361k  |         in += sizeof(mi);  | 
384  | 361k  |         src_sz -= sizeof(mi);  | 
385  | 361k  |         v3 ^= mi;  | 
386  | 361k  |         DOUBLE_ROUND(v0,v1,v2,v3);  | 
387  | 361k  |         v0 ^= mi;  | 
388  | 361k  |     }  | 
389  |  |  | 
390  | 197k  |     t = 0;  | 
391  | 197k  |     pt = (uint8_t *)&t;  | 
392  | 197k  |     switch (src_sz) { | 
393  | 25.6k  |         case 7: pt[6] = in[6]; /* fall through */  | 
394  | 47.8k  |         case 6: pt[5] = in[5]; /* fall through */  | 
395  | 68.3k  |         case 5: pt[4] = in[4]; /* fall through */  | 
396  | 91.6k  |         case 4: memcpy(pt, in, sizeof(uint32_t)); break;  | 
397  | 17.7k  |         case 3: pt[2] = in[2]; /* fall through */  | 
398  | 39.4k  |         case 2: pt[1] = in[1]; /* fall through */  | 
399  | 66.0k  |         case 1: pt[0] = in[0]; /* fall through */  | 
400  | 197k  |     }  | 
401  | 197k  |     b |= _le64toh(t);  | 
402  |  |  | 
403  | 197k  |     v3 ^= b;  | 
404  | 197k  |     DOUBLE_ROUND(v0,v1,v2,v3);  | 
405  | 197k  |     v0 ^= b;  | 
406  | 197k  |     v2 ^= 0xff;  | 
407  | 197k  |     DOUBLE_ROUND(v0,v1,v2,v3);  | 
408  | 197k  |     DOUBLE_ROUND(v0,v1,v2,v3);  | 
409  |  |  | 
410  |  |     /* modified */  | 
411  | 197k  |     t = (v0 ^ v1) ^ (v2 ^ v3);  | 
412  | 197k  |     return t;  | 
413  | 197k  | }  | 
414  |  |  | 
415  |  | uint64_t  | 
416  |  | _Py_KeyedHash(uint64_t key, const void *src, Py_ssize_t src_sz)  | 
417  | 0  | { | 
418  | 0  |     return siphash24(key, 0, src, src_sz);  | 
419  | 0  | }  | 
420  |  |  | 
421  |  |  | 
422  |  | #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24  | 
423  |  | static Py_hash_t  | 
424  | 197k  | pysiphash(const void *src, Py_ssize_t src_sz) { | 
425  | 197k  |     return (Py_hash_t)siphash24(  | 
426  | 197k  |         _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1),  | 
427  | 197k  |         src, src_sz);  | 
428  | 197k  | }  | 
429  |  |  | 
430  |  | static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash24", 64, 128}; | 
431  |  | #endif  | 
432  |  |  | 
433  |  | #ifdef __cplusplus  | 
434  |  | }  | 
435  |  | #endif  |