/src/Python-3.8.3/Python/pystrtod.c
Line  | Count  | Source  | 
1  |  | /* -*- Mode: C; c-file-style: "python" -*- */  | 
2  |  |  | 
3  |  | #include <Python.h>  | 
4  |  | #include <locale.h>  | 
5  |  |  | 
6  |  | /* Case-insensitive string match used for nan and inf detection; t should be  | 
7  |  |    lower-case.  Returns 1 for a successful match, 0 otherwise. */  | 
8  |  |  | 
9  |  | static int  | 
10  |  | case_insensitive_match(const char *s, const char *t)  | 
11  | 0  | { | 
12  | 0  |     while(*t && Py_TOLOWER(*s) == *t) { | 
13  | 0  |         s++;  | 
14  | 0  |         t++;  | 
15  | 0  |     }  | 
16  | 0  |     return *t ? 0 : 1;  | 
17  | 0  | }  | 
18  |  |  | 
19  |  | /* _Py_parse_inf_or_nan: Attempt to parse a string of the form "nan", "inf" or  | 
20  |  |    "infinity", with an optional leading sign of "+" or "-".  On success,  | 
21  |  |    return the NaN or Infinity as a double and set *endptr to point just beyond  | 
22  |  |    the successfully parsed portion of the string.  On failure, return -1.0 and  | 
23  |  |    set *endptr to point to the start of the string. */  | 
24  |  |  | 
25  |  | #ifndef PY_NO_SHORT_FLOAT_REPR  | 
26  |  |  | 
27  |  | double  | 
28  |  | _Py_parse_inf_or_nan(const char *p, char **endptr)  | 
29  | 0  | { | 
30  | 0  |     double retval;  | 
31  | 0  |     const char *s;  | 
32  | 0  |     int negate = 0;  | 
33  |  | 
  | 
34  | 0  |     s = p;  | 
35  | 0  |     if (*s == '-') { | 
36  | 0  |         negate = 1;  | 
37  | 0  |         s++;  | 
38  | 0  |     }  | 
39  | 0  |     else if (*s == '+') { | 
40  | 0  |         s++;  | 
41  | 0  |     }  | 
42  | 0  |     if (case_insensitive_match(s, "inf")) { | 
43  | 0  |         s += 3;  | 
44  | 0  |         if (case_insensitive_match(s, "inity"))  | 
45  | 0  |             s += 5;  | 
46  | 0  |         retval = _Py_dg_infinity(negate);  | 
47  | 0  |     }  | 
48  | 0  |     else if (case_insensitive_match(s, "nan")) { | 
49  | 0  |         s += 3;  | 
50  | 0  |         retval = _Py_dg_stdnan(negate);  | 
51  | 0  |     }  | 
52  | 0  |     else { | 
53  | 0  |         s = p;  | 
54  | 0  |         retval = -1.0;  | 
55  | 0  |     }  | 
56  | 0  |     *endptr = (char *)s;  | 
57  | 0  |     return retval;  | 
58  | 0  | }  | 
59  |  |  | 
60  |  | #else  | 
61  |  |  | 
62  |  | double  | 
63  |  | _Py_parse_inf_or_nan(const char *p, char **endptr)  | 
64  |  | { | 
65  |  |     double retval;  | 
66  |  |     const char *s;  | 
67  |  |     int negate = 0;  | 
68  |  |  | 
69  |  |     s = p;  | 
70  |  |     if (*s == '-') { | 
71  |  |         negate = 1;  | 
72  |  |         s++;  | 
73  |  |     }  | 
74  |  |     else if (*s == '+') { | 
75  |  |         s++;  | 
76  |  |     }  | 
77  |  |     if (case_insensitive_match(s, "inf")) { | 
78  |  |         s += 3;  | 
79  |  |         if (case_insensitive_match(s, "inity"))  | 
80  |  |             s += 5;  | 
81  |  |         retval = negate ? -Py_HUGE_VAL : Py_HUGE_VAL;  | 
82  |  |     }  | 
83  |  | #ifdef Py_NAN  | 
84  |  |     else if (case_insensitive_match(s, "nan")) { | 
85  |  |         s += 3;  | 
86  |  |         retval = negate ? -Py_NAN : Py_NAN;  | 
87  |  |     }  | 
88  |  | #endif  | 
89  |  |     else { | 
90  |  |         s = p;  | 
91  |  |         retval = -1.0;  | 
92  |  |     }  | 
93  |  |     *endptr = (char *)s;  | 
94  |  |     return retval;  | 
95  |  | }  | 
96  |  |  | 
97  |  | #endif  | 
98  |  |  | 
99  |  | /**  | 
100  |  |  * _PyOS_ascii_strtod:  | 
101  |  |  * @nptr:    the string to convert to a numeric value.  | 
102  |  |  * @endptr:  if non-%NULL, it returns the character after  | 
103  |  |  *           the last character used in the conversion.  | 
104  |  |  *  | 
105  |  |  * Converts a string to a #gdouble value.  | 
106  |  |  * This function behaves like the standard strtod() function  | 
107  |  |  * does in the C locale. It does this without actually  | 
108  |  |  * changing the current locale, since that would not be  | 
109  |  |  * thread-safe.  | 
110  |  |  *  | 
111  |  |  * This function is typically used when reading configuration  | 
112  |  |  * files or other non-user input that should be locale independent.  | 
113  |  |  * To handle input from the user you should normally use the  | 
114  |  |  * locale-sensitive system strtod() function.  | 
115  |  |  *  | 
116  |  |  * If the correct value would cause overflow, plus or minus %HUGE_VAL  | 
117  |  |  * is returned (according to the sign of the value), and %ERANGE is  | 
118  |  |  * stored in %errno. If the correct value would cause underflow,  | 
119  |  |  * zero is returned and %ERANGE is stored in %errno.  | 
120  |  |  * If memory allocation fails, %ENOMEM is stored in %errno.  | 
121  |  |  *  | 
122  |  |  * This function resets %errno before calling strtod() so that  | 
123  |  |  * you can reliably detect overflow and underflow.  | 
124  |  |  *  | 
125  |  |  * Return value: the #gdouble value.  | 
126  |  |  **/  | 
127  |  |  | 
128  |  | #ifndef PY_NO_SHORT_FLOAT_REPR  | 
129  |  |  | 
130  |  | static double  | 
131  |  | _PyOS_ascii_strtod(const char *nptr, char **endptr)  | 
132  | 2  | { | 
133  | 2  |     double result;  | 
134  | 2  |     _Py_SET_53BIT_PRECISION_HEADER;  | 
135  |  |  | 
136  | 2  |     assert(nptr != NULL);  | 
137  |  |     /* Set errno to zero, so that we can distinguish zero results  | 
138  |  |        and underflows */  | 
139  | 2  |     errno = 0;  | 
140  |  |  | 
141  | 2  |     _Py_SET_53BIT_PRECISION_START;  | 
142  | 2  |     result = _Py_dg_strtod(nptr, endptr);  | 
143  | 2  |     _Py_SET_53BIT_PRECISION_END;  | 
144  |  |  | 
145  | 2  |     if (*endptr == nptr)  | 
146  |  |         /* string might represent an inf or nan */  | 
147  | 0  |         result = _Py_parse_inf_or_nan(nptr, endptr);  | 
148  |  |  | 
149  | 2  |     return result;  | 
150  |  |  | 
151  | 2  | }  | 
152  |  |  | 
153  |  | #else  | 
154  |  |  | 
155  |  | /*  | 
156  |  |    Use system strtod;  since strtod is locale aware, we may  | 
157  |  |    have to first fix the decimal separator.  | 
158  |  |  | 
159  |  |    Note that unlike _Py_dg_strtod, the system strtod may not always give  | 
160  |  |    correctly rounded results.  | 
161  |  | */  | 
162  |  |  | 
163  |  | static double  | 
164  |  | _PyOS_ascii_strtod(const char *nptr, char **endptr)  | 
165  |  | { | 
166  |  |     char *fail_pos;  | 
167  |  |     double val;  | 
168  |  |     struct lconv *locale_data;  | 
169  |  |     const char *decimal_point;  | 
170  |  |     size_t decimal_point_len;  | 
171  |  |     const char *p, *decimal_point_pos;  | 
172  |  |     const char *end = NULL; /* Silence gcc */  | 
173  |  |     const char *digits_pos = NULL;  | 
174  |  |     int negate = 0;  | 
175  |  |  | 
176  |  |     assert(nptr != NULL);  | 
177  |  |  | 
178  |  |     fail_pos = NULL;  | 
179  |  |  | 
180  |  |     locale_data = localeconv();  | 
181  |  |     decimal_point = locale_data->decimal_point;  | 
182  |  |     decimal_point_len = strlen(decimal_point);  | 
183  |  |  | 
184  |  |     assert(decimal_point_len != 0);  | 
185  |  |  | 
186  |  |     decimal_point_pos = NULL;  | 
187  |  |  | 
188  |  |     /* Parse infinities and nans */  | 
189  |  |     val = _Py_parse_inf_or_nan(nptr, endptr);  | 
190  |  |     if (*endptr != nptr)  | 
191  |  |         return val;  | 
192  |  |  | 
193  |  |     /* Set errno to zero, so that we can distinguish zero results  | 
194  |  |        and underflows */  | 
195  |  |     errno = 0;  | 
196  |  |  | 
197  |  |     /* We process the optional sign manually, then pass the remainder to  | 
198  |  |        the system strtod.  This ensures that the result of an underflow  | 
199  |  |        has the correct sign. (bug #1725)  */  | 
200  |  |     p = nptr;  | 
201  |  |     /* Process leading sign, if present */  | 
202  |  |     if (*p == '-') { | 
203  |  |         negate = 1;  | 
204  |  |         p++;  | 
205  |  |     }  | 
206  |  |     else if (*p == '+') { | 
207  |  |         p++;  | 
208  |  |     }  | 
209  |  |  | 
210  |  |     /* Some platform strtods accept hex floats; Python shouldn't (at the  | 
211  |  |        moment), so we check explicitly for strings starting with '0x'. */  | 
212  |  |     if (*p == '0' && (*(p+1) == 'x' || *(p+1) == 'X'))  | 
213  |  |         goto invalid_string;  | 
214  |  |  | 
215  |  |     /* Check that what's left begins with a digit or decimal point */  | 
216  |  |     if (!Py_ISDIGIT(*p) && *p != '.')  | 
217  |  |         goto invalid_string;  | 
218  |  |  | 
219  |  |     digits_pos = p;  | 
220  |  |     if (decimal_point[0] != '.' ||  | 
221  |  |         decimal_point[1] != 0)  | 
222  |  |     { | 
223  |  |         /* Look for a '.' in the input; if present, it'll need to be  | 
224  |  |            swapped for the current locale's decimal point before we  | 
225  |  |            call strtod.  On the other hand, if we find the current  | 
226  |  |            locale's decimal point then the input is invalid. */  | 
227  |  |         while (Py_ISDIGIT(*p))  | 
228  |  |             p++;  | 
229  |  |  | 
230  |  |         if (*p == '.')  | 
231  |  |         { | 
232  |  |             decimal_point_pos = p++;  | 
233  |  |  | 
234  |  |             /* locate end of number */  | 
235  |  |             while (Py_ISDIGIT(*p))  | 
236  |  |                 p++;  | 
237  |  |  | 
238  |  |             if (*p == 'e' || *p == 'E')  | 
239  |  |                 p++;  | 
240  |  |             if (*p == '+' || *p == '-')  | 
241  |  |                 p++;  | 
242  |  |             while (Py_ISDIGIT(*p))  | 
243  |  |                 p++;  | 
244  |  |             end = p;  | 
245  |  |         }  | 
246  |  |         else if (strncmp(p, decimal_point, decimal_point_len) == 0)  | 
247  |  |             /* Python bug #1417699 */  | 
248  |  |             goto invalid_string;  | 
249  |  |         /* For the other cases, we need not convert the decimal  | 
250  |  |            point */  | 
251  |  |     }  | 
252  |  |  | 
253  |  |     if (decimal_point_pos) { | 
254  |  |         char *copy, *c;  | 
255  |  |         /* Create a copy of the input, with the '.' converted to the  | 
256  |  |            locale-specific decimal point */  | 
257  |  |         copy = (char *)PyMem_MALLOC(end - digits_pos +  | 
258  |  |                                     1 + decimal_point_len);  | 
259  |  |         if (copy == NULL) { | 
260  |  |             *endptr = (char *)nptr;  | 
261  |  |             errno = ENOMEM;  | 
262  |  |             return val;  | 
263  |  |         }  | 
264  |  |  | 
265  |  |         c = copy;  | 
266  |  |         memcpy(c, digits_pos, decimal_point_pos - digits_pos);  | 
267  |  |         c += decimal_point_pos - digits_pos;  | 
268  |  |         memcpy(c, decimal_point, decimal_point_len);  | 
269  |  |         c += decimal_point_len;  | 
270  |  |         memcpy(c, decimal_point_pos + 1,  | 
271  |  |                end - (decimal_point_pos + 1));  | 
272  |  |         c += end - (decimal_point_pos + 1);  | 
273  |  |         *c = 0;  | 
274  |  |  | 
275  |  |         val = strtod(copy, &fail_pos);  | 
276  |  |  | 
277  |  |         if (fail_pos)  | 
278  |  |         { | 
279  |  |             if (fail_pos > decimal_point_pos)  | 
280  |  |                 fail_pos = (char *)digits_pos +  | 
281  |  |                     (fail_pos - copy) -  | 
282  |  |                     (decimal_point_len - 1);  | 
283  |  |             else  | 
284  |  |                 fail_pos = (char *)digits_pos +  | 
285  |  |                     (fail_pos - copy);  | 
286  |  |         }  | 
287  |  |  | 
288  |  |         PyMem_FREE(copy);  | 
289  |  |  | 
290  |  |     }  | 
291  |  |     else { | 
292  |  |         val = strtod(digits_pos, &fail_pos);  | 
293  |  |     }  | 
294  |  |  | 
295  |  |     if (fail_pos == digits_pos)  | 
296  |  |         goto invalid_string;  | 
297  |  |  | 
298  |  |     if (negate && fail_pos != nptr)  | 
299  |  |         val = -val;  | 
300  |  |     *endptr = fail_pos;  | 
301  |  |  | 
302  |  |     return val;  | 
303  |  |  | 
304  |  |   invalid_string:  | 
305  |  |     *endptr = (char*)nptr;  | 
306  |  |     errno = EINVAL;  | 
307  |  |     return -1.0;  | 
308  |  | }  | 
309  |  |  | 
310  |  | #endif  | 
311  |  |  | 
312  |  | /* PyOS_string_to_double converts a null-terminated byte string s (interpreted  | 
313  |  |    as a string of ASCII characters) to a float.  The string should not have  | 
314  |  |    leading or trailing whitespace.  The conversion is independent of the  | 
315  |  |    current locale.  | 
316  |  |  | 
317  |  |    If endptr is NULL, try to convert the whole string.  Raise ValueError and  | 
318  |  |    return -1.0 if the string is not a valid representation of a floating-point  | 
319  |  |    number.  | 
320  |  |  | 
321  |  |    If endptr is non-NULL, try to convert as much of the string as possible.  | 
322  |  |    If no initial segment of the string is the valid representation of a  | 
323  |  |    floating-point number then *endptr is set to point to the beginning of the  | 
324  |  |    string, -1.0 is returned and again ValueError is raised.  | 
325  |  |  | 
326  |  |    On overflow (e.g., when trying to convert '1e500' on an IEEE 754 machine),  | 
327  |  |    if overflow_exception is NULL then +-Py_HUGE_VAL is returned, and no Python  | 
328  |  |    exception is raised.  Otherwise, overflow_exception should point to  | 
329  |  |    a Python exception, this exception will be raised, -1.0 will be returned,  | 
330  |  |    and *endptr will point just past the end of the converted value.  | 
331  |  |  | 
332  |  |    If any other failure occurs (for example lack of memory), -1.0 is returned  | 
333  |  |    and the appropriate Python exception will have been set.  | 
334  |  | */  | 
335  |  |  | 
336  |  | double  | 
337  |  | PyOS_string_to_double(const char *s,  | 
338  |  |                       char **endptr,  | 
339  |  |                       PyObject *overflow_exception)  | 
340  | 2  | { | 
341  | 2  |     double x, result=-1.0;  | 
342  | 2  |     char *fail_pos;  | 
343  |  |  | 
344  | 2  |     errno = 0;  | 
345  | 2  |     PyFPE_START_PROTECT("PyOS_string_to_double", return -1.0) | 
346  | 2  |     x = _PyOS_ascii_strtod(s, &fail_pos);  | 
347  | 2  |     PyFPE_END_PROTECT(x)  | 
348  |  |  | 
349  | 2  |     if (errno == ENOMEM) { | 
350  | 0  |         PyErr_NoMemory();  | 
351  | 0  |         fail_pos = (char *)s;  | 
352  | 0  |     }  | 
353  | 2  |     else if (!endptr && (fail_pos == s || *fail_pos != '\0'))  | 
354  | 0  |         PyErr_Format(PyExc_ValueError,  | 
355  | 0  |                       "could not convert string to float: "  | 
356  | 0  |                       "'%.200s'", s);  | 
357  | 2  |     else if (fail_pos == s)  | 
358  | 0  |         PyErr_Format(PyExc_ValueError,  | 
359  | 0  |                       "could not convert string to float: "  | 
360  | 0  |                       "'%.200s'", s);  | 
361  | 2  |     else if (errno == ERANGE && fabs(x) >= 1.0 && overflow_exception)  | 
362  | 0  |         PyErr_Format(overflow_exception,  | 
363  | 0  |                       "value too large to convert to float: "  | 
364  | 0  |                       "'%.200s'", s);  | 
365  | 2  |     else  | 
366  | 2  |         result = x;  | 
367  |  |  | 
368  | 2  |     if (endptr != NULL)  | 
369  | 0  |         *endptr = fail_pos;  | 
370  | 2  |     return result;  | 
371  | 2  | }  | 
372  |  |  | 
373  |  | /* Remove underscores that follow the underscore placement rule from  | 
374  |  |    the string and then call the `innerfunc` function on the result.  | 
375  |  |    It should return a new object or NULL on exception.  | 
376  |  |  | 
377  |  |    `what` is used for the error message emitted when underscores are detected  | 
378  |  |    that don't follow the rule. `arg` is an opaque pointer passed to the inner  | 
379  |  |    function.  | 
380  |  |  | 
381  |  |    This is used to implement underscore-agnostic conversion for floats  | 
382  |  |    and complex numbers.  | 
383  |  | */  | 
384  |  | PyObject *  | 
385  |  | _Py_string_to_number_with_underscores(  | 
386  |  |     const char *s, Py_ssize_t orig_len, const char *what, PyObject *obj, void *arg,  | 
387  |  |     PyObject *(*innerfunc)(const char *, Py_ssize_t, void *))  | 
388  | 0  | { | 
389  | 0  |     char prev;  | 
390  | 0  |     const char *p, *last;  | 
391  | 0  |     char *dup, *end;  | 
392  | 0  |     PyObject *result;  | 
393  |  | 
  | 
394  | 0  |     assert(s[orig_len] == '\0');  | 
395  |  | 
  | 
396  | 0  |     if (strchr(s, '_') == NULL) { | 
397  | 0  |         return innerfunc(s, orig_len, arg);  | 
398  | 0  |     }  | 
399  |  |  | 
400  | 0  |     dup = PyMem_Malloc(orig_len + 1);  | 
401  | 0  |     if (dup == NULL) { | 
402  | 0  |         return PyErr_NoMemory();  | 
403  | 0  |     }  | 
404  | 0  |     end = dup;  | 
405  | 0  |     prev = '\0';  | 
406  | 0  |     last = s + orig_len;  | 
407  | 0  |     for (p = s; *p; p++) { | 
408  | 0  |         if (*p == '_') { | 
409  |  |             /* Underscores are only allowed after digits. */  | 
410  | 0  |             if (!(prev >= '0' && prev <= '9')) { | 
411  | 0  |                 goto error;  | 
412  | 0  |             }  | 
413  | 0  |         }  | 
414  | 0  |         else { | 
415  | 0  |             *end++ = *p;  | 
416  |  |             /* Underscores are only allowed before digits. */  | 
417  | 0  |             if (prev == '_' && !(*p >= '0' && *p <= '9')) { | 
418  | 0  |                 goto error;  | 
419  | 0  |             }  | 
420  | 0  |         }  | 
421  | 0  |         prev = *p;  | 
422  | 0  |     }  | 
423  |  |     /* Underscores are not allowed at the end. */  | 
424  | 0  |     if (prev == '_') { | 
425  | 0  |         goto error;  | 
426  | 0  |     }  | 
427  |  |     /* No embedded NULs allowed. */  | 
428  | 0  |     if (p != last) { | 
429  | 0  |         goto error;  | 
430  | 0  |     }  | 
431  | 0  |     *end = '\0';  | 
432  | 0  |     result = innerfunc(dup, end - dup, arg);  | 
433  | 0  |     PyMem_Free(dup);  | 
434  | 0  |     return result;  | 
435  |  |  | 
436  | 0  |   error:  | 
437  | 0  |     PyMem_Free(dup);  | 
438  | 0  |     PyErr_Format(PyExc_ValueError,  | 
439  | 0  |                  "could not convert string to %s: "  | 
440  | 0  |                  "%R", what, obj);  | 
441  | 0  |     return NULL;  | 
442  | 0  | }  | 
443  |  |  | 
444  |  | #ifdef PY_NO_SHORT_FLOAT_REPR  | 
445  |  |  | 
446  |  | /* Given a string that may have a decimal point in the current  | 
447  |  |    locale, change it back to a dot.  Since the string cannot get  | 
448  |  |    longer, no need for a maximum buffer size parameter. */  | 
449  |  | Py_LOCAL_INLINE(void)  | 
450  |  | change_decimal_from_locale_to_dot(char* buffer)  | 
451  |  | { | 
452  |  |     struct lconv *locale_data = localeconv();  | 
453  |  |     const char *decimal_point = locale_data->decimal_point;  | 
454  |  |  | 
455  |  |     if (decimal_point[0] != '.' || decimal_point[1] != 0) { | 
456  |  |         size_t decimal_point_len = strlen(decimal_point);  | 
457  |  |  | 
458  |  |         if (*buffer == '+' || *buffer == '-')  | 
459  |  |             buffer++;  | 
460  |  |         while (Py_ISDIGIT(*buffer))  | 
461  |  |             buffer++;  | 
462  |  |         if (strncmp(buffer, decimal_point, decimal_point_len) == 0) { | 
463  |  |             *buffer = '.';  | 
464  |  |             buffer++;  | 
465  |  |             if (decimal_point_len > 1) { | 
466  |  |                 /* buffer needs to get smaller */  | 
467  |  |                 size_t rest_len = strlen(buffer +  | 
468  |  |                                      (decimal_point_len - 1));  | 
469  |  |                 memmove(buffer,  | 
470  |  |                     buffer + (decimal_point_len - 1),  | 
471  |  |                     rest_len);  | 
472  |  |                 buffer[rest_len] = 0;  | 
473  |  |             }  | 
474  |  |         }  | 
475  |  |     }  | 
476  |  | }  | 
477  |  |  | 
478  |  |  | 
479  |  | /* From the C99 standard, section 7.19.6:  | 
480  |  | The exponent always contains at least two digits, and only as many more digits  | 
481  |  | as necessary to represent the exponent.  | 
482  |  | */  | 
483  |  | #define MIN_EXPONENT_DIGITS 2  | 
484  |  |  | 
485  |  | /* Ensure that any exponent, if present, is at least MIN_EXPONENT_DIGITS  | 
486  |  |    in length. */  | 
487  |  | Py_LOCAL_INLINE(void)  | 
488  |  | ensure_minimum_exponent_length(char* buffer, size_t buf_size)  | 
489  |  | { | 
490  |  |     char *p = strpbrk(buffer, "eE");  | 
491  |  |     if (p && (*(p + 1) == '-' || *(p + 1) == '+')) { | 
492  |  |         char *start = p + 2;  | 
493  |  |         int exponent_digit_cnt = 0;  | 
494  |  |         int leading_zero_cnt = 0;  | 
495  |  |         int in_leading_zeros = 1;  | 
496  |  |         int significant_digit_cnt;  | 
497  |  |  | 
498  |  |         /* Skip over the exponent and the sign. */  | 
499  |  |         p += 2;  | 
500  |  |  | 
501  |  |         /* Find the end of the exponent, keeping track of leading  | 
502  |  |            zeros. */  | 
503  |  |         while (*p && Py_ISDIGIT(*p)) { | 
504  |  |             if (in_leading_zeros && *p == '0')  | 
505  |  |                 ++leading_zero_cnt;  | 
506  |  |             if (*p != '0')  | 
507  |  |                 in_leading_zeros = 0;  | 
508  |  |             ++p;  | 
509  |  |             ++exponent_digit_cnt;  | 
510  |  |         }  | 
511  |  |  | 
512  |  |         significant_digit_cnt = exponent_digit_cnt - leading_zero_cnt;  | 
513  |  |         if (exponent_digit_cnt == MIN_EXPONENT_DIGITS) { | 
514  |  |             /* If there are 2 exactly digits, we're done,  | 
515  |  |                regardless of what they contain */  | 
516  |  |         }  | 
517  |  |         else if (exponent_digit_cnt > MIN_EXPONENT_DIGITS) { | 
518  |  |             int extra_zeros_cnt;  | 
519  |  |  | 
520  |  |             /* There are more than 2 digits in the exponent.  See  | 
521  |  |                if we can delete some of the leading zeros */  | 
522  |  |             if (significant_digit_cnt < MIN_EXPONENT_DIGITS)  | 
523  |  |                 significant_digit_cnt = MIN_EXPONENT_DIGITS;  | 
524  |  |             extra_zeros_cnt = exponent_digit_cnt -  | 
525  |  |                 significant_digit_cnt;  | 
526  |  |  | 
527  |  |             /* Delete extra_zeros_cnt worth of characters from the  | 
528  |  |                front of the exponent */  | 
529  |  |             assert(extra_zeros_cnt >= 0);  | 
530  |  |  | 
531  |  |             /* Add one to significant_digit_cnt to copy the  | 
532  |  |                trailing 0 byte, thus setting the length */  | 
533  |  |             memmove(start,  | 
534  |  |                 start + extra_zeros_cnt,  | 
535  |  |                 significant_digit_cnt + 1);  | 
536  |  |         }  | 
537  |  |         else { | 
538  |  |             /* If there are fewer than 2 digits, add zeros  | 
539  |  |                until there are 2, if there's enough room */  | 
540  |  |             int zeros = MIN_EXPONENT_DIGITS - exponent_digit_cnt;  | 
541  |  |             if (start + zeros + exponent_digit_cnt + 1  | 
542  |  |                   < buffer + buf_size) { | 
543  |  |                 memmove(start + zeros, start,  | 
544  |  |                     exponent_digit_cnt + 1);  | 
545  |  |                 memset(start, '0', zeros);  | 
546  |  |             }  | 
547  |  |         }  | 
548  |  |     }  | 
549  |  | }  | 
550  |  |  | 
551  |  | /* Remove trailing zeros after the decimal point from a numeric string; also  | 
552  |  |    remove the decimal point if all digits following it are zero.  The numeric  | 
553  |  |    string must end in '\0', and should not have any leading or trailing  | 
554  |  |    whitespace.  Assumes that the decimal point is '.'. */  | 
555  |  | Py_LOCAL_INLINE(void)  | 
556  |  | remove_trailing_zeros(char *buffer)  | 
557  |  | { | 
558  |  |     char *old_fraction_end, *new_fraction_end, *end, *p;  | 
559  |  |  | 
560  |  |     p = buffer;  | 
561  |  |     if (*p == '-' || *p == '+')  | 
562  |  |         /* Skip leading sign, if present */  | 
563  |  |         ++p;  | 
564  |  |     while (Py_ISDIGIT(*p))  | 
565  |  |         ++p;  | 
566  |  |  | 
567  |  |     /* if there's no decimal point there's nothing to do */  | 
568  |  |     if (*p++ != '.')  | 
569  |  |         return;  | 
570  |  |  | 
571  |  |     /* scan any digits after the point */  | 
572  |  |     while (Py_ISDIGIT(*p))  | 
573  |  |         ++p;  | 
574  |  |     old_fraction_end = p;  | 
575  |  |  | 
576  |  |     /* scan up to ending '\0' */  | 
577  |  |     while (*p != '\0')  | 
578  |  |         p++;  | 
579  |  |     /* +1 to make sure that we move the null byte as well */  | 
580  |  |     end = p+1;  | 
581  |  |  | 
582  |  |     /* scan back from fraction_end, looking for removable zeros */  | 
583  |  |     p = old_fraction_end;  | 
584  |  |     while (*(p-1) == '0')  | 
585  |  |         --p;  | 
586  |  |     /* and remove point if we've got that far */  | 
587  |  |     if (*(p-1) == '.')  | 
588  |  |         --p;  | 
589  |  |     new_fraction_end = p;  | 
590  |  |  | 
591  |  |     memmove(new_fraction_end, old_fraction_end, end-old_fraction_end);  | 
592  |  | }  | 
593  |  |  | 
594  |  | /* Ensure that buffer has a decimal point in it.  The decimal point will not  | 
595  |  |    be in the current locale, it will always be '.'. Don't add a decimal point  | 
596  |  |    if an exponent is present.  Also, convert to exponential notation where  | 
597  |  |    adding a '.0' would produce too many significant digits (see issue 5864).  | 
598  |  |  | 
599  |  |    Returns a pointer to the fixed buffer, or NULL on failure.  | 
600  |  | */  | 
601  |  | Py_LOCAL_INLINE(char *)  | 
602  |  | ensure_decimal_point(char* buffer, size_t buf_size, int precision)  | 
603  |  | { | 
604  |  |     int digit_count, insert_count = 0, convert_to_exp = 0;  | 
605  |  |     const char *chars_to_insert;  | 
606  |  |     char *digits_start;  | 
607  |  |  | 
608  |  |     /* search for the first non-digit character */  | 
609  |  |     char *p = buffer;  | 
610  |  |     if (*p == '-' || *p == '+')  | 
611  |  |         /* Skip leading sign, if present.  I think this could only  | 
612  |  |            ever be '-', but it can't hurt to check for both. */  | 
613  |  |         ++p;  | 
614  |  |     digits_start = p;  | 
615  |  |     while (*p && Py_ISDIGIT(*p))  | 
616  |  |         ++p;  | 
617  |  |     digit_count = Py_SAFE_DOWNCAST(p - digits_start, Py_ssize_t, int);  | 
618  |  |  | 
619  |  |     if (*p == '.') { | 
620  |  |         if (Py_ISDIGIT(*(p+1))) { | 
621  |  |             /* Nothing to do, we already have a decimal  | 
622  |  |                point and a digit after it */  | 
623  |  |         }  | 
624  |  |         else { | 
625  |  |             /* We have a decimal point, but no following  | 
626  |  |                digit.  Insert a zero after the decimal. */  | 
627  |  |             /* can't ever get here via PyOS_double_to_string */  | 
628  |  |             assert(precision == -1);  | 
629  |  |             ++p;  | 
630  |  |             chars_to_insert = "0";  | 
631  |  |             insert_count = 1;  | 
632  |  |         }  | 
633  |  |     }  | 
634  |  |     else if (!(*p == 'e' || *p == 'E')) { | 
635  |  |         /* Don't add ".0" if we have an exponent. */  | 
636  |  |         if (digit_count == precision) { | 
637  |  |             /* issue 5864: don't add a trailing .0 in the case  | 
638  |  |                where the '%g'-formatted result already has as many  | 
639  |  |                significant digits as were requested.  Switch to  | 
640  |  |                exponential notation instead. */  | 
641  |  |             convert_to_exp = 1;  | 
642  |  |             /* no exponent, no point, and we shouldn't land here  | 
643  |  |                for infs and nans, so we must be at the end of the  | 
644  |  |                string. */  | 
645  |  |             assert(*p == '\0');  | 
646  |  |         }  | 
647  |  |         else { | 
648  |  |             assert(precision == -1 || digit_count < precision);  | 
649  |  |             chars_to_insert = ".0";  | 
650  |  |             insert_count = 2;  | 
651  |  |         }  | 
652  |  |     }  | 
653  |  |     if (insert_count) { | 
654  |  |         size_t buf_len = strlen(buffer);  | 
655  |  |         if (buf_len + insert_count + 1 >= buf_size) { | 
656  |  |             /* If there is not enough room in the buffer  | 
657  |  |                for the additional text, just skip it.  It's  | 
658  |  |                not worth generating an error over. */  | 
659  |  |         }  | 
660  |  |         else { | 
661  |  |             memmove(p + insert_count, p,  | 
662  |  |                 buffer + strlen(buffer) - p + 1);  | 
663  |  |             memcpy(p, chars_to_insert, insert_count);  | 
664  |  |         }  | 
665  |  |     }  | 
666  |  |     if (convert_to_exp) { | 
667  |  |         int written;  | 
668  |  |         size_t buf_avail;  | 
669  |  |         p = digits_start;  | 
670  |  |         /* insert decimal point */  | 
671  |  |         assert(digit_count >= 1);  | 
672  |  |         memmove(p+2, p+1, digit_count); /* safe, but overwrites nul */  | 
673  |  |         p[1] = '.';  | 
674  |  |         p += digit_count+1;  | 
675  |  |         assert(p <= buf_size+buffer);  | 
676  |  |         buf_avail = buf_size+buffer-p;  | 
677  |  |         if (buf_avail == 0)  | 
678  |  |             return NULL;  | 
679  |  |         /* Add exponent.  It's okay to use lower case 'e': we only  | 
680  |  |            arrive here as a result of using the empty format code or  | 
681  |  |            repr/str builtins and those never want an upper case 'E' */  | 
682  |  |         written = PyOS_snprintf(p, buf_avail, "e%+.02d", digit_count-1);  | 
683  |  |         if (!(0 <= written &&  | 
684  |  |               written < Py_SAFE_DOWNCAST(buf_avail, size_t, int)))  | 
685  |  |             /* output truncated, or something else bad happened */  | 
686  |  |             return NULL;  | 
687  |  |         remove_trailing_zeros(buffer);  | 
688  |  |     }  | 
689  |  |     return buffer;  | 
690  |  | }  | 
691  |  |  | 
692  |  | /* see FORMATBUFLEN in unicodeobject.c */  | 
693  |  | #define FLOAT_FORMATBUFLEN 120  | 
694  |  |  | 
695  |  | /**  | 
696  |  |  * _PyOS_ascii_formatd:  | 
697  |  |  * @buffer: A buffer to place the resulting string in  | 
698  |  |  * @buf_size: The length of the buffer.  | 
699  |  |  * @format: The printf()-style format to use for the  | 
700  |  |  *          code to use for converting.  | 
701  |  |  * @d: The #gdouble to convert  | 
702  |  |  * @precision: The precision to use when formatting.  | 
703  |  |  *  | 
704  |  |  * Converts a #gdouble to a string, using the '.' as  | 
705  |  |  * decimal point. To format the number you pass in  | 
706  |  |  * a printf()-style format string. Allowed conversion  | 
707  |  |  * specifiers are 'e', 'E', 'f', 'F', 'g', 'G', and 'Z'.  | 
708  |  |  *  | 
709  |  |  * 'Z' is the same as 'g', except it always has a decimal and  | 
710  |  |  *     at least one digit after the decimal.  | 
711  |  |  *  | 
712  |  |  * Return value: The pointer to the buffer with the converted string.  | 
713  |  |  * On failure returns NULL but does not set any Python exception.  | 
714  |  |  **/  | 
715  |  | static char *  | 
716  |  | _PyOS_ascii_formatd(char       *buffer,  | 
717  |  |                    size_t      buf_size,  | 
718  |  |                    const char *format,  | 
719  |  |                    double      d,  | 
720  |  |                    int         precision)  | 
721  |  | { | 
722  |  |     char format_char;  | 
723  |  |     size_t format_len = strlen(format);  | 
724  |  |  | 
725  |  |     /* Issue 2264: code 'Z' requires copying the format.  'Z' is 'g', but  | 
726  |  |        also with at least one character past the decimal. */  | 
727  |  |     char tmp_format[FLOAT_FORMATBUFLEN];  | 
728  |  |  | 
729  |  |     /* The last character in the format string must be the format char */  | 
730  |  |     format_char = format[format_len - 1];  | 
731  |  |  | 
732  |  |     if (format[0] != '%')  | 
733  |  |         return NULL;  | 
734  |  |  | 
735  |  |     /* I'm not sure why this test is here.  It's ensuring that the format  | 
736  |  |        string after the first character doesn't have a single quote, a  | 
737  |  |        lowercase l, or a percent. This is the reverse of the commented-out  | 
738  |  |        test about 10 lines ago. */  | 
739  |  |     if (strpbrk(format + 1, "'l%"))  | 
740  |  |         return NULL;  | 
741  |  |  | 
742  |  |     /* Also curious about this function is that it accepts format strings  | 
743  |  |        like "%xg", which are invalid for floats.  In general, the  | 
744  |  |        interface to this function is not very good, but changing it is  | 
745  |  |        difficult because it's a public API. */  | 
746  |  |  | 
747  |  |     if (!(format_char == 'e' || format_char == 'E' ||  | 
748  |  |           format_char == 'f' || format_char == 'F' ||  | 
749  |  |           format_char == 'g' || format_char == 'G' ||  | 
750  |  |           format_char == 'Z'))  | 
751  |  |         return NULL;  | 
752  |  |  | 
753  |  |     /* Map 'Z' format_char to 'g', by copying the format string and  | 
754  |  |        replacing the final char with a 'g' */  | 
755  |  |     if (format_char == 'Z') { | 
756  |  |         if (format_len + 1 >= sizeof(tmp_format)) { | 
757  |  |             /* The format won't fit in our copy.  Error out.  In  | 
758  |  |                practice, this will never happen and will be  | 
759  |  |                detected by returning NULL */  | 
760  |  |             return NULL;  | 
761  |  |         }  | 
762  |  |         strcpy(tmp_format, format);  | 
763  |  |         tmp_format[format_len - 1] = 'g';  | 
764  |  |         format = tmp_format;  | 
765  |  |     }  | 
766  |  |  | 
767  |  |  | 
768  |  |     /* Have PyOS_snprintf do the hard work */  | 
769  |  |     PyOS_snprintf(buffer, buf_size, format, d);  | 
770  |  |  | 
771  |  |     /* Do various fixups on the return string */  | 
772  |  |  | 
773  |  |     /* Get the current locale, and find the decimal point string.  | 
774  |  |        Convert that string back to a dot. */  | 
775  |  |     change_decimal_from_locale_to_dot(buffer);  | 
776  |  |  | 
777  |  |     /* If an exponent exists, ensure that the exponent is at least  | 
778  |  |        MIN_EXPONENT_DIGITS digits, providing the buffer is large enough  | 
779  |  |        for the extra zeros.  Also, if there are more than  | 
780  |  |        MIN_EXPONENT_DIGITS, remove as many zeros as possible until we get  | 
781  |  |        back to MIN_EXPONENT_DIGITS */  | 
782  |  |     ensure_minimum_exponent_length(buffer, buf_size);  | 
783  |  |  | 
784  |  |     /* If format_char is 'Z', make sure we have at least one character  | 
785  |  |        after the decimal point (and make sure we have a decimal point);  | 
786  |  |        also switch to exponential notation in some edge cases where the  | 
787  |  |        extra character would produce more significant digits that we  | 
788  |  |        really want. */  | 
789  |  |     if (format_char == 'Z')  | 
790  |  |         buffer = ensure_decimal_point(buffer, buf_size, precision);  | 
791  |  |  | 
792  |  |     return buffer;  | 
793  |  | }  | 
794  |  |  | 
795  |  | /* The fallback code to use if _Py_dg_dtoa is not available. */  | 
796  |  |  | 
797  |  | char * PyOS_double_to_string(double val,  | 
798  |  |                                          char format_code,  | 
799  |  |                                          int precision,  | 
800  |  |                                          int flags,  | 
801  |  |                                          int *type)  | 
802  |  | { | 
803  |  |     char format[32];  | 
804  |  |     Py_ssize_t bufsize;  | 
805  |  |     char *buf;  | 
806  |  |     int t, exp;  | 
807  |  |     int upper = 0;  | 
808  |  |  | 
809  |  |     /* Validate format_code, and map upper and lower case */  | 
810  |  |     switch (format_code) { | 
811  |  |     case 'e':          /* exponent */  | 
812  |  |     case 'f':          /* fixed */  | 
813  |  |     case 'g':          /* general */  | 
814  |  |         break;  | 
815  |  |     case 'E':  | 
816  |  |         upper = 1;  | 
817  |  |         format_code = 'e';  | 
818  |  |         break;  | 
819  |  |     case 'F':  | 
820  |  |         upper = 1;  | 
821  |  |         format_code = 'f';  | 
822  |  |         break;  | 
823  |  |     case 'G':  | 
824  |  |         upper = 1;  | 
825  |  |         format_code = 'g';  | 
826  |  |         break;  | 
827  |  |     case 'r':          /* repr format */  | 
828  |  |         /* Supplied precision is unused, must be 0. */  | 
829  |  |         if (precision != 0) { | 
830  |  |             PyErr_BadInternalCall();  | 
831  |  |             return NULL;  | 
832  |  |         }  | 
833  |  |         /* The repr() precision (17 significant decimal digits) is the  | 
834  |  |            minimal number that is guaranteed to have enough precision  | 
835  |  |            so that if the number is read back in the exact same binary  | 
836  |  |            value is recreated.  This is true for IEEE floating point  | 
837  |  |            by design, and also happens to work for all other modern  | 
838  |  |            hardware. */  | 
839  |  |         precision = 17;  | 
840  |  |         format_code = 'g';  | 
841  |  |         break;  | 
842  |  |     default:  | 
843  |  |         PyErr_BadInternalCall();  | 
844  |  |         return NULL;  | 
845  |  |     }  | 
846  |  |  | 
847  |  |     /* Here's a quick-and-dirty calculation to figure out how big a buffer  | 
848  |  |        we need.  In general, for a finite float we need:  | 
849  |  |  | 
850  |  |          1 byte for each digit of the decimal significand, and  | 
851  |  |  | 
852  |  |          1 for a possible sign  | 
853  |  |          1 for a possible decimal point  | 
854  |  |          2 for a possible [eE][+-]  | 
855  |  |          1 for each digit of the exponent;  if we allow 19 digits  | 
856  |  |            total then we're safe up to exponents of 2**63.  | 
857  |  |          1 for the trailing nul byte  | 
858  |  |  | 
859  |  |        This gives a total of 24 + the number of digits in the significand,  | 
860  |  |        and the number of digits in the significand is:  | 
861  |  |  | 
862  |  |          for 'g' format: at most precision, except possibly  | 
863  |  |            when precision == 0, when it's 1.  | 
864  |  |          for 'e' format: precision+1  | 
865  |  |          for 'f' format: precision digits after the point, at least 1  | 
866  |  |            before.  To figure out how many digits appear before the point  | 
867  |  |            we have to examine the size of the number.  If fabs(val) < 1.0  | 
868  |  |            then there will be only one digit before the point.  If  | 
869  |  |            fabs(val) >= 1.0, then there are at most  | 
870  |  |  | 
871  |  |          1+floor(log10(ceiling(fabs(val))))  | 
872  |  |  | 
873  |  |            digits before the point (where the 'ceiling' allows for the  | 
874  |  |            possibility that the rounding rounds the integer part of val  | 
875  |  |            up).  A safe upper bound for the above quantity is  | 
876  |  |            1+floor(exp/3), where exp is the unique integer such that 0.5  | 
877  |  |            <= fabs(val)/2**exp < 1.0.  This exp can be obtained from  | 
878  |  |            frexp.  | 
879  |  |  | 
880  |  |        So we allow room for precision+1 digits for all formats, plus an  | 
881  |  |        extra floor(exp/3) digits for 'f' format.  | 
882  |  |  | 
883  |  |     */  | 
884  |  |  | 
885  |  |     if (Py_IS_NAN(val) || Py_IS_INFINITY(val))  | 
886  |  |         /* 3 for 'inf'/'nan', 1 for sign, 1 for '\0' */  | 
887  |  |         bufsize = 5;  | 
888  |  |     else { | 
889  |  |         bufsize = 25 + precision;  | 
890  |  |         if (format_code == 'f' && fabs(val) >= 1.0) { | 
891  |  |             frexp(val, &exp);  | 
892  |  |             bufsize += exp/3;  | 
893  |  |         }  | 
894  |  |     }  | 
895  |  |  | 
896  |  |     buf = PyMem_Malloc(bufsize);  | 
897  |  |     if (buf == NULL) { | 
898  |  |         PyErr_NoMemory();  | 
899  |  |         return NULL;  | 
900  |  |     }  | 
901  |  |  | 
902  |  |     /* Handle nan and inf. */  | 
903  |  |     if (Py_IS_NAN(val)) { | 
904  |  |         strcpy(buf, "nan");  | 
905  |  |         t = Py_DTST_NAN;  | 
906  |  |     } else if (Py_IS_INFINITY(val)) { | 
907  |  |         if (copysign(1., val) == 1.)  | 
908  |  |             strcpy(buf, "inf");  | 
909  |  |         else  | 
910  |  |             strcpy(buf, "-inf");  | 
911  |  |         t = Py_DTST_INFINITE;  | 
912  |  |     } else { | 
913  |  |         t = Py_DTST_FINITE;  | 
914  |  |         if (flags & Py_DTSF_ADD_DOT_0)  | 
915  |  |             format_code = 'Z';  | 
916  |  |  | 
917  |  |         PyOS_snprintf(format, sizeof(format), "%%%s.%i%c",  | 
918  |  |                       (flags & Py_DTSF_ALT ? "#" : ""), precision,  | 
919  |  |                       format_code);  | 
920  |  |         _PyOS_ascii_formatd(buf, bufsize, format, val, precision);  | 
921  |  |     }  | 
922  |  |  | 
923  |  |     /* Add sign when requested.  It's convenient (esp. when formatting  | 
924  |  |      complex numbers) to include a sign even for inf and nan. */  | 
925  |  |     if (flags & Py_DTSF_SIGN && buf[0] != '-') { | 
926  |  |         size_t len = strlen(buf);  | 
927  |  |         /* the bufsize calculations above should ensure that we've got  | 
928  |  |            space to add a sign */  | 
929  |  |         assert((size_t)bufsize >= len+2);  | 
930  |  |         memmove(buf+1, buf, len+1);  | 
931  |  |         buf[0] = '+';  | 
932  |  |     }  | 
933  |  |     if (upper) { | 
934  |  |         /* Convert to upper case. */  | 
935  |  |         char *p1;  | 
936  |  |         for (p1 = buf; *p1; p1++)  | 
937  |  |             *p1 = Py_TOUPPER(*p1);  | 
938  |  |     }  | 
939  |  |  | 
940  |  |     if (type)  | 
941  |  |         *type = t;  | 
942  |  |     return buf;  | 
943  |  | }  | 
944  |  |  | 
945  |  | #else  | 
946  |  |  | 
947  |  | /* _Py_dg_dtoa is available. */  | 
948  |  |  | 
949  |  | /* I'm using a lookup table here so that I don't have to invent a non-locale  | 
950  |  |    specific way to convert to uppercase */  | 
951  | 0  | #define OFS_INF 0  | 
952  | 0  | #define OFS_NAN 1  | 
953  | 0  | #define OFS_E 2  | 
954  |  |  | 
955  |  | /* The lengths of these are known to the code below, so don't change them */  | 
956  |  | static const char * const lc_float_strings[] = { | 
957  |  |     "inf",  | 
958  |  |     "nan",  | 
959  |  |     "e",  | 
960  |  | };  | 
961  |  | static const char * const uc_float_strings[] = { | 
962  |  |     "INF",  | 
963  |  |     "NAN",  | 
964  |  |     "E",  | 
965  |  | };  | 
966  |  |  | 
967  |  |  | 
968  |  | /* Convert a double d to a string, and return a PyMem_Malloc'd block of  | 
969  |  |    memory contain the resulting string.  | 
970  |  |  | 
971  |  |    Arguments:  | 
972  |  |      d is the double to be converted  | 
973  |  |      format_code is one of 'e', 'f', 'g', 'r'.  'e', 'f' and 'g'  | 
974  |  |        correspond to '%e', '%f' and '%g';  'r' corresponds to repr.  | 
975  |  |      mode is one of '0', '2' or '3', and is completely determined by  | 
976  |  |        format_code: 'e' and 'g' use mode 2; 'f' mode 3, 'r' mode 0.  | 
977  |  |      precision is the desired precision  | 
978  |  |      always_add_sign is nonzero if a '+' sign should be included for positive  | 
979  |  |        numbers  | 
980  |  |      add_dot_0_if_integer is nonzero if integers in non-exponential form  | 
981  |  |        should have ".0" added.  Only applies to format codes 'r' and 'g'.  | 
982  |  |      use_alt_formatting is nonzero if alternative formatting should be  | 
983  |  |        used.  Only applies to format codes 'e', 'f' and 'g'.  For code 'g',  | 
984  |  |        at most one of use_alt_formatting and add_dot_0_if_integer should  | 
985  |  |        be nonzero.  | 
986  |  |      type, if non-NULL, will be set to one of these constants to identify  | 
987  |  |        the type of the 'd' argument:  | 
988  |  |      Py_DTST_FINITE  | 
989  |  |      Py_DTST_INFINITE  | 
990  |  |      Py_DTST_NAN  | 
991  |  |  | 
992  |  |    Returns a PyMem_Malloc'd block of memory containing the resulting string,  | 
993  |  |     or NULL on error. If NULL is returned, the Python error has been set.  | 
994  |  |  */  | 
995  |  |  | 
996  |  | static char *  | 
997  |  | format_float_short(double d, char format_code,  | 
998  |  |                    int mode, int precision,  | 
999  |  |                    int always_add_sign, int add_dot_0_if_integer,  | 
1000  |  |                    int use_alt_formatting, const char * const *float_strings,  | 
1001  |  |                    int *type)  | 
1002  | 0  | { | 
1003  | 0  |     char *buf = NULL;  | 
1004  | 0  |     char *p = NULL;  | 
1005  | 0  |     Py_ssize_t bufsize = 0;  | 
1006  | 0  |     char *digits, *digits_end;  | 
1007  | 0  |     int decpt_as_int, sign, exp_len, exp = 0, use_exp = 0;  | 
1008  | 0  |     Py_ssize_t decpt, digits_len, vdigits_start, vdigits_end;  | 
1009  | 0  |     _Py_SET_53BIT_PRECISION_HEADER;  | 
1010  |  |  | 
1011  |  |     /* _Py_dg_dtoa returns a digit string (no decimal point or exponent).  | 
1012  |  |        Must be matched by a call to _Py_dg_freedtoa. */  | 
1013  | 0  |     _Py_SET_53BIT_PRECISION_START;  | 
1014  | 0  |     digits = _Py_dg_dtoa(d, mode, precision, &decpt_as_int, &sign,  | 
1015  | 0  |                          &digits_end);  | 
1016  | 0  |     _Py_SET_53BIT_PRECISION_END;  | 
1017  |  | 
  | 
1018  | 0  |     decpt = (Py_ssize_t)decpt_as_int;  | 
1019  | 0  |     if (digits == NULL) { | 
1020  |  |         /* The only failure mode is no memory. */  | 
1021  | 0  |         PyErr_NoMemory();  | 
1022  | 0  |         goto exit;  | 
1023  | 0  |     }  | 
1024  | 0  |     assert(digits_end != NULL && digits_end >= digits);  | 
1025  | 0  |     digits_len = digits_end - digits;  | 
1026  |  | 
  | 
1027  | 0  |     if (digits_len && !Py_ISDIGIT(digits[0])) { | 
1028  |  |         /* Infinities and nans here; adapt Gay's output,  | 
1029  |  |            so convert Infinity to inf and NaN to nan, and  | 
1030  |  |            ignore sign of nan. Then return. */  | 
1031  |  |  | 
1032  |  |         /* ignore the actual sign of a nan */  | 
1033  | 0  |         if (digits[0] == 'n' || digits[0] == 'N')  | 
1034  | 0  |             sign = 0;  | 
1035  |  |  | 
1036  |  |         /* We only need 5 bytes to hold the result "+inf\0" . */  | 
1037  | 0  |         bufsize = 5; /* Used later in an assert. */  | 
1038  | 0  |         buf = (char *)PyMem_Malloc(bufsize);  | 
1039  | 0  |         if (buf == NULL) { | 
1040  | 0  |             PyErr_NoMemory();  | 
1041  | 0  |             goto exit;  | 
1042  | 0  |         }  | 
1043  | 0  |         p = buf;  | 
1044  |  | 
  | 
1045  | 0  |         if (sign == 1) { | 
1046  | 0  |             *p++ = '-';  | 
1047  | 0  |         }  | 
1048  | 0  |         else if (always_add_sign) { | 
1049  | 0  |             *p++ = '+';  | 
1050  | 0  |         }  | 
1051  | 0  |         if (digits[0] == 'i' || digits[0] == 'I') { | 
1052  | 0  |             strncpy(p, float_strings[OFS_INF], 3);  | 
1053  | 0  |             p += 3;  | 
1054  |  | 
  | 
1055  | 0  |             if (type)  | 
1056  | 0  |                 *type = Py_DTST_INFINITE;  | 
1057  | 0  |         }  | 
1058  | 0  |         else if (digits[0] == 'n' || digits[0] == 'N') { | 
1059  | 0  |             strncpy(p, float_strings[OFS_NAN], 3);  | 
1060  | 0  |             p += 3;  | 
1061  |  | 
  | 
1062  | 0  |             if (type)  | 
1063  | 0  |                 *type = Py_DTST_NAN;  | 
1064  | 0  |         }  | 
1065  | 0  |         else { | 
1066  |  |             /* shouldn't get here: Gay's code should always return  | 
1067  |  |                something starting with a digit, an 'I',  or 'N' */  | 
1068  | 0  |             Py_UNREACHABLE();  | 
1069  | 0  |         }  | 
1070  | 0  |         goto exit;  | 
1071  | 0  |     }  | 
1072  |  |  | 
1073  |  |     /* The result must be finite (not inf or nan). */  | 
1074  | 0  |     if (type)  | 
1075  | 0  |         *type = Py_DTST_FINITE;  | 
1076  |  |  | 
1077  |  |  | 
1078  |  |     /* We got digits back, format them.  We may need to pad 'digits'  | 
1079  |  |        either on the left or right (or both) with extra zeros, so in  | 
1080  |  |        general the resulting string has the form  | 
1081  |  |  | 
1082  |  |          [<sign>]<zeros><digits><zeros>[<exponent>]  | 
1083  |  |  | 
1084  |  |        where either of the <zeros> pieces could be empty, and there's a  | 
1085  |  |        decimal point that could appear either in <digits> or in the  | 
1086  |  |        leading or trailing <zeros>.  | 
1087  |  |  | 
1088  |  |        Imagine an infinite 'virtual' string vdigits, consisting of the  | 
1089  |  |        string 'digits' (starting at index 0) padded on both the left and  | 
1090  |  |        right with infinite strings of zeros.  We want to output a slice  | 
1091  |  |  | 
1092  |  |          vdigits[vdigits_start : vdigits_end]  | 
1093  |  |  | 
1094  |  |        of this virtual string.  Thus if vdigits_start < 0 then we'll end  | 
1095  |  |        up producing some leading zeros; if vdigits_end > digits_len there  | 
1096  |  |        will be trailing zeros in the output.  The next section of code  | 
1097  |  |        determines whether to use an exponent or not, figures out the  | 
1098  |  |        position 'decpt' of the decimal point, and computes 'vdigits_start'  | 
1099  |  |        and 'vdigits_end'. */  | 
1100  | 0  |     vdigits_end = digits_len;  | 
1101  | 0  |     switch (format_code) { | 
1102  | 0  |     case 'e':  | 
1103  | 0  |         use_exp = 1;  | 
1104  | 0  |         vdigits_end = precision;  | 
1105  | 0  |         break;  | 
1106  | 0  |     case 'f':  | 
1107  | 0  |         vdigits_end = decpt + precision;  | 
1108  | 0  |         break;  | 
1109  | 0  |     case 'g':  | 
1110  | 0  |         if (decpt <= -4 || decpt >  | 
1111  | 0  |             (add_dot_0_if_integer ? precision-1 : precision))  | 
1112  | 0  |             use_exp = 1;  | 
1113  | 0  |         if (use_alt_formatting)  | 
1114  | 0  |             vdigits_end = precision;  | 
1115  | 0  |         break;  | 
1116  | 0  |     case 'r':  | 
1117  |  |         /* convert to exponential format at 1e16.  We used to convert  | 
1118  |  |            at 1e17, but that gives odd-looking results for some values  | 
1119  |  |            when a 16-digit 'shortest' repr is padded with bogus zeros.  | 
1120  |  |            For example, repr(2e16+8) would give 20000000000000010.0;  | 
1121  |  |            the true value is 20000000000000008.0. */  | 
1122  | 0  |         if (decpt <= -4 || decpt > 16)  | 
1123  | 0  |             use_exp = 1;  | 
1124  | 0  |         break;  | 
1125  | 0  |     default:  | 
1126  | 0  |         PyErr_BadInternalCall();  | 
1127  | 0  |         goto exit;  | 
1128  | 0  |     }  | 
1129  |  |  | 
1130  |  |     /* if using an exponent, reset decimal point position to 1 and adjust  | 
1131  |  |        exponent accordingly.*/  | 
1132  | 0  |     if (use_exp) { | 
1133  | 0  |         exp = (int)decpt - 1;  | 
1134  | 0  |         decpt = 1;  | 
1135  | 0  |     }  | 
1136  |  |     /* ensure vdigits_start < decpt <= vdigits_end, or vdigits_start <  | 
1137  |  |        decpt < vdigits_end if add_dot_0_if_integer and no exponent */  | 
1138  | 0  |     vdigits_start = decpt <= 0 ? decpt-1 : 0;  | 
1139  | 0  |     if (!use_exp && add_dot_0_if_integer)  | 
1140  | 0  |         vdigits_end = vdigits_end > decpt ? vdigits_end : decpt + 1;  | 
1141  | 0  |     else  | 
1142  | 0  |         vdigits_end = vdigits_end > decpt ? vdigits_end : decpt;  | 
1143  |  |  | 
1144  |  |     /* double check inequalities */  | 
1145  | 0  |     assert(vdigits_start <= 0 &&  | 
1146  | 0  |            0 <= digits_len &&  | 
1147  | 0  |            digits_len <= vdigits_end);  | 
1148  |  |     /* decimal point should be in (vdigits_start, vdigits_end] */  | 
1149  | 0  |     assert(vdigits_start < decpt && decpt <= vdigits_end);  | 
1150  |  |  | 
1151  |  |     /* Compute an upper bound how much memory we need. This might be a few  | 
1152  |  |        chars too long, but no big deal. */  | 
1153  | 0  |     bufsize =  | 
1154  |  |         /* sign, decimal point and trailing 0 byte */  | 
1155  | 0  |         3 +  | 
1156  |  |  | 
1157  |  |         /* total digit count (including zero padding on both sides) */  | 
1158  | 0  |         (vdigits_end - vdigits_start) +  | 
1159  |  |  | 
1160  |  |         /* exponent "e+100", max 3 numerical digits */  | 
1161  | 0  |         (use_exp ? 5 : 0);  | 
1162  |  |  | 
1163  |  |     /* Now allocate the memory and initialize p to point to the start of  | 
1164  |  |        it. */  | 
1165  | 0  |     buf = (char *)PyMem_Malloc(bufsize);  | 
1166  | 0  |     if (buf == NULL) { | 
1167  | 0  |         PyErr_NoMemory();  | 
1168  | 0  |         goto exit;  | 
1169  | 0  |     }  | 
1170  | 0  |     p = buf;  | 
1171  |  |  | 
1172  |  |     /* Add a negative sign if negative, and a plus sign if non-negative  | 
1173  |  |        and always_add_sign is true. */  | 
1174  | 0  |     if (sign == 1)  | 
1175  | 0  |         *p++ = '-';  | 
1176  | 0  |     else if (always_add_sign)  | 
1177  | 0  |         *p++ = '+';  | 
1178  |  |  | 
1179  |  |     /* note that exactly one of the three 'if' conditions is true,  | 
1180  |  |        so we include exactly one decimal point */  | 
1181  |  |     /* Zero padding on left of digit string */  | 
1182  | 0  |     if (decpt <= 0) { | 
1183  | 0  |         memset(p, '0', decpt-vdigits_start);  | 
1184  | 0  |         p += decpt - vdigits_start;  | 
1185  | 0  |         *p++ = '.';  | 
1186  | 0  |         memset(p, '0', 0-decpt);  | 
1187  | 0  |         p += 0-decpt;  | 
1188  | 0  |     }  | 
1189  | 0  |     else { | 
1190  | 0  |         memset(p, '0', 0-vdigits_start);  | 
1191  | 0  |         p += 0 - vdigits_start;  | 
1192  | 0  |     }  | 
1193  |  |  | 
1194  |  |     /* Digits, with included decimal point */  | 
1195  | 0  |     if (0 < decpt && decpt <= digits_len) { | 
1196  | 0  |         strncpy(p, digits, decpt-0);  | 
1197  | 0  |         p += decpt-0;  | 
1198  | 0  |         *p++ = '.';  | 
1199  | 0  |         strncpy(p, digits+decpt, digits_len-decpt);  | 
1200  | 0  |         p += digits_len-decpt;  | 
1201  | 0  |     }  | 
1202  | 0  |     else { | 
1203  | 0  |         strncpy(p, digits, digits_len);  | 
1204  | 0  |         p += digits_len;  | 
1205  | 0  |     }  | 
1206  |  |  | 
1207  |  |     /* And zeros on the right */  | 
1208  | 0  |     if (digits_len < decpt) { | 
1209  | 0  |         memset(p, '0', decpt-digits_len);  | 
1210  | 0  |         p += decpt-digits_len;  | 
1211  | 0  |         *p++ = '.';  | 
1212  | 0  |         memset(p, '0', vdigits_end-decpt);  | 
1213  | 0  |         p += vdigits_end-decpt;  | 
1214  | 0  |     }  | 
1215  | 0  |     else { | 
1216  | 0  |         memset(p, '0', vdigits_end-digits_len);  | 
1217  | 0  |         p += vdigits_end-digits_len;  | 
1218  | 0  |     }  | 
1219  |  |  | 
1220  |  |     /* Delete a trailing decimal pt unless using alternative formatting. */  | 
1221  | 0  |     if (p[-1] == '.' && !use_alt_formatting)  | 
1222  | 0  |         p--;  | 
1223  |  |  | 
1224  |  |     /* Now that we've done zero padding, add an exponent if needed. */  | 
1225  | 0  |     if (use_exp) { | 
1226  | 0  |         *p++ = float_strings[OFS_E][0];  | 
1227  | 0  |         exp_len = sprintf(p, "%+.02d", exp);  | 
1228  | 0  |         p += exp_len;  | 
1229  | 0  |     }  | 
1230  | 0  |   exit:  | 
1231  | 0  |     if (buf) { | 
1232  | 0  |         *p = '\0';  | 
1233  |  |         /* It's too late if this fails, as we've already stepped on  | 
1234  |  |            memory that isn't ours. But it's an okay debugging test. */  | 
1235  | 0  |         assert(p-buf < bufsize);  | 
1236  | 0  |     }  | 
1237  | 0  |     if (digits)  | 
1238  | 0  |         _Py_dg_freedtoa(digits);  | 
1239  |  | 
  | 
1240  | 0  |     return buf;  | 
1241  | 0  | }  | 
1242  |  |  | 
1243  |  |  | 
1244  |  | char * PyOS_double_to_string(double val,  | 
1245  |  |                                          char format_code,  | 
1246  |  |                                          int precision,  | 
1247  |  |                                          int flags,  | 
1248  |  |                                          int *type)  | 
1249  | 0  | { | 
1250  | 0  |     const char * const *float_strings = lc_float_strings;  | 
1251  | 0  |     int mode;  | 
1252  |  |  | 
1253  |  |     /* Validate format_code, and map upper and lower case. Compute the  | 
1254  |  |        mode and make any adjustments as needed. */  | 
1255  | 0  |     switch (format_code) { | 
1256  |  |     /* exponent */  | 
1257  | 0  |     case 'E':  | 
1258  | 0  |         float_strings = uc_float_strings;  | 
1259  | 0  |         format_code = 'e';  | 
1260  |  |         /* Fall through. */  | 
1261  | 0  |     case 'e':  | 
1262  | 0  |         mode = 2;  | 
1263  | 0  |         precision++;  | 
1264  | 0  |         break;  | 
1265  |  |  | 
1266  |  |     /* fixed */  | 
1267  | 0  |     case 'F':  | 
1268  | 0  |         float_strings = uc_float_strings;  | 
1269  | 0  |         format_code = 'f';  | 
1270  |  |         /* Fall through. */  | 
1271  | 0  |     case 'f':  | 
1272  | 0  |         mode = 3;  | 
1273  | 0  |         break;  | 
1274  |  |  | 
1275  |  |     /* general */  | 
1276  | 0  |     case 'G':  | 
1277  | 0  |         float_strings = uc_float_strings;  | 
1278  | 0  |         format_code = 'g';  | 
1279  |  |         /* Fall through. */  | 
1280  | 0  |     case 'g':  | 
1281  | 0  |         mode = 2;  | 
1282  |  |         /* precision 0 makes no sense for 'g' format; interpret as 1 */  | 
1283  | 0  |         if (precision == 0)  | 
1284  | 0  |             precision = 1;  | 
1285  | 0  |         break;  | 
1286  |  |  | 
1287  |  |     /* repr format */  | 
1288  | 0  |     case 'r':  | 
1289  | 0  |         mode = 0;  | 
1290  |  |         /* Supplied precision is unused, must be 0. */  | 
1291  | 0  |         if (precision != 0) { | 
1292  | 0  |             PyErr_BadInternalCall();  | 
1293  | 0  |             return NULL;  | 
1294  | 0  |         }  | 
1295  | 0  |         break;  | 
1296  |  |  | 
1297  | 0  |     default:  | 
1298  | 0  |         PyErr_BadInternalCall();  | 
1299  | 0  |         return NULL;  | 
1300  | 0  |     }  | 
1301  |  |  | 
1302  | 0  |     return format_float_short(val, format_code, mode, precision,  | 
1303  | 0  |                               flags & Py_DTSF_SIGN,  | 
1304  | 0  |                               flags & Py_DTSF_ADD_DOT_0,  | 
1305  | 0  |                               flags & Py_DTSF_ALT,  | 
1306  | 0  |                               float_strings, type);  | 
1307  | 0  | }  | 
1308  |  | #endif /* ifdef PY_NO_SHORT_FLOAT_REPR */  |