1# Generated by the protocol buffer compiler. DO NOT EDIT!
2# sources: google/protobuf/any.proto, google/protobuf/api.proto, google/protobuf/descriptor.proto, google/protobuf/duration.proto, google/protobuf/empty.proto, google/protobuf/field_mask.proto, google/protobuf/source_context.proto, google/protobuf/struct.proto, google/protobuf/timestamp.proto, google/protobuf/type.proto, google/protobuf/wrappers.proto
3# plugin: python-betterproto
4# This file has been @generated
5import warnings
6from dataclasses import dataclass
7from typing import (
8 Dict,
9 List,
10)
11
12import betterproto
13
14
15class Syntax(betterproto.Enum):
16 """The syntax in which a protocol buffer element is defined."""
17
18 SYNTAX_PROTO2 = 0
19 """Syntax `proto2`."""
20
21 SYNTAX_PROTO3 = 1
22 """Syntax `proto3`."""
23
24
25class FieldKind(betterproto.Enum):
26 """Basic field types."""
27
28 TYPE_UNKNOWN = 0
29 """Field type unknown."""
30
31 TYPE_DOUBLE = 1
32 """Field type double."""
33
34 TYPE_FLOAT = 2
35 """Field type float."""
36
37 TYPE_INT64 = 3
38 """Field type int64."""
39
40 TYPE_UINT64 = 4
41 """Field type uint64."""
42
43 TYPE_INT32 = 5
44 """Field type int32."""
45
46 TYPE_FIXED64 = 6
47 """Field type fixed64."""
48
49 TYPE_FIXED32 = 7
50 """Field type fixed32."""
51
52 TYPE_BOOL = 8
53 """Field type bool."""
54
55 TYPE_STRING = 9
56 """Field type string."""
57
58 TYPE_GROUP = 10
59 """Field type group. Proto2 syntax only, and deprecated."""
60
61 TYPE_MESSAGE = 11
62 """Field type message."""
63
64 TYPE_BYTES = 12
65 """Field type bytes."""
66
67 TYPE_UINT32 = 13
68 """Field type uint32."""
69
70 TYPE_ENUM = 14
71 """Field type enum."""
72
73 TYPE_SFIXED32 = 15
74 """Field type sfixed32."""
75
76 TYPE_SFIXED64 = 16
77 """Field type sfixed64."""
78
79 TYPE_SINT32 = 17
80 """Field type sint32."""
81
82 TYPE_SINT64 = 18
83 """Field type sint64."""
84
85
86class FieldCardinality(betterproto.Enum):
87 """Whether a field is optional, required, or repeated."""
88
89 CARDINALITY_UNKNOWN = 0
90 """For fields with unknown cardinality."""
91
92 CARDINALITY_OPTIONAL = 1
93 """For optional fields."""
94
95 CARDINALITY_REQUIRED = 2
96 """For required fields. Proto2 syntax only."""
97
98 CARDINALITY_REPEATED = 3
99 """For repeated fields."""
100
101
102class FieldDescriptorProtoType(betterproto.Enum):
103 TYPE_DOUBLE = 1
104 """0 is reserved for errors. Order is weird for historical reasons."""
105
106 TYPE_FLOAT = 2
107 TYPE_INT64 = 3
108 """
109 Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT64 if
110 negative values are likely.
111 """
112
113 TYPE_UINT64 = 4
114 TYPE_INT32 = 5
115 """
116 Not ZigZag encoded. Negative numbers take 10 bytes. Use TYPE_SINT32 if
117 negative values are likely.
118 """
119
120 TYPE_FIXED64 = 6
121 TYPE_FIXED32 = 7
122 TYPE_BOOL = 8
123 TYPE_STRING = 9
124 TYPE_GROUP = 10
125 """
126 Tag-delimited aggregate. Group type is deprecated and not supported in
127 proto3. However, Proto3 implementations should still be able to parse the
128 group wire format and treat group fields as unknown fields.
129 """
130
131 TYPE_MESSAGE = 11
132 TYPE_BYTES = 12
133 """New in version 2."""
134
135 TYPE_UINT32 = 13
136 TYPE_ENUM = 14
137 TYPE_SFIXED32 = 15
138 TYPE_SFIXED64 = 16
139 TYPE_SINT32 = 17
140 TYPE_SINT64 = 18
141
142
143class FieldDescriptorProtoLabel(betterproto.Enum):
144 LABEL_OPTIONAL = 1
145 """0 is reserved for errors"""
146
147 LABEL_REQUIRED = 2
148 LABEL_REPEATED = 3
149
150
151class FileOptionsOptimizeMode(betterproto.Enum):
152 """Generated classes can be optimized for speed or code size."""
153
154 SPEED = 1
155 CODE_SIZE = 2
156 """etc."""
157
158 LITE_RUNTIME = 3
159
160
161class FieldOptionsCType(betterproto.Enum):
162 STRING = 0
163 """Default mode."""
164
165 CORD = 1
166 STRING_PIECE = 2
167
168
169class FieldOptionsJsType(betterproto.Enum):
170 JS_NORMAL = 0
171 """Use the default type."""
172
173 JS_STRING = 1
174 """Use JavaScript strings."""
175
176 JS_NUMBER = 2
177 """Use JavaScript numbers."""
178
179
180class MethodOptionsIdempotencyLevel(betterproto.Enum):
181 """
182 Is this method side-effect-free (or safe in HTTP parlance), or idempotent,
183 or neither? HTTP based RPC implementation may choose GET verb for safe
184 methods, and PUT verb for idempotent methods instead of the default POST.
185 """
186
187 IDEMPOTENCY_UNKNOWN = 0
188 NO_SIDE_EFFECTS = 1
189 IDEMPOTENT = 2
190
191
192class NullValue(betterproto.Enum):
193 """
194 `NullValue` is a singleton enumeration to represent the null value for the
195 `Value` type union. The JSON representation for `NullValue` is JSON
196 `null`.
197 """
198
199 NULL_VALUE = 0
200 """Null value."""
201
202
203@dataclass(eq=False, repr=False)
204class Any(betterproto.Message):
205 """
206 `Any` contains an arbitrary serialized protocol buffer message along with a
207 URL that describes the type of the serialized message. Protobuf library
208 provides support to pack/unpack Any values in the form of utility functions
209 or additional generated methods of the Any type. Example 1: Pack and unpack
210 a message in C++. Foo foo = ...; Any any; any.PackFrom(foo);
211 ... if (any.UnpackTo(&foo)) { ... } Example 2: Pack and
212 unpack a message in Java. Foo foo = ...; Any any = Any.pack(foo);
213 ... if (any.is(Foo.class)) { foo = any.unpack(Foo.class); }
214 Example 3: Pack and unpack a message in Python. foo = Foo(...) any
215 = Any() any.Pack(foo) ... if any.Is(Foo.DESCRIPTOR):
216 any.Unpack(foo) ... Example 4: Pack and unpack a message in Go
217 foo := &pb.Foo{...} any, err := anypb.New(foo) if err != nil {
218 ... } ... foo := &pb.Foo{} if err :=
219 any.UnmarshalTo(foo); err != nil { ... } The pack methods
220 provided by protobuf library will by default use
221 'type.googleapis.com/full.type.name' as the type URL and the unpack methods
222 only use the fully qualified type name after the last '/' in the type URL,
223 for example "foo.bar.com/x/y.z" will yield type name "y.z". JSON The JSON
224 representation of an `Any` value uses the regular representation of the
225 deserialized, embedded message, with an additional field `@type` which
226 contains the type URL. Example: package google.profile; message
227 Person { string first_name = 1; string last_name = 2; }
228 { "@type": "type.googleapis.com/google.profile.Person",
229 "firstName": <string>, "lastName": <string> } If the embedded
230 message type is well-known and has a custom JSON representation, that
231 representation will be embedded adding a field `value` which holds the
232 custom JSON in addition to the `@type` field. Example (for message
233 [google.protobuf.Duration][]): { "@type":
234 "type.googleapis.com/google.protobuf.Duration", "value": "1.212s"
235 }
236 """
237
238 type_url: str = betterproto.string_field(1)
239 """
240 A URL/resource name that uniquely identifies the type of the serialized
241 protocol buffer message. This string must contain at least one "/"
242 character. The last segment of the URL's path must represent the fully
243 qualified name of the type (as in `path/google.protobuf.Duration`). The
244 name should be in a canonical form (e.g., leading "." is not accepted). In
245 practice, teams usually precompile into the binary all types that they
246 expect it to use in the context of Any. However, for URLs which use the
247 scheme `http`, `https`, or no scheme, one can optionally set up a type
248 server that maps type URLs to message definitions as follows: * If no
249 scheme is provided, `https` is assumed. * An HTTP GET on the URL must yield
250 a [google.protobuf.Type][] value in binary format, or produce an error. *
251 Applications are allowed to cache lookup results based on the URL, or
252 have them precompiled into a binary to avoid any lookup. Therefore,
253 binary compatibility needs to be preserved on changes to types. (Use
254 versioned type names to manage breaking changes.) Note: this
255 functionality is not currently available in the official protobuf release,
256 and it is not used for type URLs beginning with type.googleapis.com.
257 Schemes other than `http`, `https` (or the empty scheme) might be used with
258 implementation specific semantics.
259 """
260
261 value: bytes = betterproto.bytes_field(2)
262 """
263 Must be a valid serialized protocol buffer of the above specified type.
264 """
265
266
267@dataclass(eq=False, repr=False)
268class SourceContext(betterproto.Message):
269 """
270 `SourceContext` represents information about the source of a protobuf
271 element, like the file in which it is defined.
272 """
273
274 file_name: str = betterproto.string_field(1)
275 """
276 The path-qualified name of the .proto file that contained the associated
277 protobuf element. For example: `"google/protobuf/source_context.proto"`.
278 """
279
280
281@dataclass(eq=False, repr=False)
282class Type(betterproto.Message):
283 """A protocol buffer message type."""
284
285 name: str = betterproto.string_field(1)
286 """The fully qualified message name."""
287
288 fields: List["Field"] = betterproto.message_field(2)
289 """The list of fields."""
290
291 oneofs: List[str] = betterproto.string_field(3)
292 """The list of types appearing in `oneof` definitions in this type."""
293
294 options: List["Option"] = betterproto.message_field(4)
295 """The protocol buffer options."""
296
297 source_context: "SourceContext" = betterproto.message_field(5)
298 """The source context."""
299
300 syntax: "Syntax" = betterproto.enum_field(6)
301 """The source syntax."""
302
303
304@dataclass(eq=False, repr=False)
305class Field(betterproto.Message):
306 """A single field of a message type."""
307
308 kind: "FieldKind" = betterproto.enum_field(1)
309 """The field type."""
310
311 cardinality: "FieldCardinality" = betterproto.enum_field(2)
312 """The field cardinality."""
313
314 number: int = betterproto.int32_field(3)
315 """The field number."""
316
317 name: str = betterproto.string_field(4)
318 """The field name."""
319
320 type_url: str = betterproto.string_field(6)
321 """
322 The field type URL, without the scheme, for message or enumeration types.
323 Example: `"type.googleapis.com/google.protobuf.Timestamp"`.
324 """
325
326 oneof_index: int = betterproto.int32_field(7)
327 """
328 The index of the field type in `Type.oneofs`, for message or enumeration
329 types. The first type has index 1; zero means the type is not in the list.
330 """
331
332 packed: bool = betterproto.bool_field(8)
333 """Whether to use alternative packed wire representation."""
334
335 options: List["Option"] = betterproto.message_field(9)
336 """The protocol buffer options."""
337
338 json_name: str = betterproto.string_field(10)
339 """The field JSON name."""
340
341 default_value: str = betterproto.string_field(11)
342 """
343 The string value of the default value of this field. Proto2 syntax only.
344 """
345
346
347@dataclass(eq=False, repr=False)
348class Enum(betterproto.Message):
349 """Enum type definition."""
350
351 name: str = betterproto.string_field(1)
352 """Enum type name."""
353
354 enumvalue: List["EnumValue"] = betterproto.message_field(
355 2, wraps=betterproto.TYPE_ENUM
356 )
357 """Enum value definitions."""
358
359 options: List["Option"] = betterproto.message_field(3)
360 """Protocol buffer options."""
361
362 source_context: "SourceContext" = betterproto.message_field(4)
363 """The source context."""
364
365 syntax: "Syntax" = betterproto.enum_field(5)
366 """The source syntax."""
367
368
369@dataclass(eq=False, repr=False)
370class EnumValue(betterproto.Message):
371 """Enum value definition."""
372
373 name: str = betterproto.string_field(1)
374 """Enum value name."""
375
376 number: int = betterproto.int32_field(2)
377 """Enum value number."""
378
379 options: List["Option"] = betterproto.message_field(3)
380 """Protocol buffer options."""
381
382
383@dataclass(eq=False, repr=False)
384class Option(betterproto.Message):
385 """
386 A protocol buffer option, which can be attached to a message, field,
387 enumeration, etc.
388 """
389
390 name: str = betterproto.string_field(1)
391 """
392 The option's name. For protobuf built-in options (options defined in
393 descriptor.proto), this is the short name. For example, `"map_entry"`. For
394 custom options, it should be the fully-qualified name. For example,
395 `"google.api.http"`.
396 """
397
398 value: "Any" = betterproto.message_field(2)
399 """
400 The option's value packed in an Any message. If the value is a primitive,
401 the corresponding wrapper type defined in google/protobuf/wrappers.proto
402 should be used. If the value is an enum, it should be stored as an int32
403 value using the google.protobuf.Int32Value type.
404 """
405
406
407@dataclass(eq=False, repr=False)
408class Api(betterproto.Message):
409 """
410 Api is a light-weight descriptor for an API Interface. Interfaces are also
411 described as "protocol buffer services" in some contexts, such as by the
412 "service" keyword in a .proto file, but they are different from API
413 Services, which represent a concrete implementation of an interface as
414 opposed to simply a description of methods and bindings. They are also
415 sometimes simply referred to as "APIs" in other contexts, such as the name
416 of this message itself. See https://cloud.google.com/apis/design/glossary
417 for detailed terminology.
418 """
419
420 name: str = betterproto.string_field(1)
421 """
422 The fully qualified name of this interface, including package name followed
423 by the interface's simple name.
424 """
425
426 methods: List["Method"] = betterproto.message_field(2)
427 """The methods of this interface, in unspecified order."""
428
429 options: List["Option"] = betterproto.message_field(3)
430 """Any metadata attached to the interface."""
431
432 version: str = betterproto.string_field(4)
433 """
434 A version string for this interface. If specified, must have the form
435 `major-version.minor-version`, as in `1.10`. If the minor version is
436 omitted, it defaults to zero. If the entire version field is empty, the
437 major version is derived from the package name, as outlined below. If the
438 field is not empty, the version in the package name will be verified to be
439 consistent with what is provided here. The versioning schema uses [semantic
440 versioning](http://semver.org) where the major version number indicates a
441 breaking change and the minor version an additive, non-breaking change.
442 Both version numbers are signals to users what to expect from different
443 versions, and should be carefully chosen based on the product plan. The
444 major version is also reflected in the package name of the interface, which
445 must end in `v<major-version>`, as in `google.feature.v1`. For major
446 versions 0 and 1, the suffix can be omitted. Zero major versions must only
447 be used for experimental, non-GA interfaces.
448 """
449
450 source_context: "SourceContext" = betterproto.message_field(5)
451 """
452 Source context for the protocol buffer service represented by this message.
453 """
454
455 mixins: List["Mixin"] = betterproto.message_field(6)
456 """Included interfaces. See [Mixin][]."""
457
458 syntax: "Syntax" = betterproto.enum_field(7)
459 """The source syntax of the service."""
460
461
462@dataclass(eq=False, repr=False)
463class Method(betterproto.Message):
464 """Method represents a method of an API interface."""
465
466 name: str = betterproto.string_field(1)
467 """The simple name of this method."""
468
469 request_type_url: str = betterproto.string_field(2)
470 """A URL of the input message type."""
471
472 request_streaming: bool = betterproto.bool_field(3)
473 """If true, the request is streamed."""
474
475 response_type_url: str = betterproto.string_field(4)
476 """The URL of the output message type."""
477
478 response_streaming: bool = betterproto.bool_field(5)
479 """If true, the response is streamed."""
480
481 options: List["Option"] = betterproto.message_field(6)
482 """Any metadata attached to the method."""
483
484 syntax: "Syntax" = betterproto.enum_field(7)
485 """The source syntax of this method."""
486
487
488@dataclass(eq=False, repr=False)
489class Mixin(betterproto.Message):
490 """
491 Declares an API Interface to be included in this interface. The including
492 interface must redeclare all the methods from the included interface, but
493 documentation and options are inherited as follows: - If after comment and
494 whitespace stripping, the documentation string of the redeclared method
495 is empty, it will be inherited from the original method. - Each
496 annotation belonging to the service config (http, visibility) which is
497 not set in the redeclared method will be inherited. - If an http
498 annotation is inherited, the path pattern will be modified as follows.
499 Any version prefix will be replaced by the version of the including
500 interface plus the [root][] path if specified. Example of a simple mixin:
501 package google.acl.v1; service AccessControl { // Get the
502 underlying ACL object. rpc GetAcl(GetAclRequest) returns (Acl) {
503 option (google.api.http).get = "/v1/{resource=**}:getAcl"; } }
504 package google.storage.v2; service Storage { rpc
505 GetAcl(GetAclRequest) returns (Acl); // Get a data record. rpc
506 GetData(GetDataRequest) returns (Data) { option
507 (google.api.http).get = "/v2/{resource=**}"; } } Example of a
508 mixin configuration: apis: - name: google.storage.v2.Storage
509 mixins: - name: google.acl.v1.AccessControl The mixin construct
510 implies that all methods in `AccessControl` are also declared with same
511 name and request/response types in `Storage`. A documentation generator or
512 annotation processor will see the effective `Storage.GetAcl` method after
513 inheriting documentation and annotations as follows: service Storage {
514 // Get the underlying ACL object. rpc GetAcl(GetAclRequest) returns
515 (Acl) { option (google.api.http).get = "/v2/{resource=**}:getAcl";
516 } ... } Note how the version in the path pattern changed from
517 `v1` to `v2`. If the `root` field in the mixin is specified, it should be a
518 relative path under which inherited HTTP paths are placed. Example:
519 apis: - name: google.storage.v2.Storage mixins: - name:
520 google.acl.v1.AccessControl root: acls This implies the following
521 inherited HTTP annotation: service Storage { // Get the
522 underlying ACL object. rpc GetAcl(GetAclRequest) returns (Acl) {
523 option (google.api.http).get = "/v2/acls/{resource=**}:getAcl"; }
524 ... }
525 """
526
527 name: str = betterproto.string_field(1)
528 """The fully qualified name of the interface which is included."""
529
530 root: str = betterproto.string_field(2)
531 """
532 If non-empty specifies a path under which inherited HTTP paths are rooted.
533 """
534
535
536@dataclass(eq=False, repr=False)
537class FileDescriptorSet(betterproto.Message):
538 """
539 The protocol compiler can output a FileDescriptorSet containing the .proto
540 files it parses.
541 """
542
543 file: List["FileDescriptorProto"] = betterproto.message_field(1)
544
545
546@dataclass(eq=False, repr=False)
547class FileDescriptorProto(betterproto.Message):
548 """Describes a complete .proto file."""
549
550 name: str = betterproto.string_field(1)
551 package: str = betterproto.string_field(2)
552 dependency: List[str] = betterproto.string_field(3)
553 """Names of files imported by this file."""
554
555 public_dependency: List[int] = betterproto.int32_field(10)
556 """Indexes of the public imported files in the dependency list above."""
557
558 weak_dependency: List[int] = betterproto.int32_field(11)
559 """
560 Indexes of the weak imported files in the dependency list. For Google-
561 internal migration only. Do not use.
562 """
563
564 message_type: List["DescriptorProto"] = betterproto.message_field(4)
565 """All top-level definitions in this file."""
566
567 enum_type: List["EnumDescriptorProto"] = betterproto.message_field(5)
568 service: List["ServiceDescriptorProto"] = betterproto.message_field(6)
569 extension: List["FieldDescriptorProto"] = betterproto.message_field(7)
570 options: "FileOptions" = betterproto.message_field(8)
571 source_code_info: "SourceCodeInfo" = betterproto.message_field(9)
572 """
573 This field contains optional information about the original source code.
574 You may safely remove this entire field without harming runtime
575 functionality of the descriptors -- the information is needed only by
576 development tools.
577 """
578
579 syntax: str = betterproto.string_field(12)
580 """
581 The syntax of the proto file. The supported values are "proto2" and
582 "proto3".
583 """
584
585
586@dataclass(eq=False, repr=False)
587class DescriptorProto(betterproto.Message):
588 """Describes a message type."""
589
590 name: str = betterproto.string_field(1)
591 field: List["FieldDescriptorProto"] = betterproto.message_field(2)
592 extension: List["FieldDescriptorProto"] = betterproto.message_field(6)
593 nested_type: List["DescriptorProto"] = betterproto.message_field(3)
594 enum_type: List["EnumDescriptorProto"] = betterproto.message_field(4)
595 extension_range: List["DescriptorProtoExtensionRange"] = betterproto.message_field(
596 5
597 )
598 oneof_decl: List["OneofDescriptorProto"] = betterproto.message_field(8)
599 options: "MessageOptions" = betterproto.message_field(7)
600 reserved_range: List["DescriptorProtoReservedRange"] = betterproto.message_field(9)
601 reserved_name: List[str] = betterproto.string_field(10)
602 """
603 Reserved field names, which may not be used by fields in the same message.
604 A given name may only be reserved once.
605 """
606
607
608@dataclass(eq=False, repr=False)
609class DescriptorProtoExtensionRange(betterproto.Message):
610 start: int = betterproto.int32_field(1)
611 end: int = betterproto.int32_field(2)
612 options: "ExtensionRangeOptions" = betterproto.message_field(3)
613
614
615@dataclass(eq=False, repr=False)
616class DescriptorProtoReservedRange(betterproto.Message):
617 """
618 Range of reserved tag numbers. Reserved tag numbers may not be used by
619 fields or extension ranges in the same message. Reserved ranges may not
620 overlap.
621 """
622
623 start: int = betterproto.int32_field(1)
624 end: int = betterproto.int32_field(2)
625
626
627@dataclass(eq=False, repr=False)
628class ExtensionRangeOptions(betterproto.Message):
629 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
630 """The parser stores options it doesn't recognize here. See above."""
631
632
633@dataclass(eq=False, repr=False)
634class FieldDescriptorProto(betterproto.Message):
635 """Describes a field within a message."""
636
637 name: str = betterproto.string_field(1)
638 number: int = betterproto.int32_field(3)
639 label: "FieldDescriptorProtoLabel" = betterproto.enum_field(4)
640 type: "FieldDescriptorProtoType" = betterproto.enum_field(5)
641 """
642 If type_name is set, this need not be set. If both this and type_name are
643 set, this must be one of TYPE_ENUM, TYPE_MESSAGE or TYPE_GROUP.
644 """
645
646 type_name: str = betterproto.string_field(6)
647 """
648 For message and enum types, this is the name of the type. If the name
649 starts with a '.', it is fully-qualified. Otherwise, C++-like scoping
650 rules are used to find the type (i.e. first the nested types within this
651 message are searched, then within the parent, on up to the root namespace).
652 """
653
654 extendee: str = betterproto.string_field(2)
655 """
656 For extensions, this is the name of the type being extended. It is
657 resolved in the same manner as type_name.
658 """
659
660 default_value: str = betterproto.string_field(7)
661 """
662 For numeric types, contains the original text representation of the value.
663 For booleans, "true" or "false". For strings, contains the default text
664 contents (not escaped in any way). For bytes, contains the C escaped value.
665 All bytes >= 128 are escaped.
666 """
667
668 oneof_index: int = betterproto.int32_field(9)
669 """
670 If set, gives the index of a oneof in the containing type's oneof_decl
671 list. This field is a member of that oneof.
672 """
673
674 json_name: str = betterproto.string_field(10)
675 """
676 JSON name of this field. The value is set by protocol compiler. If the user
677 has set a "json_name" option on this field, that option's value will be
678 used. Otherwise, it's deduced from the field's name by converting it to
679 camelCase.
680 """
681
682 options: "FieldOptions" = betterproto.message_field(8)
683 proto3_optional: bool = betterproto.bool_field(17)
684 """
685 If true, this is a proto3 "optional". When a proto3 field is optional, it
686 tracks presence regardless of field type. When proto3_optional is true,
687 this field must be belong to a oneof to signal to old proto3 clients that
688 presence is tracked for this field. This oneof is known as a "synthetic"
689 oneof, and this field must be its sole member (each proto3 optional field
690 gets its own synthetic oneof). Synthetic oneofs exist in the descriptor
691 only, and do not generate any API. Synthetic oneofs must be ordered after
692 all "real" oneofs. For message fields, proto3_optional doesn't create any
693 semantic change, since non-repeated message fields always track presence.
694 However it still indicates the semantic detail of whether the user wrote
695 "optional" or not. This can be useful for round-tripping the .proto file.
696 For consistency we give message fields a synthetic oneof also, even though
697 it is not required to track presence. This is especially important because
698 the parser can't tell if a field is a message or an enum, so it must always
699 create a synthetic oneof. Proto2 optional fields do not set this flag,
700 because they already indicate optional with `LABEL_OPTIONAL`.
701 """
702
703
704@dataclass(eq=False, repr=False)
705class OneofDescriptorProto(betterproto.Message):
706 """Describes a oneof."""
707
708 name: str = betterproto.string_field(1)
709 options: "OneofOptions" = betterproto.message_field(2)
710
711
712@dataclass(eq=False, repr=False)
713class EnumDescriptorProto(betterproto.Message):
714 """Describes an enum type."""
715
716 name: str = betterproto.string_field(1)
717 value: List["EnumValueDescriptorProto"] = betterproto.message_field(2)
718 options: "EnumOptions" = betterproto.message_field(3)
719 reserved_range: List[
720 "EnumDescriptorProtoEnumReservedRange"
721 ] = betterproto.message_field(4)
722 """
723 Range of reserved numeric values. Reserved numeric values may not be used
724 by enum values in the same enum declaration. Reserved ranges may not
725 overlap.
726 """
727
728 reserved_name: List[str] = betterproto.string_field(5)
729 """
730 Reserved enum value names, which may not be reused. A given name may only
731 be reserved once.
732 """
733
734
735@dataclass(eq=False, repr=False)
736class EnumDescriptorProtoEnumReservedRange(betterproto.Message):
737 """
738 Range of reserved numeric values. Reserved values may not be used by
739 entries in the same enum. Reserved ranges may not overlap. Note that this
740 is distinct from DescriptorProto.ReservedRange in that it is inclusive such
741 that it can appropriately represent the entire int32 domain.
742 """
743
744 start: int = betterproto.int32_field(1)
745 end: int = betterproto.int32_field(2)
746
747
748@dataclass(eq=False, repr=False)
749class EnumValueDescriptorProto(betterproto.Message):
750 """Describes a value within an enum."""
751
752 name: str = betterproto.string_field(1)
753 number: int = betterproto.int32_field(2)
754 options: "EnumValueOptions" = betterproto.message_field(3)
755
756
757@dataclass(eq=False, repr=False)
758class ServiceDescriptorProto(betterproto.Message):
759 """Describes a service."""
760
761 name: str = betterproto.string_field(1)
762 method: List["MethodDescriptorProto"] = betterproto.message_field(2)
763 options: "ServiceOptions" = betterproto.message_field(3)
764
765
766@dataclass(eq=False, repr=False)
767class MethodDescriptorProto(betterproto.Message):
768 """Describes a method of a service."""
769
770 name: str = betterproto.string_field(1)
771 input_type: str = betterproto.string_field(2)
772 """
773 Input and output type names. These are resolved in the same way as
774 FieldDescriptorProto.type_name, but must refer to a message type.
775 """
776
777 output_type: str = betterproto.string_field(3)
778 options: "MethodOptions" = betterproto.message_field(4)
779 client_streaming: bool = betterproto.bool_field(5)
780 """Identifies if client streams multiple client messages"""
781
782 server_streaming: bool = betterproto.bool_field(6)
783 """Identifies if server streams multiple server messages"""
784
785
786@dataclass(eq=False, repr=False)
787class FileOptions(betterproto.Message):
788 java_package: str = betterproto.string_field(1)
789 """
790 Sets the Java package where classes generated from this .proto will be
791 placed. By default, the proto package is used, but this is often
792 inappropriate because proto packages do not normally start with backwards
793 domain names.
794 """
795
796 java_outer_classname: str = betterproto.string_field(8)
797 """
798 Controls the name of the wrapper Java class generated for the .proto file.
799 That class will always contain the .proto file's getDescriptor() method as
800 well as any top-level extensions defined in the .proto file. If
801 java_multiple_files is disabled, then all the other classes from the .proto
802 file will be nested inside the single wrapper outer class.
803 """
804
805 java_multiple_files: bool = betterproto.bool_field(10)
806 """
807 If enabled, then the Java code generator will generate a separate .java
808 file for each top-level message, enum, and service defined in the .proto
809 file. Thus, these types will *not* be nested inside the wrapper class
810 named by java_outer_classname. However, the wrapper class will still be
811 generated to contain the file's getDescriptor() method as well as any top-
812 level extensions defined in the file.
813 """
814
815 java_generate_equals_and_hash: bool = betterproto.bool_field(20)
816 """This option does nothing."""
817
818 java_string_check_utf8: bool = betterproto.bool_field(27)
819 """
820 If set true, then the Java2 code generator will generate code that throws
821 an exception whenever an attempt is made to assign a non-UTF-8 byte
822 sequence to a string field. Message reflection will do the same. However,
823 an extension field still accepts non-UTF-8 byte sequences. This option has
824 no effect on when used with the lite runtime.
825 """
826
827 optimize_for: "FileOptionsOptimizeMode" = betterproto.enum_field(9)
828 go_package: str = betterproto.string_field(11)
829 """
830 Sets the Go package where structs generated from this .proto will be
831 placed. If omitted, the Go package will be derived from the following: -
832 The basename of the package import path, if provided. - Otherwise, the
833 package statement in the .proto file, if present. - Otherwise, the
834 basename of the .proto file, without extension.
835 """
836
837 cc_generic_services: bool = betterproto.bool_field(16)
838 """
839 Should generic services be generated in each language? "Generic" services
840 are not specific to any particular RPC system. They are generated by the
841 main code generators in each language (without additional plugins). Generic
842 services were the only kind of service generation supported by early
843 versions of google.protobuf. Generic services are now considered deprecated
844 in favor of using plugins that generate code specific to your particular
845 RPC system. Therefore, these default to false. Old code which depends on
846 generic services should explicitly set them to true.
847 """
848
849 java_generic_services: bool = betterproto.bool_field(17)
850 py_generic_services: bool = betterproto.bool_field(18)
851 php_generic_services: bool = betterproto.bool_field(42)
852 deprecated: bool = betterproto.bool_field(23)
853 """
854 Is this file deprecated? Depending on the target platform, this can emit
855 Deprecated annotations for everything in the file, or it will be completely
856 ignored; in the very least, this is a formalization for deprecating files.
857 """
858
859 cc_enable_arenas: bool = betterproto.bool_field(31)
860 """
861 Enables the use of arenas for the proto messages in this file. This applies
862 only to generated classes for C++.
863 """
864
865 objc_class_prefix: str = betterproto.string_field(36)
866 """
867 Sets the objective c class prefix which is prepended to all objective c
868 generated classes from this .proto. There is no default.
869 """
870
871 csharp_namespace: str = betterproto.string_field(37)
872 """Namespace for generated classes; defaults to the package."""
873
874 swift_prefix: str = betterproto.string_field(39)
875 """
876 By default Swift generators will take the proto package and CamelCase it
877 replacing '.' with underscore and use that to prefix the types/symbols
878 defined. When this options is provided, they will use this value instead to
879 prefix the types/symbols defined.
880 """
881
882 php_class_prefix: str = betterproto.string_field(40)
883 """
884 Sets the php class prefix which is prepended to all php generated classes
885 from this .proto. Default is empty.
886 """
887
888 php_namespace: str = betterproto.string_field(41)
889 """
890 Use this option to change the namespace of php generated classes. Default
891 is empty. When this option is empty, the package name will be used for
892 determining the namespace.
893 """
894
895 php_metadata_namespace: str = betterproto.string_field(44)
896 """
897 Use this option to change the namespace of php generated metadata classes.
898 Default is empty. When this option is empty, the proto file name will be
899 used for determining the namespace.
900 """
901
902 ruby_package: str = betterproto.string_field(45)
903 """
904 Use this option to change the package of ruby generated classes. Default is
905 empty. When this option is not set, the package name will be used for
906 determining the ruby package.
907 """
908
909 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
910 """
911 The parser stores options it doesn't recognize here. See the documentation
912 for the "Options" section above.
913 """
914
915 def __post_init__(self) -> None:
916 super().__post_init__()
917 if self.is_set("java_generate_equals_and_hash"):
918 warnings.warn(
919 "FileOptions.java_generate_equals_and_hash is deprecated",
920 DeprecationWarning,
921 )
922
923
924@dataclass(eq=False, repr=False)
925class MessageOptions(betterproto.Message):
926 message_set_wire_format: bool = betterproto.bool_field(1)
927 """
928 Set true to use the old proto1 MessageSet wire format for extensions. This
929 is provided for backwards-compatibility with the MessageSet wire format.
930 You should not use this for any other reason: It's less efficient, has
931 fewer features, and is more complicated. The message must be defined
932 exactly as follows: message Foo { option message_set_wire_format =
933 true; extensions 4 to max; } Note that the message cannot have any
934 defined fields; MessageSets only have extensions. All extensions of your
935 type must be singular messages; e.g. they cannot be int32s, enums, or
936 repeated messages. Because this is an option, the above two restrictions
937 are not enforced by the protocol compiler.
938 """
939
940 no_standard_descriptor_accessor: bool = betterproto.bool_field(2)
941 """
942 Disables the generation of the standard "descriptor()" accessor, which can
943 conflict with a field of the same name. This is meant to make migration
944 from proto1 easier; new code should avoid fields named "descriptor".
945 """
946
947 deprecated: bool = betterproto.bool_field(3)
948 """
949 Is this message deprecated? Depending on the target platform, this can emit
950 Deprecated annotations for the message, or it will be completely ignored;
951 in the very least, this is a formalization for deprecating messages.
952 """
953
954 map_entry: bool = betterproto.bool_field(7)
955 """
956 Whether the message is an automatically generated map entry type for the
957 maps field. For maps fields: map<KeyType, ValueType> map_field = 1; The
958 parsed descriptor looks like: message MapFieldEntry { option
959 map_entry = true; optional KeyType key = 1; optional
960 ValueType value = 2; } repeated MapFieldEntry map_field = 1;
961 Implementations may choose not to generate the map_entry=true message, but
962 use a native map in the target language to hold the keys and values. The
963 reflection APIs in such implementations still need to work as if the field
964 is a repeated message field. NOTE: Do not set the option in .proto files.
965 Always use the maps syntax instead. The option should only be implicitly
966 set by the proto compiler parser.
967 """
968
969 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
970 """The parser stores options it doesn't recognize here. See above."""
971
972
973@dataclass(eq=False, repr=False)
974class FieldOptions(betterproto.Message):
975 ctype: "FieldOptionsCType" = betterproto.enum_field(1)
976 """
977 The ctype option instructs the C++ code generator to use a different
978 representation of the field than it normally would. See the specific
979 options below. This option is not yet implemented in the open source
980 release -- sorry, we'll try to include it in a future version!
981 """
982
983 packed: bool = betterproto.bool_field(2)
984 """
985 The packed option can be enabled for repeated primitive fields to enable a
986 more efficient representation on the wire. Rather than repeatedly writing
987 the tag and type for each element, the entire array is encoded as a single
988 length-delimited blob. In proto3, only explicit setting it to false will
989 avoid using packed encoding.
990 """
991
992 jstype: "FieldOptionsJsType" = betterproto.enum_field(6)
993 """
994 The jstype option determines the JavaScript type used for values of the
995 field. The option is permitted only for 64 bit integral and fixed types
996 (int64, uint64, sint64, fixed64, sfixed64). A field with jstype JS_STRING
997 is represented as JavaScript string, which avoids loss of precision that
998 can happen when a large value is converted to a floating point JavaScript.
999 Specifying JS_NUMBER for the jstype causes the generated JavaScript code to
1000 use the JavaScript "number" type. The behavior of the default option
1001 JS_NORMAL is implementation dependent. This option is an enum to permit
1002 additional types to be added, e.g. goog.math.Integer.
1003 """
1004
1005 lazy: bool = betterproto.bool_field(5)
1006 """
1007 Should this field be parsed lazily? Lazy applies only to message-type
1008 fields. It means that when the outer message is initially parsed, the
1009 inner message's contents will not be parsed but instead stored in encoded
1010 form. The inner message will actually be parsed when it is first accessed.
1011 This is only a hint. Implementations are free to choose whether to use
1012 eager or lazy parsing regardless of the value of this option. However,
1013 setting this option true suggests that the protocol author believes that
1014 using lazy parsing on this field is worth the additional bookkeeping
1015 overhead typically needed to implement it. This option does not affect the
1016 public interface of any generated code; all method signatures remain the
1017 same. Furthermore, thread-safety of the interface is not affected by this
1018 option; const methods remain safe to call from multiple threads
1019 concurrently, while non-const methods continue to require exclusive access.
1020 Note that implementations may choose not to check required fields within a
1021 lazy sub-message. That is, calling IsInitialized() on the outer message
1022 may return true even if the inner message has missing required fields. This
1023 is necessary because otherwise the inner message would have to be parsed in
1024 order to perform the check, defeating the purpose of lazy parsing. An
1025 implementation which chooses not to check required fields must be
1026 consistent about it. That is, for any particular sub-message, the
1027 implementation must either *always* check its required fields, or *never*
1028 check its required fields, regardless of whether or not the message has
1029 been parsed. As of 2021, lazy does no correctness checks on the byte stream
1030 during parsing. This may lead to crashes if and when an invalid byte
1031 stream is finally parsed upon access. TODO(b/211906113): Enable validation
1032 on lazy fields.
1033 """
1034
1035 unverified_lazy: bool = betterproto.bool_field(15)
1036 """
1037 unverified_lazy does no correctness checks on the byte stream. This should
1038 only be used where lazy with verification is prohibitive for performance
1039 reasons.
1040 """
1041
1042 deprecated: bool = betterproto.bool_field(3)
1043 """
1044 Is this field deprecated? Depending on the target platform, this can emit
1045 Deprecated annotations for accessors, or it will be completely ignored; in
1046 the very least, this is a formalization for deprecating fields.
1047 """
1048
1049 weak: bool = betterproto.bool_field(10)
1050 """For Google-internal migration only. Do not use."""
1051
1052 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1053 """The parser stores options it doesn't recognize here. See above."""
1054
1055
1056@dataclass(eq=False, repr=False)
1057class OneofOptions(betterproto.Message):
1058 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1059 """The parser stores options it doesn't recognize here. See above."""
1060
1061
1062@dataclass(eq=False, repr=False)
1063class EnumOptions(betterproto.Message):
1064 allow_alias: bool = betterproto.bool_field(2)
1065 """
1066 Set this option to true to allow mapping different tag names to the same
1067 value.
1068 """
1069
1070 deprecated: bool = betterproto.bool_field(3)
1071 """
1072 Is this enum deprecated? Depending on the target platform, this can emit
1073 Deprecated annotations for the enum, or it will be completely ignored; in
1074 the very least, this is a formalization for deprecating enums.
1075 """
1076
1077 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1078 """The parser stores options it doesn't recognize here. See above."""
1079
1080
1081@dataclass(eq=False, repr=False)
1082class EnumValueOptions(betterproto.Message):
1083 deprecated: bool = betterproto.bool_field(1)
1084 """
1085 Is this enum value deprecated? Depending on the target platform, this can
1086 emit Deprecated annotations for the enum value, or it will be completely
1087 ignored; in the very least, this is a formalization for deprecating enum
1088 values.
1089 """
1090
1091 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1092 """The parser stores options it doesn't recognize here. See above."""
1093
1094
1095@dataclass(eq=False, repr=False)
1096class ServiceOptions(betterproto.Message):
1097 deprecated: bool = betterproto.bool_field(33)
1098 """
1099 Is this service deprecated? Depending on the target platform, this can emit
1100 Deprecated annotations for the service, or it will be completely ignored;
1101 in the very least, this is a formalization for deprecating services.
1102 """
1103
1104 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1105 """The parser stores options it doesn't recognize here. See above."""
1106
1107
1108@dataclass(eq=False, repr=False)
1109class MethodOptions(betterproto.Message):
1110 deprecated: bool = betterproto.bool_field(33)
1111 """
1112 Is this method deprecated? Depending on the target platform, this can emit
1113 Deprecated annotations for the method, or it will be completely ignored; in
1114 the very least, this is a formalization for deprecating methods.
1115 """
1116
1117 idempotency_level: "MethodOptionsIdempotencyLevel" = betterproto.enum_field(34)
1118 uninterpreted_option: List["UninterpretedOption"] = betterproto.message_field(999)
1119 """The parser stores options it doesn't recognize here. See above."""
1120
1121
1122@dataclass(eq=False, repr=False)
1123class UninterpretedOption(betterproto.Message):
1124 """
1125 A message representing a option the parser does not recognize. This only
1126 appears in options protos created by the compiler::Parser class.
1127 DescriptorPool resolves these when building Descriptor objects. Therefore,
1128 options protos in descriptor objects (e.g. returned by
1129 Descriptor::options(), or produced by Descriptor::CopyTo()) will never have
1130 UninterpretedOptions in them.
1131 """
1132
1133 name: List["UninterpretedOptionNamePart"] = betterproto.message_field(2)
1134 identifier_value: str = betterproto.string_field(3)
1135 """
1136 The value of the uninterpreted option, in whatever type the tokenizer
1137 identified it as during parsing. Exactly one of these should be set.
1138 """
1139
1140 positive_int_value: int = betterproto.uint64_field(4)
1141 negative_int_value: int = betterproto.int64_field(5)
1142 double_value: float = betterproto.double_field(6)
1143 string_value: bytes = betterproto.bytes_field(7)
1144 aggregate_value: str = betterproto.string_field(8)
1145
1146
1147@dataclass(eq=False, repr=False)
1148class UninterpretedOptionNamePart(betterproto.Message):
1149 """
1150 The name of the uninterpreted option. Each string represents a segment in
1151 a dot-separated name. is_extension is true iff a segment represents an
1152 extension (denoted with parentheses in options specs in .proto files).
1153 E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents
1154 "foo.(bar.baz).qux".
1155 """
1156
1157 name_part: str = betterproto.string_field(1)
1158 is_extension: bool = betterproto.bool_field(2)
1159
1160
1161@dataclass(eq=False, repr=False)
1162class SourceCodeInfo(betterproto.Message):
1163 """
1164 Encapsulates information about the original source file from which a
1165 FileDescriptorProto was generated.
1166 """
1167
1168 location: List["SourceCodeInfoLocation"] = betterproto.message_field(1)
1169 """
1170 A Location identifies a piece of source code in a .proto file which
1171 corresponds to a particular definition. This information is intended to be
1172 useful to IDEs, code indexers, documentation generators, and similar tools.
1173 For example, say we have a file like: message Foo { optional string
1174 foo = 1; } Let's look at just the field definition: optional string foo
1175 = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the
1176 following locations: span path represents [a,i) [ 4,
1177 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The
1178 label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [
1179 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number
1180 (1). Notes: - A location may refer to a repeated field itself (i.e. not to
1181 any particular index within it). This is used whenever a set of elements
1182 are logically enclosed in a single code segment. For example, an entire
1183 extend block (possibly containing multiple extension definitions) will
1184 have an outer location whose path refers to the "extensions" repeated
1185 field without an index. - Multiple locations may have the same path. This
1186 happens when a single logical declaration is spread out across multiple
1187 places. The most obvious example is the "extend" block again -- there
1188 may be multiple extend blocks in the same scope, each of which will have
1189 the same path. - A location's span is not always a subset of its parent's
1190 span. For example, the "extendee" of an extension declaration appears at
1191 the beginning of the "extend" block and is shared by all extensions
1192 within the block. - Just because a location's span is a subset of some
1193 other location's span does not mean that it is a descendant. For
1194 example, a "group" defines both a type and a field in a single
1195 declaration. Thus, the locations corresponding to the type and field and
1196 their components will overlap. - Code which tries to interpret locations
1197 should probably be designed to ignore those that it doesn't understand,
1198 as more types of locations could be recorded in the future.
1199 """
1200
1201
1202@dataclass(eq=False, repr=False)
1203class SourceCodeInfoLocation(betterproto.Message):
1204 path: List[int] = betterproto.int32_field(1)
1205 """
1206 Identifies which part of the FileDescriptorProto was defined at this
1207 location. Each element is a field number or an index. They form a path
1208 from the root FileDescriptorProto to the place where the definition occurs.
1209 For example, this path: [ 4, 3, 2, 7, 1 ] refers to:
1210 file.message_type(3) // 4, 3 .field(7) // 2, 7 .name()
1211 // 1 This is because FileDescriptorProto.message_type has field number 4:
1212 repeated DescriptorProto message_type = 4; and DescriptorProto.field has
1213 field number 2: repeated FieldDescriptorProto field = 2; and
1214 FieldDescriptorProto.name has field number 1: optional string name = 1;
1215 Thus, the above path gives the location of a field name. If we removed the
1216 last element: [ 4, 3, 2, 7 ] this path refers to the whole field
1217 declaration (from the beginning of the label to the terminating semicolon).
1218 """
1219
1220 span: List[int] = betterproto.int32_field(2)
1221 """
1222 Always has exactly three or four elements: start line, start column, end
1223 line (optional, otherwise assumed same as start line), end column. These
1224 are packed into a single field for efficiency. Note that line and column
1225 numbers are zero-based -- typically you will want to add 1 to each before
1226 displaying to a user.
1227 """
1228
1229 leading_comments: str = betterproto.string_field(3)
1230 """
1231 If this SourceCodeInfo represents a complete declaration, these are any
1232 comments appearing before and after the declaration which appear to be
1233 attached to the declaration. A series of line comments appearing on
1234 consecutive lines, with no other tokens appearing on those lines, will be
1235 treated as a single comment. leading_detached_comments will keep paragraphs
1236 of comments that appear before (but not connected to) the current element.
1237 Each paragraph, separated by empty lines, will be one comment element in
1238 the repeated field. Only the comment content is provided; comment markers
1239 (e.g. //) are stripped out. For block comments, leading whitespace and an
1240 asterisk will be stripped from the beginning of each line other than the
1241 first. Newlines are included in the output. Examples: optional int32 foo
1242 = 1; // Comment attached to foo. // Comment attached to bar. optional
1243 int32 bar = 2; optional string baz = 3; // Comment attached to baz.
1244 // Another line attached to baz. // Comment attached to qux. // //
1245 Another line attached to qux. optional double qux = 4; // Detached
1246 comment for corge. This is not leading or trailing comments // to qux or
1247 corge because there are blank lines separating it from // both. //
1248 Detached comment for corge paragraph 2. optional string corge = 5; /*
1249 Block comment attached * to corge. Leading asterisks * will be
1250 removed. */ /* Block comment attached to * grault. */ optional int32
1251 grault = 6; // ignored detached comments.
1252 """
1253
1254 trailing_comments: str = betterproto.string_field(4)
1255 leading_detached_comments: List[str] = betterproto.string_field(6)
1256
1257
1258@dataclass(eq=False, repr=False)
1259class GeneratedCodeInfo(betterproto.Message):
1260 """
1261 Describes the relationship between generated code and its original source
1262 file. A GeneratedCodeInfo message is associated with only one generated
1263 source file, but may contain references to different source .proto files.
1264 """
1265
1266 annotation: List["GeneratedCodeInfoAnnotation"] = betterproto.message_field(1)
1267 """
1268 An Annotation connects some span of text in generated code to an element of
1269 its generating .proto file.
1270 """
1271
1272
1273@dataclass(eq=False, repr=False)
1274class GeneratedCodeInfoAnnotation(betterproto.Message):
1275 path: List[int] = betterproto.int32_field(1)
1276 """
1277 Identifies the element in the original source .proto file. This field is
1278 formatted the same as SourceCodeInfo.Location.path.
1279 """
1280
1281 source_file: str = betterproto.string_field(2)
1282 """Identifies the filesystem path to the original source .proto."""
1283
1284 begin: int = betterproto.int32_field(3)
1285 """
1286 Identifies the starting offset in bytes in the generated code that relates
1287 to the identified object.
1288 """
1289
1290 end: int = betterproto.int32_field(4)
1291 """
1292 Identifies the ending offset in bytes in the generated code that relates to
1293 the identified offset. The end offset should be one past the last relevant
1294 byte (so the length of the text = end - begin).
1295 """
1296
1297
1298@dataclass(eq=False, repr=False)
1299class Duration(betterproto.Message):
1300 """
1301 A Duration represents a signed, fixed-length span of time represented as a
1302 count of seconds and fractions of seconds at nanosecond resolution. It is
1303 independent of any calendar and concepts like "day" or "month". It is
1304 related to Timestamp in that the difference between two Timestamp values is
1305 a Duration and it can be added or subtracted from a Timestamp. Range is
1306 approximately +-10,000 years. # Examples Example 1: Compute Duration from
1307 two Timestamps in pseudo code. Timestamp start = ...; Timestamp end
1308 = ...; Duration duration = ...; duration.seconds = end.seconds -
1309 start.seconds; duration.nanos = end.nanos - start.nanos; if
1310 (duration.seconds < 0 && duration.nanos > 0) { duration.seconds += 1;
1311 duration.nanos -= 1000000000; } else if (duration.seconds > 0 &&
1312 duration.nanos < 0) { duration.seconds -= 1; duration.nanos +=
1313 1000000000; } Example 2: Compute Timestamp from Timestamp + Duration in
1314 pseudo code. Timestamp start = ...; Duration duration = ...;
1315 Timestamp end = ...; end.seconds = start.seconds + duration.seconds;
1316 end.nanos = start.nanos + duration.nanos; if (end.nanos < 0) {
1317 end.seconds -= 1; end.nanos += 1000000000; } else if (end.nanos
1318 >= 1000000000) { end.seconds += 1; end.nanos -= 1000000000;
1319 } Example 3: Compute Duration from datetime.timedelta in Python. td =
1320 datetime.timedelta(days=3, minutes=10) duration = Duration()
1321 duration.FromTimedelta(td) # JSON Mapping In JSON format, the Duration type
1322 is encoded as a string rather than an object, where the string ends in the
1323 suffix "s" (indicating seconds) and is preceded by the number of seconds,
1324 with nanoseconds expressed as fractional seconds. For example, 3 seconds
1325 with 0 nanoseconds should be encoded in JSON format as "3s", while 3
1326 seconds and 1 nanosecond should be expressed in JSON format as
1327 "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON
1328 format as "3.000001s".
1329 """
1330
1331 seconds: int = betterproto.int64_field(1)
1332 """
1333 Signed seconds of the span of time. Must be from -315,576,000,000 to
1334 +315,576,000,000 inclusive. Note: these bounds are computed from: 60
1335 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
1336 """
1337
1338 nanos: int = betterproto.int32_field(2)
1339 """
1340 Signed fractions of a second at nanosecond resolution of the span of time.
1341 Durations less than one second are represented with a 0 `seconds` field and
1342 a positive or negative `nanos` field. For durations of one second or more,
1343 a non-zero value for the `nanos` field must be of the same sign as the
1344 `seconds` field. Must be from -999,999,999 to +999,999,999 inclusive.
1345 """
1346
1347
1348@dataclass(eq=False, repr=False)
1349class Empty(betterproto.Message):
1350 """
1351 A generic empty message that you can re-use to avoid defining duplicated
1352 empty messages in your APIs. A typical example is to use it as the request
1353 or the response type of an API method. For instance: service Foo {
1354 rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The
1355 JSON representation for `Empty` is empty JSON object `{}`.
1356 """
1357
1358 pass
1359
1360
1361@dataclass(eq=False, repr=False)
1362class FieldMask(betterproto.Message):
1363 """
1364 `FieldMask` represents a set of symbolic field paths, for example:
1365 paths: "f.a" paths: "f.b.d" Here `f` represents a field in some root
1366 message, `a` and `b` fields in the message found in `f`, and `d` a field
1367 found in the message in `f.b`. Field masks are used to specify a subset of
1368 fields that should be returned by a get operation or modified by an update
1369 operation. Field masks also have a custom JSON encoding (see below). #
1370 Field Masks in Projections When used in the context of a projection, a
1371 response message or sub-message is filtered by the API to only contain
1372 those fields as specified in the mask. For example, if the mask in the
1373 previous example is applied to a response message as follows: f {
1374 a : 22 b { d : 1 x : 2 } y : 13 }
1375 z: 8 The result will not contain specific values for fields x,y and z
1376 (their value will be set to the default, and omitted in proto text output):
1377 f { a : 22 b { d : 1 } } A repeated field is
1378 not allowed except at the last position of a paths string. If a FieldMask
1379 object is not present in a get operation, the operation applies to all
1380 fields (as if a FieldMask of all fields had been specified). Note that a
1381 field mask does not necessarily apply to the top-level response message. In
1382 case of a REST get operation, the field mask applies directly to the
1383 response, but in case of a REST list operation, the mask instead applies to
1384 each individual message in the returned resource list. In case of a REST
1385 custom method, other definitions may be used. Where the mask applies will
1386 be clearly documented together with its declaration in the API. In any
1387 case, the effect on the returned resource/resources is required behavior
1388 for APIs. # Field Masks in Update Operations A field mask in update
1389 operations specifies which fields of the targeted resource are going to be
1390 updated. The API is required to only change the values of the fields as
1391 specified in the mask and leave the others untouched. If a resource is
1392 passed in to describe the updated values, the API ignores the values of all
1393 fields not covered by the mask. If a repeated field is specified for an
1394 update operation, new values will be appended to the existing repeated
1395 field in the target resource. Note that a repeated field is only allowed in
1396 the last position of a `paths` string. If a sub-message is specified in the
1397 last position of the field mask for an update operation, then new value
1398 will be merged into the existing sub-message in the target resource. For
1399 example, given the target message: f { b { d: 1
1400 x: 2 } c: [1] } And an update message: f { b {
1401 d: 10 } c: [2] } then if the field mask is: paths: ["f.b",
1402 "f.c"] then the result will be: f { b { d: 10 x:
1403 2 } c: [1, 2] } An implementation may provide options to
1404 override this default behavior for repeated and message fields. In order to
1405 reset a field's value to the default, the field must be in the mask and set
1406 to the default value in the provided resource. Hence, in order to reset all
1407 fields of a resource, provide a default instance of the resource and set
1408 all fields in the mask, or do not provide a mask as described below. If a
1409 field mask is not present on update, the operation applies to all fields
1410 (as if a field mask of all fields has been specified). Note that in the
1411 presence of schema evolution, this may mean that fields the client does not
1412 know and has therefore not filled into the request will be reset to their
1413 default. If this is unwanted behavior, a specific service may require a
1414 client to always specify a field mask, producing an error if not. As with
1415 get operations, the location of the resource which describes the updated
1416 values in the request message depends on the operation kind. In any case,
1417 the effect of the field mask is required to be honored by the API. ##
1418 Considerations for HTTP REST The HTTP kind of an update operation which
1419 uses a field mask must be set to PATCH instead of PUT in order to satisfy
1420 HTTP semantics (PUT must only be used for full updates). # JSON Encoding of
1421 Field Masks In JSON, a field mask is encoded as a single string where paths
1422 are separated by a comma. Fields name in each path are converted to/from
1423 lower-camel naming conventions. As an example, consider the following
1424 message declarations: message Profile { User user = 1;
1425 Photo photo = 2; } message User { string display_name = 1;
1426 string address = 2; } In proto a field mask for `Profile` may look as
1427 such: mask { paths: "user.display_name" paths: "photo"
1428 } In JSON, the same mask is represented as below: { mask:
1429 "user.displayName,photo" } # Field Masks and Oneof Fields Field masks
1430 treat fields in oneofs just as regular fields. Consider the following
1431 message: message SampleMessage { oneof test_oneof {
1432 string name = 4; SubMessage sub_message = 9; } } The
1433 field mask can be: mask { paths: "name" } Or: mask {
1434 paths: "sub_message" } Note that oneof type names ("test_oneof" in this
1435 case) cannot be used in paths. ## Field Mask Verification The
1436 implementation of any API method which has a FieldMask type field in the
1437 request should verify the included field paths, and return an
1438 `INVALID_ARGUMENT` error if any path is unmappable.
1439 """
1440
1441 paths: List[str] = betterproto.string_field(1)
1442 """The set of field mask paths."""
1443
1444
1445@dataclass(eq=False, repr=False)
1446class Struct(betterproto.Message):
1447 """
1448 `Struct` represents a structured data value, consisting of fields which map
1449 to dynamically typed values. In some languages, `Struct` might be supported
1450 by a native representation. For example, in scripting languages like JS a
1451 struct is represented as an object. The details of that representation are
1452 described together with the proto support for the language. The JSON
1453 representation for `Struct` is JSON object.
1454 """
1455
1456 fields: Dict[str, "Value"] = betterproto.map_field(
1457 1, betterproto.TYPE_STRING, betterproto.TYPE_MESSAGE
1458 )
1459 """Unordered map of dynamically typed values."""
1460
1461
1462@dataclass(eq=False, repr=False)
1463class Value(betterproto.Message):
1464 """
1465 `Value` represents a dynamically typed value which can be either null, a
1466 number, a string, a boolean, a recursive struct value, or a list of values.
1467 A producer of value is expected to set one of these variants. Absence of
1468 any variant indicates an error. The JSON representation for `Value` is JSON
1469 value.
1470 """
1471
1472 null_value: "NullValue" = betterproto.enum_field(1, group="kind")
1473 """Represents a null value."""
1474
1475 number_value: float = betterproto.double_field(2, group="kind")
1476 """Represents a double value."""
1477
1478 string_value: str = betterproto.string_field(3, group="kind")
1479 """Represents a string value."""
1480
1481 bool_value: bool = betterproto.bool_field(4, group="kind")
1482 """Represents a boolean value."""
1483
1484 struct_value: "Struct" = betterproto.message_field(5, group="kind")
1485 """Represents a structured value."""
1486
1487 list_value: "ListValue" = betterproto.message_field(6, group="kind")
1488 """Represents a repeated `Value`."""
1489
1490
1491@dataclass(eq=False, repr=False)
1492class ListValue(betterproto.Message):
1493 """
1494 `ListValue` is a wrapper around a repeated field of values. The JSON
1495 representation for `ListValue` is JSON array.
1496 """
1497
1498 values: List["Value"] = betterproto.message_field(1)
1499 """Repeated field of dynamically typed values."""
1500
1501
1502@dataclass(eq=False, repr=False)
1503class Timestamp(betterproto.Message):
1504 """
1505 A Timestamp represents a point in time independent of any time zone or
1506 local calendar, encoded as a count of seconds and fractions of seconds at
1507 nanosecond resolution. The count is relative to an epoch at UTC midnight on
1508 January 1, 1970, in the proleptic Gregorian calendar which extends the
1509 Gregorian calendar backwards to year one. All minutes are 60 seconds long.
1510 Leap seconds are "smeared" so that no leap second table is needed for
1511 interpretation, using a [24-hour linear
1512 smear](https://developers.google.com/time/smear). The range is from
1513 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to
1514 that range, we ensure that we can convert to and from [RFC
1515 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings. # Examples
1516 Example 1: Compute Timestamp from POSIX `time()`. Timestamp timestamp;
1517 timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0); Example 2:
1518 Compute Timestamp from POSIX `gettimeofday()`. struct timeval tv;
1519 gettimeofday(&tv, NULL); Timestamp timestamp;
1520 timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec *
1521 1000); Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
1522 FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks =
1523 (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime; // A Windows
1524 tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is
1525 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp
1526 timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) -
1527 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) *
1528 100)); Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
1529 long millis = System.currentTimeMillis(); Timestamp timestamp =
1530 Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int)
1531 ((millis % 1000) * 1000000)).build(); Example 5: Compute Timestamp from
1532 Java `Instant.now()`. Instant now = Instant.now(); Timestamp
1533 timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond())
1534 .setNanos(now.getNano()).build(); Example 6: Compute Timestamp from current
1535 time in Python. timestamp = Timestamp() timestamp.GetCurrentTime()
1536 # JSON Mapping In JSON format, the Timestamp type is encoded as a string in
1537 the [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
1538 format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where
1539 {year} is always expressed using four digits while {month}, {day}, {hour},
1540 {min}, and {sec} are zero-padded to two digits each. The fractional
1541 seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
1542 are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
1543 is required. A proto3 JSON serializer should always use UTC (as indicated
1544 by "Z") when printing the Timestamp type and a proto3 JSON parser should be
1545 able to accept both UTC and other timezones (as indicated by an offset).
1546 For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC
1547 on January 15, 2017. In JavaScript, one can convert a Date object to this
1548 format using the standard [toISOString()](https://developer.mozilla.org/en-
1549 US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString) method.
1550 In Python, a standard `datetime.datetime` object can be converted to this
1551 format using
1552 [`strftime`](https://docs.python.org/2/library/time.html#time.strftime)
1553 with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one
1554 can use the Joda Time's [`ISODateTimeFormat.dateTime()`](
1555 http://www.joda.org/joda-
1556 time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D )
1557 to obtain a formatter capable of generating timestamps in this format.
1558 """
1559
1560 seconds: int = betterproto.int64_field(1)
1561 """
1562 Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must
1563 be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.
1564 """
1565
1566 nanos: int = betterproto.int32_field(2)
1567 """
1568 Non-negative fractions of a second at nanosecond resolution. Negative
1569 second values with fractions must still have non-negative nanos values that
1570 count forward in time. Must be from 0 to 999,999,999 inclusive.
1571 """
1572
1573
1574@dataclass(eq=False, repr=False)
1575class DoubleValue(betterproto.Message):
1576 """
1577 Wrapper message for `double`. The JSON representation for `DoubleValue` is
1578 JSON number.
1579 """
1580
1581 value: float = betterproto.double_field(1)
1582 """The double value."""
1583
1584
1585@dataclass(eq=False, repr=False)
1586class FloatValue(betterproto.Message):
1587 """
1588 Wrapper message for `float`. The JSON representation for `FloatValue` is
1589 JSON number.
1590 """
1591
1592 value: float = betterproto.float_field(1)
1593 """The float value."""
1594
1595
1596@dataclass(eq=False, repr=False)
1597class Int64Value(betterproto.Message):
1598 """
1599 Wrapper message for `int64`. The JSON representation for `Int64Value` is
1600 JSON string.
1601 """
1602
1603 value: int = betterproto.int64_field(1)
1604 """The int64 value."""
1605
1606
1607@dataclass(eq=False, repr=False)
1608class UInt64Value(betterproto.Message):
1609 """
1610 Wrapper message for `uint64`. The JSON representation for `UInt64Value` is
1611 JSON string.
1612 """
1613
1614 value: int = betterproto.uint64_field(1)
1615 """The uint64 value."""
1616
1617
1618@dataclass(eq=False, repr=False)
1619class Int32Value(betterproto.Message):
1620 """
1621 Wrapper message for `int32`. The JSON representation for `Int32Value` is
1622 JSON number.
1623 """
1624
1625 value: int = betterproto.int32_field(1)
1626 """The int32 value."""
1627
1628
1629@dataclass(eq=False, repr=False)
1630class UInt32Value(betterproto.Message):
1631 """
1632 Wrapper message for `uint32`. The JSON representation for `UInt32Value` is
1633 JSON number.
1634 """
1635
1636 value: int = betterproto.uint32_field(1)
1637 """The uint32 value."""
1638
1639
1640@dataclass(eq=False, repr=False)
1641class BoolValue(betterproto.Message):
1642 """
1643 Wrapper message for `bool`. The JSON representation for `BoolValue` is JSON
1644 `true` and `false`.
1645 """
1646
1647 value: bool = betterproto.bool_field(1)
1648 """The bool value."""
1649
1650
1651@dataclass(eq=False, repr=False)
1652class StringValue(betterproto.Message):
1653 """
1654 Wrapper message for `string`. The JSON representation for `StringValue` is
1655 JSON string.
1656 """
1657
1658 value: str = betterproto.string_field(1)
1659 """The string value."""
1660
1661
1662@dataclass(eq=False, repr=False)
1663class BytesValue(betterproto.Message):
1664 """
1665 Wrapper message for `bytes`. The JSON representation for `BytesValue` is
1666 JSON string.
1667 """
1668
1669 value: bytes = betterproto.bytes_field(1)
1670 """The bytes value."""