/src/meshoptimizer/src/meshoptimizer.h
Line | Count | Source (jump to first uncovered line) |
1 | | /** |
2 | | * meshoptimizer - version 0.22 |
3 | | * |
4 | | * Copyright (C) 2016-2025, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) |
5 | | * Report bugs and download new versions at https://github.com/zeux/meshoptimizer |
6 | | * |
7 | | * This library is distributed under the MIT License. See notice at the end of this file. |
8 | | */ |
9 | | #pragma once |
10 | | |
11 | | #include <assert.h> |
12 | | #include <stddef.h> |
13 | | |
14 | | /* Version macro; major * 1000 + minor * 10 + patch */ |
15 | | #define MESHOPTIMIZER_VERSION 220 /* 0.22 */ |
16 | | |
17 | | /* If no API is defined, assume default */ |
18 | | #ifndef MESHOPTIMIZER_API |
19 | | #define MESHOPTIMIZER_API |
20 | | #endif |
21 | | |
22 | | /* Set the calling-convention for alloc/dealloc function pointers */ |
23 | | #ifndef MESHOPTIMIZER_ALLOC_CALLCONV |
24 | | #ifdef _MSC_VER |
25 | | #define MESHOPTIMIZER_ALLOC_CALLCONV __cdecl |
26 | | #else |
27 | | #define MESHOPTIMIZER_ALLOC_CALLCONV |
28 | | #endif |
29 | | #endif |
30 | | |
31 | | /* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */ |
32 | | #ifndef MESHOPTIMIZER_EXPERIMENTAL |
33 | | #define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API |
34 | | #endif |
35 | | |
36 | | /* C interface */ |
37 | | #ifdef __cplusplus |
38 | | extern "C" |
39 | | { |
40 | | #endif |
41 | | |
42 | | /** |
43 | | * Vertex attribute stream |
44 | | * Each element takes size bytes, beginning at data, with stride controlling the spacing between successive elements (stride >= size). |
45 | | */ |
46 | | struct meshopt_Stream |
47 | | { |
48 | | const void* data; |
49 | | size_t size; |
50 | | size_t stride; |
51 | | }; |
52 | | |
53 | | /** |
54 | | * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices |
55 | | * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. |
56 | | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. |
57 | | * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. |
58 | | * |
59 | | * destination must contain enough space for the resulting remap table (vertex_count elements) |
60 | | * indices can be NULL if the input is unindexed |
61 | | */ |
62 | | MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
63 | | |
64 | | /** |
65 | | * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices |
66 | | * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. |
67 | | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. |
68 | | * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream. |
69 | | * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. |
70 | | * |
71 | | * destination must contain enough space for the resulting remap table (vertex_count elements) |
72 | | * indices can be NULL if the input is unindexed |
73 | | * stream_count must be <= 16 |
74 | | */ |
75 | | MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); |
76 | | |
77 | | /** |
78 | | * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap |
79 | | * |
80 | | * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap) |
81 | | * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap |
82 | | */ |
83 | | MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap); |
84 | | |
85 | | /** |
86 | | * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap |
87 | | * |
88 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
89 | | * indices can be NULL if the input is unindexed |
90 | | */ |
91 | | MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap); |
92 | | |
93 | | /** |
94 | | * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary |
95 | | * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer. |
96 | | * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. |
97 | | * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. |
98 | | * |
99 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
100 | | */ |
101 | | MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); |
102 | | |
103 | | /** |
104 | | * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary |
105 | | * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer. |
106 | | * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. |
107 | | * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. |
108 | | * |
109 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
110 | | * stream_count must be <= 16 |
111 | | */ |
112 | | MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); |
113 | | |
114 | | /** |
115 | | * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology |
116 | | * Each triangle is converted into a 6-vertex patch with the following layout: |
117 | | * - 0, 2, 4: original triangle vertices |
118 | | * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40 |
119 | | * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY. |
120 | | * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering. |
121 | | * |
122 | | * destination must contain enough space for the resulting index buffer (index_count*2 elements) |
123 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
124 | | */ |
125 | | MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
126 | | |
127 | | /** |
128 | | * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement |
129 | | * Each triangle is converted into a 12-vertex patch with the following layout: |
130 | | * - 0, 1, 2: original triangle vertices |
131 | | * - 3, 4: opposing edge for edge 0, 1 |
132 | | * - 5, 6: opposing edge for edge 1, 2 |
133 | | * - 7, 8: opposing edge for edge 2, 0 |
134 | | * - 9, 10, 11: dominant vertices for corners 0, 1, 2 |
135 | | * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping. |
136 | | * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details. |
137 | | * |
138 | | * destination must contain enough space for the resulting index buffer (index_count*4 elements) |
139 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
140 | | */ |
141 | | MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
142 | | |
143 | | /** |
144 | | * Experimental: Generate index buffer that can be used for visibility buffer rendering and returns the size of the reorder table |
145 | | * Each triangle's provoking vertex index is equal to primitive id; this allows passing it to the fragment shader using nointerpolate attribute. |
146 | | * This is important for performance on hardware where primitive id can't be accessed efficiently in fragment shader. |
147 | | * The reorder table stores the original vertex id for each vertex in the new index buffer, and should be used in the vertex shader to load vertex data. |
148 | | * The provoking vertex is assumed to be the first vertex in the triangle; if this is not the case (OpenGL), rotate each triangle (abc -> bca) before rendering. |
149 | | * For maximum efficiency the input index buffer should be optimized for vertex cache first. |
150 | | * |
151 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
152 | | * reorder must contain enough space for the worst case reorder table (vertex_count + index_count/3 elements) |
153 | | */ |
154 | | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_generateProvokingIndexBuffer(unsigned int* destination, unsigned int* reorder, const unsigned int* indices, size_t index_count, size_t vertex_count); |
155 | | |
156 | | /** |
157 | | * Vertex transform cache optimizer |
158 | | * Reorders indices to reduce the number of GPU vertex shader invocations |
159 | | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
160 | | * |
161 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
162 | | */ |
163 | | MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
164 | | |
165 | | /** |
166 | | * Vertex transform cache optimizer for strip-like caches |
167 | | * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective |
168 | | * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency |
169 | | * |
170 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
171 | | */ |
172 | | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
173 | | |
174 | | /** |
175 | | * Vertex transform cache optimizer for FIFO caches |
176 | | * Reorders indices to reduce the number of GPU vertex shader invocations |
177 | | * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache |
178 | | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
179 | | * |
180 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
181 | | * cache_size should be less than the actual GPU cache size to avoid cache thrashing |
182 | | */ |
183 | | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); |
184 | | |
185 | | /** |
186 | | * Overdraw optimizer |
187 | | * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw |
188 | | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
189 | | * |
190 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
191 | | * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!) |
192 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
193 | | * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently |
194 | | */ |
195 | | MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); |
196 | | |
197 | | /** |
198 | | * Vertex fetch cache optimizer |
199 | | * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing |
200 | | * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused |
201 | | * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream. |
202 | | * |
203 | | * destination must contain enough space for the resulting vertex buffer (vertex_count elements) |
204 | | * indices is used both as an input and as an output index buffer |
205 | | */ |
206 | | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
207 | | |
208 | | /** |
209 | | * Vertex fetch cache optimizer |
210 | | * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing |
211 | | * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused |
212 | | * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer |
213 | | * |
214 | | * destination must contain enough space for the resulting remap table (vertex_count elements) |
215 | | */ |
216 | | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
217 | | |
218 | | /** |
219 | | * Index buffer encoder |
220 | | * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original. |
221 | | * Input index buffer must represent a triangle list. |
222 | | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
223 | | * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first. |
224 | | * |
225 | | * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size) |
226 | | */ |
227 | | MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); |
228 | | MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count); |
229 | | |
230 | | /** |
231 | | * Set index encoder format version |
232 | | * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+) |
233 | | */ |
234 | | MESHOPTIMIZER_API void meshopt_encodeIndexVersion(int version); |
235 | | |
236 | | /** |
237 | | * Index buffer decoder |
238 | | * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer |
239 | | * Returns 0 if decoding was successful, and an error code otherwise |
240 | | * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). |
241 | | * |
242 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
243 | | */ |
244 | | MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); |
245 | | |
246 | | /** |
247 | | * Index sequence encoder |
248 | | * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original. |
249 | | * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better. |
250 | | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
251 | | * |
252 | | * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size) |
253 | | */ |
254 | | MESHOPTIMIZER_API size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); |
255 | | MESHOPTIMIZER_API size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count); |
256 | | |
257 | | /** |
258 | | * Index sequence decoder |
259 | | * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence |
260 | | * Returns 0 if decoding was successful, and an error code otherwise |
261 | | * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). |
262 | | * |
263 | | * destination must contain enough space for the resulting index sequence (index_count elements) |
264 | | */ |
265 | | MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); |
266 | | |
267 | | /** |
268 | | * Vertex buffer encoder |
269 | | * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original. |
270 | | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
271 | | * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream. |
272 | | * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized. |
273 | | * For maximum efficiency the vertex buffer being encoded has to be quantized and optimized for locality of reference (cache/fetch) first. |
274 | | * |
275 | | * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size) |
276 | | */ |
277 | | MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size); |
278 | | MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size); |
279 | | |
280 | | /** |
281 | | * Experimental: Vertex buffer encoder |
282 | | * Encodes vertex data just like meshopt_encodeVertexBuffer, but allows to override compression level. |
283 | | * For compression level to take effect, the vertex encoding version must be set to 1 via meshopt_encodeVertexVersion. |
284 | | * The default compression level implied by meshopt_encodeVertexBuffer is 2. |
285 | | * |
286 | | * level should be in the range [0, 3] with 0 being the fastest and 3 being the slowest and producing the best compression ratio. |
287 | | */ |
288 | | MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level); |
289 | | |
290 | | /** |
291 | | * Set vertex encoder format version |
292 | | * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.23+) |
293 | | */ |
294 | | MESHOPTIMIZER_API void meshopt_encodeVertexVersion(int version); |
295 | | |
296 | | /** |
297 | | * Vertex buffer decoder |
298 | | * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer |
299 | | * Returns 0 if decoding was successful, and an error code otherwise |
300 | | * The decoder is safe to use for untrusted input, but it may produce garbage data. |
301 | | * |
302 | | * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes) |
303 | | */ |
304 | | MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size); |
305 | | |
306 | | /** |
307 | | * Vertex buffer filters |
308 | | * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place. |
309 | | * |
310 | | * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f. |
311 | | * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. |
312 | | * |
313 | | * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct. |
314 | | * Each component is stored as an 16-bit integer; stride must be equal to 8. |
315 | | * |
316 | | * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M. |
317 | | * Each 32-bit component is decoded in isolation; stride must be divisible by 4. |
318 | | */ |
319 | | MESHOPTIMIZER_API void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride); |
320 | | MESHOPTIMIZER_API void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride); |
321 | | MESHOPTIMIZER_API void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride); |
322 | | |
323 | | /** |
324 | | * Vertex buffer filter encoders |
325 | | * These functions can be used to encode data in a format that meshopt_decodeFilter can decode |
326 | | * |
327 | | * meshopt_encodeFilterOct encodes unit vectors with K-bit (K <= 16) signed X/Y as an output. |
328 | | * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. |
329 | | * Input data must contain 4 floats for every vector (count*4 total). |
330 | | * |
331 | | * meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding. |
332 | | * Each component is stored as an 16-bit integer; stride must be equal to 8. |
333 | | * Input data must contain 4 floats for every quaternion (count*4 total). |
334 | | * |
335 | | * meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24). |
336 | | * Exponent can be shared between all components of a given vector as defined by stride or all values of a given component; stride must be divisible by 4. |
337 | | * Input data must contain stride/4 floats for every vector (count*stride/4 total). |
338 | | */ |
339 | | enum meshopt_EncodeExpMode |
340 | | { |
341 | | /* When encoding exponents, use separate values for each component (maximum quality) */ |
342 | | meshopt_EncodeExpSeparate, |
343 | | /* When encoding exponents, use shared value for all components of each vector (better compression) */ |
344 | | meshopt_EncodeExpSharedVector, |
345 | | /* When encoding exponents, use shared value for each component of all vectors (best compression) */ |
346 | | meshopt_EncodeExpSharedComponent, |
347 | | /* Experimental: When encoding exponents, use separate values for each component, but clamp to 0 (good quality if very small values are not important) */ |
348 | | meshopt_EncodeExpClamped, |
349 | | }; |
350 | | |
351 | | MESHOPTIMIZER_API void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data); |
352 | | MESHOPTIMIZER_API void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data); |
353 | | MESHOPTIMIZER_API void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data, enum meshopt_EncodeExpMode mode); |
354 | | |
355 | | /** |
356 | | * Simplification options |
357 | | */ |
358 | | enum |
359 | | { |
360 | | /* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */ |
361 | | meshopt_SimplifyLockBorder = 1 << 0, |
362 | | /* Improve simplification performance assuming input indices are a sparse subset of the mesh. Note that error becomes relative to subset extents. */ |
363 | | meshopt_SimplifySparse = 1 << 1, |
364 | | /* Treat error limit and resulting error as absolute instead of relative to mesh extents. */ |
365 | | meshopt_SimplifyErrorAbsolute = 1 << 2, |
366 | | /* Experimental: remove disconnected parts of the mesh during simplification incrementally, regardless of the topological restrictions inside components. */ |
367 | | meshopt_SimplifyPrune = 1 << 3, |
368 | | }; |
369 | | |
370 | | /** |
371 | | * Mesh simplifier |
372 | | * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible |
373 | | * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error. |
374 | | * If not all attributes from the input mesh are required, it's recommended to reindex the mesh without them prior to simplification. |
375 | | * Returns the number of indices after simplification, with destination containing new index data |
376 | | * The resulting index buffer references vertices from the original vertex buffer. |
377 | | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
378 | | * |
379 | | * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! |
380 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
381 | | * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1] |
382 | | * options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default |
383 | | * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification |
384 | | */ |
385 | | MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error); |
386 | | |
387 | | /** |
388 | | * Experimental: Mesh simplifier with attribute metric |
389 | | * The algorithm enhances meshopt_simplify by incorporating attribute values into the error metric used to prioritize simplification order; see meshopt_simplify documentation for details. |
390 | | * Note that the number of attributes affects memory requirements and running time; this algorithm requires ~1.5x more memory and time compared to meshopt_simplify when using 4 scalar attributes. |
391 | | * |
392 | | * vertex_attributes should have attribute_count floats for each vertex |
393 | | * attribute_weights should have attribute_count floats in total; the weights determine relative priority of attributes between each other and wrt position |
394 | | * attribute_count must be <= 32 |
395 | | * vertex_lock can be NULL; when it's not NULL, it should have a value for each vertex; 1 denotes vertices that can't be moved |
396 | | */ |
397 | | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error); |
398 | | |
399 | | /** |
400 | | * Experimental: Mesh simplifier (sloppy) |
401 | | * Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance |
402 | | * The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error. |
403 | | * Returns the number of indices after simplification, with destination containing new index data |
404 | | * The resulting index buffer references vertices from the original vertex buffer. |
405 | | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
406 | | * |
407 | | * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! |
408 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
409 | | * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation; value range [0..1] |
410 | | * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification |
411 | | */ |
412 | | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error); |
413 | | |
414 | | /** |
415 | | * Experimental: Point cloud simplifier |
416 | | * Reduces the number of points in the cloud to reach the given target |
417 | | * Returns the number of points after simplification, with destination containing new index data |
418 | | * The resulting index buffer references vertices from the original vertex buffer. |
419 | | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
420 | | * |
421 | | * destination must contain enough space for the target index buffer (target_vertex_count elements) |
422 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
423 | | * vertex_colors should can be NULL; when it's not NULL, it should have float3 color in the first 12 bytes of each vertex |
424 | | * color_weight determines relative priority of color wrt position; 1.0 is a safe default |
425 | | */ |
426 | | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count); |
427 | | |
428 | | /** |
429 | | * Returns the error scaling factor used by the simplifier to convert between absolute and relative extents |
430 | | * |
431 | | * Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error |
432 | | * Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error. |
433 | | */ |
434 | | MESHOPTIMIZER_API float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
435 | | |
436 | | /** |
437 | | * Mesh stripifier |
438 | | * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles |
439 | | * Returns the number of indices in the resulting strip, with destination containing new index data |
440 | | * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. |
441 | | * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance. |
442 | | * |
443 | | * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound |
444 | | * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles |
445 | | */ |
446 | | MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index); |
447 | | MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count); |
448 | | |
449 | | /** |
450 | | * Mesh unstripifier |
451 | | * Converts a triangle strip to a triangle list |
452 | | * Returns the number of indices in the resulting list, with destination containing new index data |
453 | | * |
454 | | * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound |
455 | | */ |
456 | | MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index); |
457 | | MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count); |
458 | | |
459 | | struct meshopt_VertexCacheStatistics |
460 | | { |
461 | | unsigned int vertices_transformed; |
462 | | unsigned int warps_executed; |
463 | | float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */ |
464 | | float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */ |
465 | | }; |
466 | | |
467 | | /** |
468 | | * Vertex transform cache analyzer |
469 | | * Returns cache hit statistics using a simplified FIFO model |
470 | | * Results may not match actual GPU performance |
471 | | */ |
472 | | MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size); |
473 | | |
474 | | struct meshopt_OverdrawStatistics |
475 | | { |
476 | | unsigned int pixels_covered; |
477 | | unsigned int pixels_shaded; |
478 | | float overdraw; /* shaded pixels / covered pixels; best case 1.0 */ |
479 | | }; |
480 | | |
481 | | /** |
482 | | * Overdraw analyzer |
483 | | * Returns overdraw statistics using a software rasterizer |
484 | | * Results may not match actual GPU performance |
485 | | * |
486 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
487 | | */ |
488 | | MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
489 | | |
490 | | struct meshopt_VertexFetchStatistics |
491 | | { |
492 | | unsigned int bytes_fetched; |
493 | | float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */ |
494 | | }; |
495 | | |
496 | | /** |
497 | | * Vertex fetch cache analyzer |
498 | | * Returns cache hit statistics using a simplified direct mapped model |
499 | | * Results may not match actual GPU performance |
500 | | */ |
501 | | MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size); |
502 | | |
503 | | /** |
504 | | * Meshlet is a small mesh cluster (subset) that consists of: |
505 | | * - triangles, an 8-bit micro triangle (index) buffer, that for each triangle specifies three local vertices to use; |
506 | | * - vertices, a 32-bit vertex indirection buffer, that for each local vertex specifies which mesh vertex to fetch vertex attributes from. |
507 | | * |
508 | | * For efficiency, meshlet triangles and vertices are packed into two large arrays; this structure contains offsets and counts to access the data. |
509 | | */ |
510 | | struct meshopt_Meshlet |
511 | | { |
512 | | /* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */ |
513 | | unsigned int vertex_offset; |
514 | | unsigned int triangle_offset; |
515 | | |
516 | | /* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */ |
517 | | unsigned int vertex_count; |
518 | | unsigned int triangle_count; |
519 | | }; |
520 | | |
521 | | /** |
522 | | * Meshlet builder |
523 | | * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer |
524 | | * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers. |
525 | | * When targeting mesh shading hardware, for maximum efficiency meshlets should be further optimized using meshopt_optimizeMeshlet. |
526 | | * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters. |
527 | | * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first. |
528 | | * |
529 | | * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound |
530 | | * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices |
531 | | * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3 |
532 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
533 | | * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512; max_triangles must be divisible by 4) |
534 | | * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency |
535 | | */ |
536 | | MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); |
537 | | MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); |
538 | | MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles); |
539 | | |
540 | | /** |
541 | | * Experimental: Meshlet optimizer |
542 | | * Reorders meshlet vertices and triangles to maximize locality to improve rasterizer throughput |
543 | | * |
544 | | * meshlet_triangles and meshlet_vertices must refer to meshlet triangle and vertex index data; when buildMeshlets* is used, these |
545 | | * need to be computed from meshlet's vertex_offset and triangle_offset |
546 | | * triangle_count and vertex_count must not exceed implementation limits (vertex_count <= 255 - not 256!, triangle_count <= 512) |
547 | | */ |
548 | | MESHOPTIMIZER_EXPERIMENTAL void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count); |
549 | | |
550 | | struct meshopt_Bounds |
551 | | { |
552 | | /* bounding sphere, useful for frustum and occlusion culling */ |
553 | | float center[3]; |
554 | | float radius; |
555 | | |
556 | | /* normal cone, useful for backface culling */ |
557 | | float cone_apex[3]; |
558 | | float cone_axis[3]; |
559 | | float cone_cutoff; /* = cos(angle/2) */ |
560 | | |
561 | | /* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */ |
562 | | signed char cone_axis_s8[3]; |
563 | | signed char cone_cutoff_s8; |
564 | | }; |
565 | | |
566 | | /** |
567 | | * Cluster bounds generator |
568 | | * Creates bounding volumes that can be used for frustum, backface and occlusion culling. |
569 | | * |
570 | | * For backface culling with orthographic projection, use the following formula to reject backfacing clusters: |
571 | | * dot(view, cone_axis) >= cone_cutoff |
572 | | * |
573 | | * For perspective projection, you can use the formula that needs cone apex in addition to axis & cutoff: |
574 | | * dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff |
575 | | * |
576 | | * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead: |
577 | | * dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position) |
578 | | * or an equivalent formula that doesn't have a singularity at center = camera_position: |
579 | | * dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius |
580 | | * |
581 | | * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere |
582 | | * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable (for derivation see |
583 | | * Real-Time Rendering 4th Edition, section 19.3). |
584 | | * |
585 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
586 | | * vertex_count should specify the number of vertices in the entire mesh, not cluster or meshlet |
587 | | * index_count/3 and triangle_count must not exceed implementation limits (<= 512) |
588 | | */ |
589 | | MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
590 | | MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
591 | | |
592 | | /** |
593 | | * Spatial sorter |
594 | | * Generates a remap table that can be used to reorder points for spatial locality. |
595 | | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer. |
596 | | * |
597 | | * destination must contain enough space for the resulting remap table (vertex_count elements) |
598 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
599 | | */ |
600 | | MESHOPTIMIZER_API void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
601 | | |
602 | | /** |
603 | | * Experimental: Spatial sorter |
604 | | * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache. |
605 | | * |
606 | | * destination must contain enough space for the resulting index buffer (index_count elements) |
607 | | * vertex_positions should have float3 position in the first 12 bytes of each vertex |
608 | | */ |
609 | | MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
610 | | |
611 | | /** |
612 | | * Quantize a float into half-precision (as defined by IEEE-754 fp16) floating point value |
613 | | * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest |
614 | | * Representable magnitude range: [6e-5; 65504] |
615 | | * Maximum relative reconstruction error: 5e-4 |
616 | | */ |
617 | | MESHOPTIMIZER_API unsigned short meshopt_quantizeHalf(float v); |
618 | | |
619 | | /** |
620 | | * Quantize a float into a floating point value with a limited number of significant mantissa bits, preserving the IEEE-754 fp32 binary representation |
621 | | * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest |
622 | | * Assumes N is in a valid mantissa precision range, which is 1..23 |
623 | | */ |
624 | | MESHOPTIMIZER_API float meshopt_quantizeFloat(float v, int N); |
625 | | |
626 | | /** |
627 | | * Reverse quantization of a half-precision (as defined by IEEE-754 fp16) floating point value |
628 | | * Preserves Inf/NaN, flushes denormals to zero |
629 | | */ |
630 | | MESHOPTIMIZER_API float meshopt_dequantizeHalf(unsigned short h); |
631 | | |
632 | | /** |
633 | | * Set allocation callbacks |
634 | | * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library. |
635 | | * Note that all algorithms only allocate memory for temporary use. |
636 | | * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first. |
637 | | */ |
638 | | MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*)); |
639 | | |
640 | | #ifdef __cplusplus |
641 | | } /* extern "C" */ |
642 | | #endif |
643 | | |
644 | | /* Quantization into fixed point normalized formats; these are only available as inline C++ functions */ |
645 | | #ifdef __cplusplus |
646 | | /** |
647 | | * Quantize a float in [0..1] range into an N-bit fixed point unorm value |
648 | | * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion |
649 | | * Maximum reconstruction error: 1/2^(N+1) |
650 | | */ |
651 | | inline int meshopt_quantizeUnorm(float v, int N); |
652 | | |
653 | | /** |
654 | | * Quantize a float in [-1..1] range into an N-bit fixed point snorm value |
655 | | * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions) |
656 | | * Maximum reconstruction error: 1/2^N |
657 | | */ |
658 | | inline int meshopt_quantizeSnorm(float v, int N); |
659 | | #endif |
660 | | |
661 | | /** |
662 | | * C++ template interface |
663 | | * |
664 | | * These functions mirror the C interface the library provides, providing template-based overloads so that |
665 | | * the caller can use an arbitrary type for the index data, both for input and output. |
666 | | * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not, |
667 | | * the wrappers end up allocating memory and copying index data to convert from one type to another. |
668 | | */ |
669 | | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) |
670 | | template <typename T> |
671 | | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
672 | | template <typename T> |
673 | | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); |
674 | | template <typename T> |
675 | | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap); |
676 | | template <typename T> |
677 | | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); |
678 | | template <typename T> |
679 | | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); |
680 | | template <typename T> |
681 | | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
682 | | template <typename T> |
683 | | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
684 | | template <typename T> |
685 | | inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count); |
686 | | template <typename T> |
687 | | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count); |
688 | | template <typename T> |
689 | | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count); |
690 | | template <typename T> |
691 | | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); |
692 | | template <typename T> |
693 | | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); |
694 | | template <typename T> |
695 | | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count); |
696 | | template <typename T> |
697 | | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
698 | | template <typename T> |
699 | | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); |
700 | | template <typename T> |
701 | | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); |
702 | | template <typename T> |
703 | | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); |
704 | | template <typename T> |
705 | | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); |
706 | | template <typename T> |
707 | | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL); |
708 | | template <typename T> |
709 | | inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = NULL); |
710 | | template <typename T> |
711 | | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = NULL); |
712 | | template <typename T> |
713 | | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index); |
714 | | template <typename T> |
715 | | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index); |
716 | | template <typename T> |
717 | | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size); |
718 | | template <typename T> |
719 | | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
720 | | template <typename T> |
721 | | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size); |
722 | | template <typename T> |
723 | | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); |
724 | | template <typename T> |
725 | | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); |
726 | | template <typename T> |
727 | | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
728 | | template <typename T> |
729 | | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
730 | | #endif |
731 | | |
732 | | /* Inline implementation */ |
733 | | #ifdef __cplusplus |
734 | | inline int meshopt_quantizeUnorm(float v, int N) |
735 | 0 | { |
736 | 0 | const float scale = float((1 << N) - 1); |
737 | 0 |
|
738 | 0 | v = (v >= 0) ? v : 0; |
739 | 0 | v = (v <= 1) ? v : 1; |
740 | 0 |
|
741 | 0 | return int(v * scale + 0.5f); |
742 | 0 | } |
743 | | |
744 | | inline int meshopt_quantizeSnorm(float v, int N) |
745 | 0 | { |
746 | 0 | const float scale = float((1 << (N - 1)) - 1); |
747 | 0 |
|
748 | 0 | float round = (v >= 0 ? 0.5f : -0.5f); |
749 | 0 |
|
750 | 0 | v = (v >= -1) ? v : -1; |
751 | 0 | v = (v <= +1) ? v : +1; |
752 | 0 |
|
753 | 0 | return int(v * scale + round); |
754 | 0 | } |
755 | | #endif |
756 | | |
757 | | /* Internal implementation helpers */ |
758 | | #ifdef __cplusplus |
759 | | class meshopt_Allocator |
760 | | { |
761 | | public: |
762 | | template <typename T> |
763 | | struct StorageT |
764 | | { |
765 | | static void* (MESHOPTIMIZER_ALLOC_CALLCONV* allocate)(size_t); |
766 | | static void (MESHOPTIMIZER_ALLOC_CALLCONV* deallocate)(void*); |
767 | | }; |
768 | | |
769 | | typedef StorageT<void> Storage; |
770 | | |
771 | | meshopt_Allocator() |
772 | | : blocks() |
773 | | , count(0) |
774 | 0 | { |
775 | 0 | } |
776 | | |
777 | | ~meshopt_Allocator() |
778 | 0 | { |
779 | 0 | for (size_t i = count; i > 0; --i) |
780 | 0 | Storage::deallocate(blocks[i - 1]); |
781 | 0 | } |
782 | | |
783 | | template <typename T> |
784 | | T* allocate(size_t size) |
785 | | { |
786 | | assert(count < sizeof(blocks) / sizeof(blocks[0])); |
787 | | T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T))); |
788 | | blocks[count++] = result; |
789 | | return result; |
790 | | } |
791 | | |
792 | | void deallocate(void* ptr) |
793 | 0 | { |
794 | 0 | assert(count > 0 && blocks[count - 1] == ptr); |
795 | 0 | Storage::deallocate(ptr); |
796 | 0 | count--; |
797 | 0 | } |
798 | | |
799 | | private: |
800 | | void* blocks[24]; |
801 | | size_t count; |
802 | | }; |
803 | | |
804 | | // This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker |
805 | | template <typename T> |
806 | | void* (MESHOPTIMIZER_ALLOC_CALLCONV* meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new; |
807 | | template <typename T> |
808 | | void (MESHOPTIMIZER_ALLOC_CALLCONV* meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete; |
809 | | #endif |
810 | | |
811 | | /* Inline implementation for C++ templated wrappers */ |
812 | | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) |
813 | | template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)> |
814 | | struct meshopt_IndexAdapter; |
815 | | |
816 | | template <typename T> |
817 | | struct meshopt_IndexAdapter<T, false> |
818 | | { |
819 | | T* result; |
820 | | unsigned int* data; |
821 | | size_t count; |
822 | | |
823 | | meshopt_IndexAdapter(T* result_, const T* input, size_t count_) |
824 | | : result(result_) |
825 | | , data(NULL) |
826 | | , count(count_) |
827 | | { |
828 | | size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int); |
829 | | |
830 | | data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size)); |
831 | | |
832 | | if (input) |
833 | | { |
834 | | for (size_t i = 0; i < count; ++i) |
835 | | data[i] = input[i]; |
836 | | } |
837 | | } |
838 | | |
839 | | ~meshopt_IndexAdapter() |
840 | | { |
841 | | if (result) |
842 | | { |
843 | | for (size_t i = 0; i < count; ++i) |
844 | | result[i] = T(data[i]); |
845 | | } |
846 | | |
847 | | meshopt_Allocator::Storage::deallocate(data); |
848 | | } |
849 | | }; |
850 | | |
851 | | template <typename T> |
852 | | struct meshopt_IndexAdapter<T, true> |
853 | | { |
854 | | unsigned int* data; |
855 | | |
856 | | meshopt_IndexAdapter(T* result, const T* input, size_t) |
857 | | : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input))) |
858 | | { |
859 | | } |
860 | | }; |
861 | | |
862 | | template <typename T> |
863 | | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) |
864 | | { |
865 | | meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0); |
866 | | |
867 | | return meshopt_generateVertexRemap(destination, indices ? in.data : NULL, index_count, vertices, vertex_count, vertex_size); |
868 | | } |
869 | | |
870 | | template <typename T> |
871 | | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) |
872 | | { |
873 | | meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0); |
874 | | |
875 | | return meshopt_generateVertexRemapMulti(destination, indices ? in.data : NULL, index_count, vertex_count, streams, stream_count); |
876 | | } |
877 | | |
878 | | template <typename T> |
879 | | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap) |
880 | | { |
881 | | meshopt_IndexAdapter<T> in(NULL, indices, indices ? index_count : 0); |
882 | | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
883 | | |
884 | | meshopt_remapIndexBuffer(out.data, indices ? in.data : NULL, index_count, remap); |
885 | | } |
886 | | |
887 | | template <typename T> |
888 | | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) |
889 | | { |
890 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
891 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
892 | | |
893 | | meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride); |
894 | | } |
895 | | |
896 | | template <typename T> |
897 | | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) |
898 | | { |
899 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
900 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
901 | | |
902 | | meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count); |
903 | | } |
904 | | |
905 | | template <typename T> |
906 | | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
907 | | { |
908 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
909 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count * 2); |
910 | | |
911 | | meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
912 | | } |
913 | | |
914 | | template <typename T> |
915 | | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
916 | | { |
917 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
918 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count * 4); |
919 | | |
920 | | meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
921 | | } |
922 | | |
923 | | template <typename T> |
924 | | inline size_t meshopt_generateProvokingIndexBuffer(T* destination, unsigned int* reorder, const T* indices, size_t index_count, size_t vertex_count) |
925 | | { |
926 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
927 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
928 | | |
929 | | size_t bound = vertex_count + (index_count / 3); |
930 | | assert(size_t(T(bound - 1)) == bound - 1); // bound - 1 must fit in T |
931 | | (void)bound; |
932 | | |
933 | | return meshopt_generateProvokingIndexBuffer(out.data, reorder, in.data, index_count, vertex_count); |
934 | | } |
935 | | |
936 | | template <typename T> |
937 | | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count) |
938 | | { |
939 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
940 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
941 | | |
942 | | meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count); |
943 | | } |
944 | | |
945 | | template <typename T> |
946 | | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count) |
947 | | { |
948 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
949 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
950 | | |
951 | | meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count); |
952 | | } |
953 | | |
954 | | template <typename T> |
955 | | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size) |
956 | | { |
957 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
958 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
959 | | |
960 | | meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size); |
961 | | } |
962 | | |
963 | | template <typename T> |
964 | | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold) |
965 | | { |
966 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
967 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
968 | | |
969 | | meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold); |
970 | | } |
971 | | |
972 | | template <typename T> |
973 | | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count) |
974 | | { |
975 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
976 | | |
977 | | return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count); |
978 | | } |
979 | | |
980 | | template <typename T> |
981 | | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) |
982 | | { |
983 | | meshopt_IndexAdapter<T> inout(indices, indices, index_count); |
984 | | |
985 | | return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size); |
986 | | } |
987 | | |
988 | | template <typename T> |
989 | | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) |
990 | | { |
991 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
992 | | |
993 | | return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count); |
994 | | } |
995 | | |
996 | | template <typename T> |
997 | | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) |
998 | | { |
999 | | char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; |
1000 | | (void)index_size_valid; |
1001 | | |
1002 | | return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size); |
1003 | | } |
1004 | | |
1005 | | template <typename T> |
1006 | | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) |
1007 | | { |
1008 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1009 | | |
1010 | | return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count); |
1011 | | } |
1012 | | |
1013 | | template <typename T> |
1014 | | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) |
1015 | | { |
1016 | | char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; |
1017 | | (void)index_size_valid; |
1018 | | |
1019 | | return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size); |
1020 | | } |
1021 | | |
1022 | | template <typename T> |
1023 | | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error) |
1024 | | { |
1025 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1026 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
1027 | | |
1028 | | return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, options, result_error); |
1029 | | } |
1030 | | |
1031 | | template <typename T> |
1032 | | inline size_t meshopt_simplifyWithAttributes(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* result_error) |
1033 | | { |
1034 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1035 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
1036 | | |
1037 | | return meshopt_simplifyWithAttributes(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, vertex_attributes, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, result_error); |
1038 | | } |
1039 | | |
1040 | | template <typename T> |
1041 | | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error) |
1042 | | { |
1043 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1044 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
1045 | | |
1046 | | return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error); |
1047 | | } |
1048 | | |
1049 | | template <typename T> |
1050 | | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index) |
1051 | | { |
1052 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1053 | | meshopt_IndexAdapter<T> out(destination, NULL, (index_count / 3) * 5); |
1054 | | |
1055 | | return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index)); |
1056 | | } |
1057 | | |
1058 | | template <typename T> |
1059 | | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index) |
1060 | | { |
1061 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1062 | | meshopt_IndexAdapter<T> out(destination, NULL, (index_count - 2) * 3); |
1063 | | |
1064 | | return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index)); |
1065 | | } |
1066 | | |
1067 | | template <typename T> |
1068 | | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size) |
1069 | | { |
1070 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1071 | | |
1072 | | return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size); |
1073 | | } |
1074 | | |
1075 | | template <typename T> |
1076 | | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
1077 | | { |
1078 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1079 | | |
1080 | | return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1081 | | } |
1082 | | |
1083 | | template <typename T> |
1084 | | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size) |
1085 | | { |
1086 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1087 | | |
1088 | | return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size); |
1089 | | } |
1090 | | |
1091 | | template <typename T> |
1092 | | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) |
1093 | | { |
1094 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1095 | | |
1096 | | return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight); |
1097 | | } |
1098 | | |
1099 | | template <typename T> |
1100 | | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) |
1101 | | { |
1102 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1103 | | |
1104 | | return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles); |
1105 | | } |
1106 | | |
1107 | | template <typename T> |
1108 | | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
1109 | | { |
1110 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1111 | | |
1112 | | return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1113 | | } |
1114 | | |
1115 | | template <typename T> |
1116 | | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
1117 | | { |
1118 | | meshopt_IndexAdapter<T> in(NULL, indices, index_count); |
1119 | | meshopt_IndexAdapter<T> out(destination, NULL, index_count); |
1120 | | |
1121 | | meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1122 | | } |
1123 | | #endif |
1124 | | |
1125 | | /** |
1126 | | * Copyright (c) 2016-2025 Arseny Kapoulkine |
1127 | | * |
1128 | | * Permission is hereby granted, free of charge, to any person |
1129 | | * obtaining a copy of this software and associated documentation |
1130 | | * files (the "Software"), to deal in the Software without |
1131 | | * restriction, including without limitation the rights to use, |
1132 | | * copy, modify, merge, publish, distribute, sublicense, and/or sell |
1133 | | * copies of the Software, and to permit persons to whom the |
1134 | | * Software is furnished to do so, subject to the following |
1135 | | * conditions: |
1136 | | * |
1137 | | * The above copyright notice and this permission notice shall be |
1138 | | * included in all copies or substantial portions of the Software. |
1139 | | * |
1140 | | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
1141 | | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
1142 | | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
1143 | | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
1144 | | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
1145 | | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
1146 | | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
1147 | | * OTHER DEALINGS IN THE SOFTWARE. |
1148 | | */ |