/src/mpv/video/out/dither.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Generate a dithering matrix for downsampling images. |
3 | | * |
4 | | * Copyright © 2013 Wessel Dankers <wsl@fruit.je> |
5 | | * |
6 | | * This file is part of mpv. |
7 | | * |
8 | | * mpv is free software; you can redistribute it and/or |
9 | | * modify it under the terms of the GNU Lesser General Public |
10 | | * License as published by the Free Software Foundation; either |
11 | | * version 2.1 of the License, or (at your option) any later version. |
12 | | * |
13 | | * mpv is distributed in the hope that it will be useful, |
14 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | | * GNU Lesser General Public License for more details. |
17 | | * |
18 | | * You should have received a copy of the GNU Lesser General Public |
19 | | * License along with mpv. If not, see <http://www.gnu.org/licenses/>. |
20 | | */ |
21 | | |
22 | | #include <stdio.h> |
23 | | #include <stdint.h> |
24 | | #include <stdbool.h> |
25 | | #include <stdlib.h> |
26 | | #include <inttypes.h> |
27 | | #include <string.h> |
28 | | #include <assert.h> |
29 | | #include <math.h> |
30 | | |
31 | | #include <libavutil/lfg.h> |
32 | | |
33 | | #include "misc/mp_assert.h" |
34 | | #include "mpv_talloc.h" |
35 | | #include "dither.h" |
36 | | |
37 | | #define MAX_SIZEB 8 |
38 | | #define MAX_SIZE (1 << MAX_SIZEB) |
39 | | #define MAX_SIZE2 (MAX_SIZE * MAX_SIZE) |
40 | | |
41 | 0 | #define WRAP_SIZE2(k, x) ((unsigned int)((unsigned int)(x) & ((k)->size2 - 1))) |
42 | 0 | #define XY(k, x, y) ((unsigned int)(((x) | ((y) << (k)->sizeb)))) |
43 | | |
44 | | struct ctx { |
45 | | unsigned int sizeb, size, size2; |
46 | | unsigned int gauss_radius; |
47 | | unsigned int gauss_middle; |
48 | | uint64_t gauss[MAX_SIZE2]; |
49 | | unsigned int randomat[MAX_SIZE2]; |
50 | | bool calcmat[MAX_SIZE2]; |
51 | | uint64_t gaussmat[MAX_SIZE2]; |
52 | | unsigned int unimat[MAX_SIZE2]; |
53 | | AVLFG avlfg; |
54 | | }; |
55 | | |
56 | | static void makegauss(struct ctx *k, unsigned int sizeb) |
57 | 0 | { |
58 | 0 | mp_assert(sizeb >= 1 && sizeb <= MAX_SIZEB); |
59 | | |
60 | 0 | av_lfg_init(&k->avlfg, 123); |
61 | |
|
62 | 0 | k->sizeb = sizeb; |
63 | 0 | k->size = 1 << k->sizeb; |
64 | 0 | k->size2 = k->size * k->size; |
65 | |
|
66 | 0 | k->gauss_radius = k->size / 2 - 1; |
67 | 0 | k->gauss_middle = XY(k, k->gauss_radius, k->gauss_radius); |
68 | |
|
69 | 0 | unsigned int gauss_size = k->gauss_radius * 2 + 1; |
70 | 0 | unsigned int gauss_size2 = gauss_size * gauss_size; |
71 | |
|
72 | 0 | for (unsigned int c = 0; c < k->size2; c++) |
73 | 0 | k->gauss[c] = 0; |
74 | |
|
75 | 0 | double sigma = -log(1.5 / (double) UINT64_MAX * gauss_size2) / k->gauss_radius; |
76 | |
|
77 | 0 | for (unsigned int gy = 0; gy <= k->gauss_radius; gy++) { |
78 | 0 | for (unsigned int gx = 0; gx <= gy; gx++) { |
79 | 0 | int cx = (int)gx - k->gauss_radius; |
80 | 0 | int cy = (int)gy - k->gauss_radius; |
81 | 0 | int sq = cx * cx + cy * cy; |
82 | 0 | double e = exp(-sqrt(sq) * sigma); |
83 | 0 | uint64_t v = e / gauss_size2 * (double) UINT64_MAX; |
84 | 0 | k->gauss[XY(k, gx, gy)] = |
85 | 0 | k->gauss[XY(k, gy, gx)] = |
86 | 0 | k->gauss[XY(k, gx, gauss_size - 1 - gy)] = |
87 | 0 | k->gauss[XY(k, gy, gauss_size - 1 - gx)] = |
88 | 0 | k->gauss[XY(k, gauss_size - 1 - gx, gy)] = |
89 | 0 | k->gauss[XY(k, gauss_size - 1 - gy, gx)] = |
90 | 0 | k->gauss[XY(k, gauss_size - 1 - gx, gauss_size - 1 - gy)] = |
91 | 0 | k->gauss[XY(k, gauss_size - 1 - gy, gauss_size - 1 - gx)] = v; |
92 | 0 | } |
93 | 0 | } |
94 | 0 | uint64_t total = 0; |
95 | 0 | for (unsigned int c = 0; c < k->size2; c++) { |
96 | 0 | uint64_t oldtotal = total; |
97 | 0 | total += k->gauss[c]; |
98 | 0 | mp_assert(total >= oldtotal); |
99 | 0 | } |
100 | 0 | } |
101 | | |
102 | | static void setbit(struct ctx *k, unsigned int c) |
103 | 0 | { |
104 | 0 | if (k->calcmat[c]) |
105 | 0 | return; |
106 | 0 | k->calcmat[c] = true; |
107 | 0 | uint64_t *m = k->gaussmat; |
108 | 0 | uint64_t *me = k->gaussmat + k->size2; |
109 | 0 | uint64_t *g = k->gauss + WRAP_SIZE2(k, k->gauss_middle + k->size2 - c); |
110 | 0 | uint64_t *ge = k->gauss + k->size2; |
111 | 0 | while (g < ge) |
112 | 0 | *m++ += *g++; |
113 | 0 | g = k->gauss; |
114 | 0 | while (m < me) |
115 | 0 | *m++ += *g++; |
116 | 0 | } |
117 | | |
118 | | static unsigned int getmin(struct ctx *k) |
119 | 0 | { |
120 | 0 | uint64_t min = UINT64_MAX; |
121 | 0 | unsigned int resnum = 0; |
122 | 0 | unsigned int size2 = k->size2; |
123 | 0 | for (unsigned int c = 0; c < size2; c++) { |
124 | 0 | if (k->calcmat[c]) |
125 | 0 | continue; |
126 | 0 | uint64_t total = k->gaussmat[c]; |
127 | 0 | if (total <= min) { |
128 | 0 | if (total != min) { |
129 | 0 | min = total; |
130 | 0 | resnum = 0; |
131 | 0 | } |
132 | 0 | k->randomat[resnum++] = c; |
133 | 0 | } |
134 | 0 | } |
135 | 0 | if (resnum == 1) |
136 | 0 | return k->randomat[0]; |
137 | 0 | if (resnum == size2) |
138 | 0 | return size2 / 2; |
139 | 0 | return k->randomat[av_lfg_get(&k->avlfg) % resnum]; |
140 | 0 | } |
141 | | |
142 | | static void makeuniform(struct ctx *k) |
143 | 0 | { |
144 | 0 | unsigned int size2 = k->size2; |
145 | 0 | for (unsigned int c = 0; c < size2; c++) { |
146 | 0 | unsigned int r = getmin(k); |
147 | 0 | setbit(k, r); |
148 | 0 | k->unimat[r] = c; |
149 | 0 | } |
150 | 0 | } |
151 | | |
152 | | // out_matrix is a reactangular tsize * tsize array, where tsize = (1 << size). |
153 | | void mp_make_fruit_dither_matrix(float *out_matrix, int size) |
154 | 0 | { |
155 | 0 | struct ctx *k = talloc_zero(NULL, struct ctx); |
156 | 0 | makegauss(k, size); |
157 | 0 | makeuniform(k); |
158 | 0 | float invscale = k->size2; |
159 | 0 | for(unsigned int y = 0; y < k->size; y++) { |
160 | 0 | for(unsigned int x = 0; x < k->size; x++) |
161 | 0 | out_matrix[x + y * k->size] = k->unimat[XY(k, x, y)] / invscale; |
162 | 0 | } |
163 | 0 | talloc_free(k); |
164 | 0 | } |
165 | | |
166 | | void mp_make_ordered_dither_matrix(unsigned char *m, int size) |
167 | 0 | { |
168 | 0 | m[0] = 0; |
169 | 0 | for (int sz = 1; sz < size; sz *= 2) { |
170 | 0 | int offset[] = {sz*size, sz, sz * (size+1), 0}; |
171 | 0 | for (int i = 0; i < 4; i++) |
172 | 0 | for (int y = 0; y < sz * size; y += size) |
173 | 0 | for (int x = 0; x < sz; x++) |
174 | 0 | m[x+y+offset[i]] = m[x+y] * 4 + (3-i) * 256/size/size; |
175 | 0 | } |
176 | 0 | } |