Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/pydantic/config.py: 89%
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1"""Configuration for Pydantic models."""
3from __future__ import annotations as _annotations
5import warnings
6from re import Pattern
7from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar, Union, cast, overload
9from typing_extensions import TypeAlias, TypedDict, Unpack, deprecated
11from ._migration import getattr_migration
12from .aliases import AliasGenerator
13from .errors import PydanticUserError
14from .warnings import PydanticDeprecatedSince211
16if TYPE_CHECKING:
17 from ._internal._generate_schema import GenerateSchema as _GenerateSchema
18 from .fields import ComputedFieldInfo, FieldInfo
20__all__ = ('ConfigDict', 'with_config')
23JsonValue: TypeAlias = Union[int, float, str, bool, None, list['JsonValue'], 'JsonDict']
24JsonDict: TypeAlias = dict[str, JsonValue]
26JsonEncoder = Callable[[Any], Any]
28JsonSchemaExtraCallable: TypeAlias = Union[
29 Callable[[JsonDict], None],
30 Callable[[JsonDict, type[Any]], None],
31]
33ExtraValues = Literal['allow', 'ignore', 'forbid']
36class ConfigDict(TypedDict, total=False):
37 """A TypedDict for configuring Pydantic behaviour."""
39 title: str | None
40 """The title for the generated JSON schema, defaults to the model's name"""
42 model_title_generator: Callable[[type], str] | None
43 """A callable that takes a model class and returns the title for it. Defaults to `None`."""
45 field_title_generator: Callable[[str, FieldInfo | ComputedFieldInfo], str] | None
46 """A callable that takes a field's name and info and returns title for it. Defaults to `None`."""
48 str_to_lower: bool
49 """Whether to convert all characters to lowercase for str types. Defaults to `False`."""
51 str_to_upper: bool
52 """Whether to convert all characters to uppercase for str types. Defaults to `False`."""
54 str_strip_whitespace: bool
55 """Whether to strip leading and trailing whitespace for str types."""
57 str_min_length: int
58 """The minimum length for str types. Defaults to `None`."""
60 str_max_length: int | None
61 """The maximum length for str types. Defaults to `None`."""
63 extra: ExtraValues | None
64 '''
65 Whether to ignore, allow, or forbid extra data during model initialization. Defaults to `'ignore'`.
67 Three configuration values are available:
69 - `'ignore'`: Providing extra data is ignored (the default):
70 ```python
71 from pydantic import BaseModel, ConfigDict
73 class User(BaseModel):
74 model_config = ConfigDict(extra='ignore') # (1)!
76 name: str
78 user = User(name='John Doe', age=20) # (2)!
79 print(user)
80 #> name='John Doe'
81 ```
83 1. This is the default behaviour.
84 2. The `age` argument is ignored.
86 - `'forbid'`: Providing extra data is not permitted, and a [`ValidationError`][pydantic_core.ValidationError]
87 will be raised if this is the case:
88 ```python
89 from pydantic import BaseModel, ConfigDict, ValidationError
92 class Model(BaseModel):
93 x: int
95 model_config = ConfigDict(extra='forbid')
98 try:
99 Model(x=1, y='a')
100 except ValidationError as exc:
101 print(exc)
102 """
103 1 validation error for Model
104 y
105 Extra inputs are not permitted [type=extra_forbidden, input_value='a', input_type=str]
106 """
107 ```
109 - `'allow'`: Providing extra data is allowed and stored in the `__pydantic_extra__` dictionary attribute:
110 ```python
111 from pydantic import BaseModel, ConfigDict
114 class Model(BaseModel):
115 x: int
117 model_config = ConfigDict(extra='allow')
120 m = Model(x=1, y='a')
121 assert m.__pydantic_extra__ == {'y': 'a'}
122 ```
123 By default, no validation will be applied to these extra items, but you can set a type for the values by overriding
124 the type annotation for `__pydantic_extra__`:
125 ```python
126 from pydantic import BaseModel, ConfigDict, Field, ValidationError
129 class Model(BaseModel):
130 __pydantic_extra__: dict[str, int] = Field(init=False) # (1)!
132 x: int
134 model_config = ConfigDict(extra='allow')
137 try:
138 Model(x=1, y='a')
139 except ValidationError as exc:
140 print(exc)
141 """
142 1 validation error for Model
143 y
144 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
145 """
147 m = Model(x=1, y='2')
148 assert m.x == 1
149 assert m.y == 2
150 assert m.model_dump() == {'x': 1, 'y': 2}
151 assert m.__pydantic_extra__ == {'y': 2}
152 ```
154 1. The `= Field(init=False)` does not have any effect at runtime, but prevents the `__pydantic_extra__` field from
155 being included as a parameter to the model's `__init__` method by type checkers.
157 As well as specifying an `extra` configuration value on the model, you can also provide it as an argument to the validation methods.
158 This will override any `extra` configuration value set on the model:
159 ```python
160 from pydantic import BaseModel, ConfigDict, ValidationError
162 class Model(BaseModel):
163 x: int
164 model_config = ConfigDict(extra="allow")
166 try:
167 # Override model config and forbid extra fields just this time
168 Model.model_validate({"x": 1, "y": 2}, extra="forbid")
169 except ValidationError as exc:
170 print(exc)
171 """
172 1 validation error for Model
173 y
174 Extra inputs are not permitted [type=extra_forbidden, input_value=2, input_type=int]
175 """
176 ```
177 '''
179 frozen: bool
180 """
181 Whether models are faux-immutable, i.e. whether `__setattr__` is allowed, and also generates
182 a `__hash__()` method for the model. This makes instances of the model potentially hashable if all the
183 attributes are hashable. Defaults to `False`.
185 Note:
186 On V1, the inverse of this setting was called `allow_mutation`, and was `True` by default.
187 """
189 populate_by_name: bool
190 """
191 Whether an aliased field may be populated by its name as given by the model
192 attribute, as well as the alias. Defaults to `False`.
194 !!! warning
195 `populate_by_name` usage is not recommended in v2.11+ and will be deprecated in v3.
196 Instead, you should use the [`validate_by_name`][pydantic.config.ConfigDict.validate_by_name] configuration setting.
198 When `validate_by_name=True` and `validate_by_alias=True`, this is strictly equivalent to the
199 previous behavior of `populate_by_name=True`.
201 In v2.11, we also introduced a [`validate_by_alias`][pydantic.config.ConfigDict.validate_by_alias] setting that introduces more fine grained
202 control for validation behavior.
204 Here's how you might go about using the new settings to achieve the same behavior:
206 ```python
207 from pydantic import BaseModel, ConfigDict, Field
209 class Model(BaseModel):
210 model_config = ConfigDict(validate_by_name=True, validate_by_alias=True)
212 my_field: str = Field(alias='my_alias') # (1)!
214 m = Model(my_alias='foo') # (2)!
215 print(m)
216 #> my_field='foo'
218 m = Model(my_field='foo') # (3)!
219 print(m)
220 #> my_field='foo'
221 ```
223 1. The field `'my_field'` has an alias `'my_alias'`.
224 2. The model is populated by the alias `'my_alias'`.
225 3. The model is populated by the attribute name `'my_field'`.
226 """
228 use_enum_values: bool
229 """
230 Whether to populate models with the `value` property of enums, rather than the raw enum.
231 This may be useful if you want to serialize `model.model_dump()` later. Defaults to `False`.
233 !!! note
234 If you have an `Optional[Enum]` value that you set a default for, you need to use `validate_default=True`
235 for said Field to ensure that the `use_enum_values` flag takes effect on the default, as extracting an
236 enum's value occurs during validation, not serialization.
238 ```python
239 from enum import Enum
240 from typing import Optional
242 from pydantic import BaseModel, ConfigDict, Field
244 class SomeEnum(Enum):
245 FOO = 'foo'
246 BAR = 'bar'
247 BAZ = 'baz'
249 class SomeModel(BaseModel):
250 model_config = ConfigDict(use_enum_values=True)
252 some_enum: SomeEnum
253 another_enum: Optional[SomeEnum] = Field(
254 default=SomeEnum.FOO, validate_default=True
255 )
257 model1 = SomeModel(some_enum=SomeEnum.BAR)
258 print(model1.model_dump())
259 #> {'some_enum': 'bar', 'another_enum': 'foo'}
261 model2 = SomeModel(some_enum=SomeEnum.BAR, another_enum=SomeEnum.BAZ)
262 print(model2.model_dump())
263 #> {'some_enum': 'bar', 'another_enum': 'baz'}
264 ```
265 """
267 validate_assignment: bool
268 """
269 Whether to validate the data when the model is changed. Defaults to `False`.
271 The default behavior of Pydantic is to validate the data when the model is created.
273 In case the user changes the data after the model is created, the model is _not_ revalidated.
275 ```python
276 from pydantic import BaseModel
278 class User(BaseModel):
279 name: str
281 user = User(name='John Doe') # (1)!
282 print(user)
283 #> name='John Doe'
284 user.name = 123 # (1)!
285 print(user)
286 #> name=123
287 ```
289 1. The validation happens only when the model is created.
290 2. The validation does not happen when the data is changed.
292 In case you want to revalidate the model when the data is changed, you can use `validate_assignment=True`:
294 ```python
295 from pydantic import BaseModel, ValidationError
297 class User(BaseModel, validate_assignment=True): # (1)!
298 name: str
300 user = User(name='John Doe') # (2)!
301 print(user)
302 #> name='John Doe'
303 try:
304 user.name = 123 # (3)!
305 except ValidationError as e:
306 print(e)
307 '''
308 1 validation error for User
309 name
310 Input should be a valid string [type=string_type, input_value=123, input_type=int]
311 '''
312 ```
314 1. You can either use class keyword arguments, or `model_config` to set `validate_assignment=True`.
315 2. The validation happens when the model is created.
316 3. The validation _also_ happens when the data is changed.
317 """
319 arbitrary_types_allowed: bool
320 """
321 Whether arbitrary types are allowed for field types. Defaults to `False`.
323 ```python
324 from pydantic import BaseModel, ConfigDict, ValidationError
326 # This is not a pydantic model, it's an arbitrary class
327 class Pet:
328 def __init__(self, name: str):
329 self.name = name
331 class Model(BaseModel):
332 model_config = ConfigDict(arbitrary_types_allowed=True)
334 pet: Pet
335 owner: str
337 pet = Pet(name='Hedwig')
338 # A simple check of instance type is used to validate the data
339 model = Model(owner='Harry', pet=pet)
340 print(model)
341 #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry'
342 print(model.pet)
343 #> <__main__.Pet object at 0x0123456789ab>
344 print(model.pet.name)
345 #> Hedwig
346 print(type(model.pet))
347 #> <class '__main__.Pet'>
348 try:
349 # If the value is not an instance of the type, it's invalid
350 Model(owner='Harry', pet='Hedwig')
351 except ValidationError as e:
352 print(e)
353 '''
354 1 validation error for Model
355 pet
356 Input should be an instance of Pet [type=is_instance_of, input_value='Hedwig', input_type=str]
357 '''
359 # Nothing in the instance of the arbitrary type is checked
360 # Here name probably should have been a str, but it's not validated
361 pet2 = Pet(name=42)
362 model2 = Model(owner='Harry', pet=pet2)
363 print(model2)
364 #> pet=<__main__.Pet object at 0x0123456789ab> owner='Harry'
365 print(model2.pet)
366 #> <__main__.Pet object at 0x0123456789ab>
367 print(model2.pet.name)
368 #> 42
369 print(type(model2.pet))
370 #> <class '__main__.Pet'>
371 ```
372 """
374 from_attributes: bool
375 """
376 Whether to build models and look up discriminators of tagged unions using python object attributes.
377 """
379 loc_by_alias: bool
380 """Whether to use the actual key provided in the data (e.g. alias) for error `loc`s rather than the field's name. Defaults to `True`."""
382 alias_generator: Callable[[str], str] | AliasGenerator | None
383 """
384 A callable that takes a field name and returns an alias for it
385 or an instance of [`AliasGenerator`][pydantic.aliases.AliasGenerator]. Defaults to `None`.
387 When using a callable, the alias generator is used for both validation and serialization.
388 If you want to use different alias generators for validation and serialization, you can use
389 [`AliasGenerator`][pydantic.aliases.AliasGenerator] instead.
391 If data source field names do not match your code style (e.g. CamelCase fields),
392 you can automatically generate aliases using `alias_generator`. Here's an example with
393 a basic callable:
395 ```python
396 from pydantic import BaseModel, ConfigDict
397 from pydantic.alias_generators import to_pascal
399 class Voice(BaseModel):
400 model_config = ConfigDict(alias_generator=to_pascal)
402 name: str
403 language_code: str
405 voice = Voice(Name='Filiz', LanguageCode='tr-TR')
406 print(voice.language_code)
407 #> tr-TR
408 print(voice.model_dump(by_alias=True))
409 #> {'Name': 'Filiz', 'LanguageCode': 'tr-TR'}
410 ```
412 If you want to use different alias generators for validation and serialization, you can use
413 [`AliasGenerator`][pydantic.aliases.AliasGenerator].
415 ```python
416 from pydantic import AliasGenerator, BaseModel, ConfigDict
417 from pydantic.alias_generators import to_camel, to_pascal
419 class Athlete(BaseModel):
420 first_name: str
421 last_name: str
422 sport: str
424 model_config = ConfigDict(
425 alias_generator=AliasGenerator(
426 validation_alias=to_camel,
427 serialization_alias=to_pascal,
428 )
429 )
431 athlete = Athlete(firstName='John', lastName='Doe', sport='track')
432 print(athlete.model_dump(by_alias=True))
433 #> {'FirstName': 'John', 'LastName': 'Doe', 'Sport': 'track'}
434 ```
436 Note:
437 Pydantic offers three built-in alias generators: [`to_pascal`][pydantic.alias_generators.to_pascal],
438 [`to_camel`][pydantic.alias_generators.to_camel], and [`to_snake`][pydantic.alias_generators.to_snake].
439 """
441 ignored_types: tuple[type, ...]
442 """A tuple of types that may occur as values of class attributes without annotations. This is
443 typically used for custom descriptors (classes that behave like `property`). If an attribute is set on a
444 class without an annotation and has a type that is not in this tuple (or otherwise recognized by
445 _pydantic_), an error will be raised. Defaults to `()`.
446 """
448 allow_inf_nan: bool
449 """Whether to allow infinity (`+inf` an `-inf`) and NaN values to float and decimal fields. Defaults to `True`."""
451 json_schema_extra: JsonDict | JsonSchemaExtraCallable | None
452 """A dict or callable to provide extra JSON schema properties. Defaults to `None`."""
454 json_encoders: dict[type[object], JsonEncoder] | None
455 """
456 A `dict` of custom JSON encoders for specific types. Defaults to `None`.
458 !!! warning "Deprecated"
459 This config option is a carryover from v1.
460 We originally planned to remove it in v2 but didn't have a 1:1 replacement so we are keeping it for now.
461 It is still deprecated and will likely be removed in the future.
462 """
464 # new in V2
465 strict: bool
466 """
467 _(new in V2)_ If `True`, strict validation is applied to all fields on the model.
469 By default, Pydantic attempts to coerce values to the correct type, when possible.
471 There are situations in which you may want to disable this behavior, and instead raise an error if a value's type
472 does not match the field's type annotation.
474 To configure strict mode for all fields on a model, you can set `strict=True` on the model.
476 ```python
477 from pydantic import BaseModel, ConfigDict
479 class Model(BaseModel):
480 model_config = ConfigDict(strict=True)
482 name: str
483 age: int
484 ```
486 See [Strict Mode](../concepts/strict_mode.md) for more details.
488 See the [Conversion Table](../concepts/conversion_table.md) for more details on how Pydantic converts data in both
489 strict and lax modes.
490 """
491 # whether instances of models and dataclasses (including subclass instances) should re-validate, default 'never'
492 revalidate_instances: Literal['always', 'never', 'subclass-instances']
493 """
494 When and how to revalidate models and dataclasses during validation. Accepts the string
495 values of `'never'`, `'always'` and `'subclass-instances'`. Defaults to `'never'`.
497 - `'never'` will not revalidate models and dataclasses during validation
498 - `'always'` will revalidate models and dataclasses during validation
499 - `'subclass-instances'` will revalidate models and dataclasses during validation if the instance is a
500 subclass of the model or dataclass
502 By default, model and dataclass instances are not revalidated during validation.
504 ```python
505 from pydantic import BaseModel
507 class User(BaseModel, revalidate_instances='never'): # (1)!
508 hobbies: list[str]
510 class SubUser(User):
511 sins: list[str]
513 class Transaction(BaseModel):
514 user: User
516 my_user = User(hobbies=['reading'])
517 t = Transaction(user=my_user)
518 print(t)
519 #> user=User(hobbies=['reading'])
521 my_user.hobbies = [1] # (2)!
522 t = Transaction(user=my_user) # (3)!
523 print(t)
524 #> user=User(hobbies=[1])
526 my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
527 t = Transaction(user=my_sub_user)
528 print(t)
529 #> user=SubUser(hobbies=['scuba diving'], sins=['lying'])
530 ```
532 1. `revalidate_instances` is set to `'never'` by **default.
533 2. The assignment is not validated, unless you set `validate_assignment` to `True` in the model's config.
534 3. Since `revalidate_instances` is set to `never`, this is not revalidated.
536 If you want to revalidate instances during validation, you can set `revalidate_instances` to `'always'`
537 in the model's config.
539 ```python
540 from pydantic import BaseModel, ValidationError
542 class User(BaseModel, revalidate_instances='always'): # (1)!
543 hobbies: list[str]
545 class SubUser(User):
546 sins: list[str]
548 class Transaction(BaseModel):
549 user: User
551 my_user = User(hobbies=['reading'])
552 t = Transaction(user=my_user)
553 print(t)
554 #> user=User(hobbies=['reading'])
556 my_user.hobbies = [1]
557 try:
558 t = Transaction(user=my_user) # (2)!
559 except ValidationError as e:
560 print(e)
561 '''
562 1 validation error for Transaction
563 user.hobbies.0
564 Input should be a valid string [type=string_type, input_value=1, input_type=int]
565 '''
567 my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
568 t = Transaction(user=my_sub_user)
569 print(t) # (3)!
570 #> user=User(hobbies=['scuba diving'])
571 ```
573 1. `revalidate_instances` is set to `'always'`.
574 2. The model is revalidated, since `revalidate_instances` is set to `'always'`.
575 3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`.
577 It's also possible to set `revalidate_instances` to `'subclass-instances'` to only revalidate instances
578 of subclasses of the model.
580 ```python
581 from pydantic import BaseModel
583 class User(BaseModel, revalidate_instances='subclass-instances'): # (1)!
584 hobbies: list[str]
586 class SubUser(User):
587 sins: list[str]
589 class Transaction(BaseModel):
590 user: User
592 my_user = User(hobbies=['reading'])
593 t = Transaction(user=my_user)
594 print(t)
595 #> user=User(hobbies=['reading'])
597 my_user.hobbies = [1]
598 t = Transaction(user=my_user) # (2)!
599 print(t)
600 #> user=User(hobbies=[1])
602 my_sub_user = SubUser(hobbies=['scuba diving'], sins=['lying'])
603 t = Transaction(user=my_sub_user)
604 print(t) # (3)!
605 #> user=User(hobbies=['scuba diving'])
606 ```
608 1. `revalidate_instances` is set to `'subclass-instances'`.
609 2. This is not revalidated, since `my_user` is not a subclass of `User`.
610 3. Using `'never'` we would have gotten `user=SubUser(hobbies=['scuba diving'], sins=['lying'])`.
611 """
613 ser_json_timedelta: Literal['iso8601', 'float']
614 """
615 The format of JSON serialized timedeltas. Accepts the string values of `'iso8601'` and
616 `'float'`. Defaults to `'iso8601'`.
618 - `'iso8601'` will serialize timedeltas to [ISO 8601 text format](https://en.wikipedia.org/wiki/ISO_8601#Durations).
619 - `'float'` will serialize timedeltas to the total number of seconds.
621 !!! warning
622 Starting in v2.12, it is recommended to use the [`ser_json_temporal`][pydantic.config.ConfigDict.ser_json_temporal]
623 setting instead of `ser_json_timedelta`. This setting will be deprecated in v3.
624 """
626 ser_json_temporal: Literal['iso8601', 'seconds', 'milliseconds']
627 """
628 The format of JSON serialized temporal types from the [`datetime`][] module. This includes:
630 - [`datetime.datetime`][]
631 - [`datetime.date`][]
632 - [`datetime.time`][]
633 - [`datetime.timedelta`][]
635 Can be one of:
637 - `'iso8601'` will serialize date-like types to [ISO 8601 text format](https://en.wikipedia.org/wiki/ISO_8601#Durations).
638 - `'milliseconds'` will serialize date-like types to a floating point number of milliseconds since the epoch.
639 - `'seconds'` will serialize date-like types to a floating point number of seconds since the epoch.
641 Defaults to `'iso8601'`.
643 !!! note
644 This setting was introduced in v2.12. It overlaps with the [`ser_json_timedelta`][pydantic.config.ConfigDict.ser_json_timedelta]
645 setting which will be deprecated in v3. It also adds more configurability for
646 the other temporal types.
647 """
649 val_temporal_unit: Literal['seconds', 'milliseconds', 'infer']
650 """
651 The unit to assume for validating numeric input for datetime-like types ([`datetime.datetime`][] and [`datetime.date`][]). Can be one of:
653 - `'seconds'` will validate date or time numeric inputs as seconds since the [epoch].
654 - `'milliseconds'` will validate date or time numeric inputs as milliseconds since the [epoch].
655 - `'infer'` will infer the unit from the string numeric input on unix time as:
657 * seconds since the [epoch] if $-2^{10} <= v <= 2^{10}$
658 * milliseconds since the [epoch] (if $v < -2^{10}$ or $v > 2^{10}$).
660 Defaults to `'infer'`.
662 [epoch]: https://en.wikipedia.org/wiki/Unix_time
663 """
665 ser_json_bytes: Literal['utf8', 'base64', 'hex']
666 """
667 The encoding of JSON serialized bytes. Defaults to `'utf8'`.
668 Set equal to `val_json_bytes` to get back an equal value after serialization round trip.
670 - `'utf8'` will serialize bytes to UTF-8 strings.
671 - `'base64'` will serialize bytes to URL safe base64 strings.
672 - `'hex'` will serialize bytes to hexadecimal strings.
673 """
675 val_json_bytes: Literal['utf8', 'base64', 'hex']
676 """
677 The encoding of JSON serialized bytes to decode. Defaults to `'utf8'`.
678 Set equal to `ser_json_bytes` to get back an equal value after serialization round trip.
680 - `'utf8'` will deserialize UTF-8 strings to bytes.
681 - `'base64'` will deserialize URL safe base64 strings to bytes.
682 - `'hex'` will deserialize hexadecimal strings to bytes.
683 """
685 ser_json_inf_nan: Literal['null', 'constants', 'strings']
686 """
687 The encoding of JSON serialized infinity and NaN float values. Defaults to `'null'`.
689 - `'null'` will serialize infinity and NaN values as `null`.
690 - `'constants'` will serialize infinity and NaN values as `Infinity` and `NaN`.
691 - `'strings'` will serialize infinity as string `"Infinity"` and NaN as string `"NaN"`.
692 """
694 # whether to validate default values during validation, default False
695 validate_default: bool
696 """Whether to validate default values during validation. Defaults to `False`."""
698 validate_return: bool
699 """Whether to validate the return value from call validators. Defaults to `False`."""
701 protected_namespaces: tuple[str | Pattern[str], ...]
702 """
703 A `tuple` of strings and/or patterns that prevent models from having fields with names that conflict with them.
704 For strings, we match on a prefix basis. Ex, if 'dog' is in the protected namespace, 'dog_name' will be protected.
705 For patterns, we match on the entire field name. Ex, if `re.compile(r'^dog$')` is in the protected namespace, 'dog' will be protected, but 'dog_name' will not be.
706 Defaults to `('model_validate', 'model_dump',)`.
708 The reason we've selected these is to prevent collisions with other validation / dumping formats
709 in the future - ex, `model_validate_{some_newly_supported_format}`.
711 Before v2.10, Pydantic used `('model_',)` as the default value for this setting to
712 prevent collisions between model attributes and `BaseModel`'s own methods. This was changed
713 in v2.10 given feedback that this restriction was limiting in AI and data science contexts,
714 where it is common to have fields with names like `model_id`, `model_input`, `model_output`, etc.
716 For more details, see https://github.com/pydantic/pydantic/issues/10315.
718 ```python
719 import warnings
721 from pydantic import BaseModel
723 warnings.filterwarnings('error') # Raise warnings as errors
725 try:
727 class Model(BaseModel):
728 model_dump_something: str
730 except UserWarning as e:
731 print(e)
732 '''
733 Field 'model_dump_something' in 'Model' conflicts with protected namespace 'model_dump'.
735 You may be able to solve this by setting the 'protected_namespaces' configuration to ('model_validate',).
736 '''
737 ```
739 You can customize this behavior using the `protected_namespaces` setting:
741 ```python {test="skip"}
742 import re
743 import warnings
745 from pydantic import BaseModel, ConfigDict
747 with warnings.catch_warnings(record=True) as caught_warnings:
748 warnings.simplefilter('always') # Catch all warnings
750 class Model(BaseModel):
751 safe_field: str
752 also_protect_field: str
753 protect_this: str
755 model_config = ConfigDict(
756 protected_namespaces=(
757 'protect_me_',
758 'also_protect_',
759 re.compile('^protect_this$'),
760 )
761 )
763 for warning in caught_warnings:
764 print(f'{warning.message}')
765 '''
766 Field 'also_protect_field' in 'Model' conflicts with protected namespace 'also_protect_'.
767 You may be able to solve this by setting the 'protected_namespaces' configuration to ('protect_me_', re.compile('^protect_this$'))`.
769 Field 'protect_this' in 'Model' conflicts with protected namespace 're.compile('^protect_this$')'.
770 You may be able to solve this by setting the 'protected_namespaces' configuration to ('protect_me_', 'also_protect_')`.
771 '''
772 ```
774 While Pydantic will only emit a warning when an item is in a protected namespace but does not actually have a collision,
775 an error _is_ raised if there is an actual collision with an existing attribute:
777 ```python
778 from pydantic import BaseModel, ConfigDict
780 try:
782 class Model(BaseModel):
783 model_validate: str
785 model_config = ConfigDict(protected_namespaces=('model_',))
787 except ValueError as e:
788 print(e)
789 '''
790 Field 'model_validate' conflicts with member <bound method BaseModel.model_validate of <class 'pydantic.main.BaseModel'>> of protected namespace 'model_'.
791 '''
792 ```
793 """
795 hide_input_in_errors: bool
796 """
797 Whether to hide inputs when printing errors. Defaults to `False`.
799 Pydantic shows the input value and type when it raises `ValidationError` during the validation.
801 ```python
802 from pydantic import BaseModel, ValidationError
804 class Model(BaseModel):
805 a: str
807 try:
808 Model(a=123)
809 except ValidationError as e:
810 print(e)
811 '''
812 1 validation error for Model
813 a
814 Input should be a valid string [type=string_type, input_value=123, input_type=int]
815 '''
816 ```
818 You can hide the input value and type by setting the `hide_input_in_errors` config to `True`.
820 ```python
821 from pydantic import BaseModel, ConfigDict, ValidationError
823 class Model(BaseModel):
824 a: str
825 model_config = ConfigDict(hide_input_in_errors=True)
827 try:
828 Model(a=123)
829 except ValidationError as e:
830 print(e)
831 '''
832 1 validation error for Model
833 a
834 Input should be a valid string [type=string_type]
835 '''
836 ```
837 """
839 defer_build: bool
840 """
841 Whether to defer model validator and serializer construction until the first model validation. Defaults to False.
843 This can be useful to avoid the overhead of building models which are only
844 used nested within other models, or when you want to manually define type namespace via
845 [`Model.model_rebuild(_types_namespace=...)`][pydantic.BaseModel.model_rebuild].
847 Since v2.10, this setting also applies to pydantic dataclasses and TypeAdapter instances.
848 """
850 plugin_settings: dict[str, object] | None
851 """A `dict` of settings for plugins. Defaults to `None`."""
853 schema_generator: type[_GenerateSchema] | None
854 """
855 !!! warning
856 `schema_generator` is deprecated in v2.10.
858 Prior to v2.10, this setting was advertised as highly subject to change.
859 It's possible that this interface may once again become public once the internal core schema generation
860 API is more stable, but that will likely come after significant performance improvements have been made.
861 """
863 json_schema_serialization_defaults_required: bool
864 """
865 Whether fields with default values should be marked as required in the serialization schema. Defaults to `False`.
867 This ensures that the serialization schema will reflect the fact a field with a default will always be present
868 when serializing the model, even though it is not required for validation.
870 However, there are scenarios where this may be undesirable — in particular, if you want to share the schema
871 between validation and serialization, and don't mind fields with defaults being marked as not required during
872 serialization. See [#7209](https://github.com/pydantic/pydantic/issues/7209) for more details.
874 ```python
875 from pydantic import BaseModel, ConfigDict
877 class Model(BaseModel):
878 a: str = 'a'
880 model_config = ConfigDict(json_schema_serialization_defaults_required=True)
882 print(Model.model_json_schema(mode='validation'))
883 '''
884 {
885 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}},
886 'title': 'Model',
887 'type': 'object',
888 }
889 '''
890 print(Model.model_json_schema(mode='serialization'))
891 '''
892 {
893 'properties': {'a': {'default': 'a', 'title': 'A', 'type': 'string'}},
894 'required': ['a'],
895 'title': 'Model',
896 'type': 'object',
897 }
898 '''
899 ```
900 """
902 json_schema_mode_override: Literal['validation', 'serialization', None]
903 """
904 If not `None`, the specified mode will be used to generate the JSON schema regardless of what `mode` was passed to
905 the function call. Defaults to `None`.
907 This provides a way to force the JSON schema generation to reflect a specific mode, e.g., to always use the
908 validation schema.
910 It can be useful when using frameworks (such as FastAPI) that may generate different schemas for validation
911 and serialization that must both be referenced from the same schema; when this happens, we automatically append
912 `-Input` to the definition reference for the validation schema and `-Output` to the definition reference for the
913 serialization schema. By specifying a `json_schema_mode_override` though, this prevents the conflict between
914 the validation and serialization schemas (since both will use the specified schema), and so prevents the suffixes
915 from being added to the definition references.
917 ```python
918 from pydantic import BaseModel, ConfigDict, Json
920 class Model(BaseModel):
921 a: Json[int] # requires a string to validate, but will dump an int
923 print(Model.model_json_schema(mode='serialization'))
924 '''
925 {
926 'properties': {'a': {'title': 'A', 'type': 'integer'}},
927 'required': ['a'],
928 'title': 'Model',
929 'type': 'object',
930 }
931 '''
933 class ForceInputModel(Model):
934 # the following ensures that even with mode='serialization', we
935 # will get the schema that would be generated for validation.
936 model_config = ConfigDict(json_schema_mode_override='validation')
938 print(ForceInputModel.model_json_schema(mode='serialization'))
939 '''
940 {
941 'properties': {
942 'a': {
943 'contentMediaType': 'application/json',
944 'contentSchema': {'type': 'integer'},
945 'title': 'A',
946 'type': 'string',
947 }
948 },
949 'required': ['a'],
950 'title': 'ForceInputModel',
951 'type': 'object',
952 }
953 '''
954 ```
955 """
957 coerce_numbers_to_str: bool
958 """
959 If `True`, enables automatic coercion of any `Number` type to `str` in "lax" (non-strict) mode. Defaults to `False`.
961 Pydantic doesn't allow number types (`int`, `float`, `Decimal`) to be coerced as type `str` by default.
963 ```python
964 from decimal import Decimal
966 from pydantic import BaseModel, ConfigDict, ValidationError
968 class Model(BaseModel):
969 value: str
971 try:
972 print(Model(value=42))
973 except ValidationError as e:
974 print(e)
975 '''
976 1 validation error for Model
977 value
978 Input should be a valid string [type=string_type, input_value=42, input_type=int]
979 '''
981 class Model(BaseModel):
982 model_config = ConfigDict(coerce_numbers_to_str=True)
984 value: str
986 repr(Model(value=42).value)
987 #> "42"
988 repr(Model(value=42.13).value)
989 #> "42.13"
990 repr(Model(value=Decimal('42.13')).value)
991 #> "42.13"
992 ```
993 """
995 regex_engine: Literal['rust-regex', 'python-re']
996 """
997 The regex engine to be used for pattern validation.
998 Defaults to `'rust-regex'`.
1000 - `'rust-regex'` uses the [`regex`](https://docs.rs/regex) Rust crate,
1001 which is non-backtracking and therefore more DDoS resistant, but does not support all regex features.
1002 - `'python-re'` use the [`re`][] module, which supports all regex features, but may be slower.
1004 !!! note
1005 If you use a compiled regex pattern, the `'python-re'` engine will be used regardless of this setting.
1006 This is so that flags such as [`re.IGNORECASE`][] are respected.
1008 ```python
1009 from pydantic import BaseModel, ConfigDict, Field, ValidationError
1011 class Model(BaseModel):
1012 model_config = ConfigDict(regex_engine='python-re')
1014 value: str = Field(pattern=r'^abc(?=def)')
1016 print(Model(value='abcdef').value)
1017 #> abcdef
1019 try:
1020 print(Model(value='abxyzcdef'))
1021 except ValidationError as e:
1022 print(e)
1023 '''
1024 1 validation error for Model
1025 value
1026 String should match pattern '^abc(?=def)' [type=string_pattern_mismatch, input_value='abxyzcdef', input_type=str]
1027 '''
1028 ```
1029 """
1031 validation_error_cause: bool
1032 """
1033 If `True`, Python exceptions that were part of a validation failure will be shown as an exception group as a cause. Can be useful for debugging. Defaults to `False`.
1035 Note:
1036 Python 3.10 and older don't support exception groups natively. <=3.10, backport must be installed: `pip install exceptiongroup`.
1038 Note:
1039 The structure of validation errors are likely to change in future Pydantic versions. Pydantic offers no guarantees about their structure. Should be used for visual traceback debugging only.
1040 """
1042 use_attribute_docstrings: bool
1043 '''
1044 Whether docstrings of attributes (bare string literals immediately following the attribute declaration)
1045 should be used for field descriptions. Defaults to `False`.
1047 Available in Pydantic v2.7+.
1049 ```python
1050 from pydantic import BaseModel, ConfigDict, Field
1053 class Model(BaseModel):
1054 model_config = ConfigDict(use_attribute_docstrings=True)
1056 x: str
1057 """
1058 Example of an attribute docstring
1059 """
1061 y: int = Field(description="Description in Field")
1062 """
1063 Description in Field overrides attribute docstring
1064 """
1067 print(Model.model_fields["x"].description)
1068 # > Example of an attribute docstring
1069 print(Model.model_fields["y"].description)
1070 # > Description in Field
1071 ```
1072 This requires the source code of the class to be available at runtime.
1074 !!! warning "Usage with `TypedDict` and stdlib dataclasses"
1075 Due to current limitations, attribute docstrings detection may not work as expected when using
1076 [`TypedDict`][typing.TypedDict] and stdlib dataclasses, in particular when:
1078 - inheritance is being used.
1079 - multiple classes have the same name in the same source file (unless Python 3.13 or greater is used).
1080 '''
1082 cache_strings: bool | Literal['all', 'keys', 'none']
1083 """
1084 Whether to cache strings to avoid constructing new Python objects. Defaults to True.
1086 Enabling this setting should significantly improve validation performance while increasing memory usage slightly.
1088 - `True` or `'all'` (the default): cache all strings
1089 - `'keys'`: cache only dictionary keys
1090 - `False` or `'none'`: no caching
1092 !!! note
1093 `True` or `'all'` is required to cache strings during general validation because
1094 validators don't know if they're in a key or a value.
1096 !!! tip
1097 If repeated strings are rare, it's recommended to use `'keys'` or `'none'` to reduce memory usage,
1098 as the performance difference is minimal if repeated strings are rare.
1099 """
1101 validate_by_alias: bool
1102 """
1103 Whether an aliased field may be populated by its alias. Defaults to `True`.
1105 !!! note
1106 In v2.11, `validate_by_alias` was introduced in conjunction with [`validate_by_name`][pydantic.ConfigDict.validate_by_name]
1107 to empower users with more fine grained validation control. In <v2.11, disabling validation by alias was not possible.
1109 Here's an example of disabling validation by alias:
1111 ```py
1112 from pydantic import BaseModel, ConfigDict, Field
1114 class Model(BaseModel):
1115 model_config = ConfigDict(validate_by_name=True, validate_by_alias=False)
1117 my_field: str = Field(validation_alias='my_alias') # (1)!
1119 m = Model(my_field='foo') # (2)!
1120 print(m)
1121 #> my_field='foo'
1122 ```
1124 1. The field `'my_field'` has an alias `'my_alias'`.
1125 2. The model can only be populated by the attribute name `'my_field'`.
1127 !!! warning
1128 You cannot set both `validate_by_alias` and `validate_by_name` to `False`.
1129 This would make it impossible to populate an attribute.
1131 See [usage errors](../errors/usage_errors.md#validate-by-alias-and-name-false) for an example.
1133 If you set `validate_by_alias` to `False`, under the hood, Pydantic dynamically sets
1134 `validate_by_name` to `True` to ensure that validation can still occur.
1135 """
1137 validate_by_name: bool
1138 """
1139 Whether an aliased field may be populated by its name as given by the model
1140 attribute. Defaults to `False`.
1142 !!! note
1143 In v2.0-v2.10, the `populate_by_name` configuration setting was used to specify
1144 whether or not a field could be populated by its name **and** alias.
1146 In v2.11, `validate_by_name` was introduced in conjunction with [`validate_by_alias`][pydantic.ConfigDict.validate_by_alias]
1147 to empower users with more fine grained validation behavior control.
1149 ```python
1150 from pydantic import BaseModel, ConfigDict, Field
1152 class Model(BaseModel):
1153 model_config = ConfigDict(validate_by_name=True, validate_by_alias=True)
1155 my_field: str = Field(validation_alias='my_alias') # (1)!
1157 m = Model(my_alias='foo') # (2)!
1158 print(m)
1159 #> my_field='foo'
1161 m = Model(my_field='foo') # (3)!
1162 print(m)
1163 #> my_field='foo'
1164 ```
1166 1. The field `'my_field'` has an alias `'my_alias'`.
1167 2. The model is populated by the alias `'my_alias'`.
1168 3. The model is populated by the attribute name `'my_field'`.
1170 !!! warning
1171 You cannot set both `validate_by_alias` and `validate_by_name` to `False`.
1172 This would make it impossible to populate an attribute.
1174 See [usage errors](../errors/usage_errors.md#validate-by-alias-and-name-false) for an example.
1175 """
1177 serialize_by_alias: bool
1178 """
1179 Whether an aliased field should be serialized by its alias. Defaults to `False`.
1181 Note: In v2.11, `serialize_by_alias` was introduced to address the
1182 [popular request](https://github.com/pydantic/pydantic/issues/8379)
1183 for consistency with alias behavior for validation and serialization settings.
1184 In v3, the default value is expected to change to `True` for consistency with the validation default.
1186 ```python
1187 from pydantic import BaseModel, ConfigDict, Field
1189 class Model(BaseModel):
1190 model_config = ConfigDict(serialize_by_alias=True)
1192 my_field: str = Field(serialization_alias='my_alias') # (1)!
1194 m = Model(my_field='foo')
1195 print(m.model_dump()) # (2)!
1196 #> {'my_alias': 'foo'}
1197 ```
1199 1. The field `'my_field'` has an alias `'my_alias'`.
1200 2. The model is serialized using the alias `'my_alias'` for the `'my_field'` attribute.
1201 """
1203 url_preserve_empty_path: bool
1204 """
1205 Whether to preserve empty URL paths when validating values for a URL type. Defaults to `False`.
1207 ```python
1208 from pydantic import AnyUrl, BaseModel, ConfigDict
1210 class Model(BaseModel):
1211 model_config = ConfigDict(url_preserve_empty_path=True)
1213 url: AnyUrl
1215 m = Model(url='http://example.com')
1216 print(m.url)
1217 #> http://example.com
1218 ```
1219 """
1222_TypeT = TypeVar('_TypeT', bound=type)
1225@overload
1226@deprecated('Passing `config` as a keyword argument is deprecated. Pass `config` as a positional argument instead.')
1227def with_config(*, config: ConfigDict) -> Callable[[_TypeT], _TypeT]: ...
1230@overload
1231def with_config(config: ConfigDict, /) -> Callable[[_TypeT], _TypeT]: ...
1234@overload
1235def with_config(**config: Unpack[ConfigDict]) -> Callable[[_TypeT], _TypeT]: ...
1238def with_config(config: ConfigDict | None = None, /, **kwargs: Any) -> Callable[[_TypeT], _TypeT]:
1239 """!!! abstract "Usage Documentation"
1240 [Configuration with other types](../concepts/config.md#configuration-on-other-supported-types)
1242 A convenience decorator to set a [Pydantic configuration](config.md) on a `TypedDict` or a `dataclass` from the standard library.
1244 Although the configuration can be set using the `__pydantic_config__` attribute, it does not play well with type checkers,
1245 especially with `TypedDict`.
1247 !!! example "Usage"
1249 ```python
1250 from typing_extensions import TypedDict
1252 from pydantic import ConfigDict, TypeAdapter, with_config
1254 @with_config(ConfigDict(str_to_lower=True))
1255 class TD(TypedDict):
1256 x: str
1258 ta = TypeAdapter(TD)
1260 print(ta.validate_python({'x': 'ABC'}))
1261 #> {'x': 'abc'}
1262 ```
1263 """
1264 if config is not None and kwargs:
1265 raise ValueError('Cannot specify both `config` and keyword arguments')
1267 if len(kwargs) == 1 and (kwargs_conf := kwargs.get('config')) is not None:
1268 warnings.warn(
1269 'Passing `config` as a keyword argument is deprecated. Pass `config` as a positional argument instead',
1270 category=PydanticDeprecatedSince211,
1271 stacklevel=2,
1272 )
1273 final_config = cast(ConfigDict, kwargs_conf)
1274 else:
1275 final_config = config if config is not None else cast(ConfigDict, kwargs)
1277 def inner(class_: _TypeT, /) -> _TypeT:
1278 # Ideally, we would check for `class_` to either be a `TypedDict` or a stdlib dataclass.
1279 # However, the `@with_config` decorator can be applied *after* `@dataclass`. To avoid
1280 # common mistakes, we at least check for `class_` to not be a Pydantic model.
1281 from ._internal._utils import is_model_class
1283 if is_model_class(class_):
1284 raise PydanticUserError(
1285 f'Cannot use `with_config` on {class_.__name__} as it is a Pydantic model',
1286 code='with-config-on-model',
1287 )
1288 class_.__pydantic_config__ = final_config
1289 return class_
1291 return inner
1294__getattr__ = getattr_migration(__name__)