Coverage Report

Created: 2023-06-07 07:09

/src/LPM/external.protobuf/include/absl/synchronization/mutex.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2017 The Abseil Authors.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//      https://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASIS,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
//
15
// -----------------------------------------------------------------------------
16
// mutex.h
17
// -----------------------------------------------------------------------------
18
//
19
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20
// most common type of synchronization primitive for facilitating locks on
21
// shared resources. A mutex is used to prevent multiple threads from accessing
22
// and/or writing to a shared resource concurrently.
23
//
24
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25
// features:
26
//   * Conditional predicates intrinsic to the `Mutex` object
27
//   * Shared/reader locks, in addition to standard exclusive/writer locks
28
//   * Deadlock detection and debug support.
29
//
30
// The following helper classes are also defined within this file:
31
//
32
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33
//              write access within the current scope.
34
//
35
//  ReaderMutexLock
36
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37
//              access within the current scope.
38
//
39
//  WriterMutexLock
40
//            - Effectively an alias for `MutexLock` above, designed for use in
41
//              distinguishing reader and writer locks within code.
42
//
43
// In addition to simple mutex locks, this file also defines ways to perform
44
// locking under certain conditions.
45
//
46
//  Condition - (Preferred) Used to wait for a particular predicate that
47
//              depends on state protected by the `Mutex` to become true.
48
//  CondVar   - A lower-level variant of `Condition` that relies on
49
//              application code to explicitly signal the `CondVar` when
50
//              a condition has been met.
51
//
52
// See below for more information on using `Condition` or `CondVar`.
53
//
54
// Mutexes and mutex behavior can be quite complicated. The information within
55
// this header file is limited, as a result. Please consult the Mutex guide for
56
// more complete information and examples.
57
58
#ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59
#define ABSL_SYNCHRONIZATION_MUTEX_H_
60
61
#include <atomic>
62
#include <cstdint>
63
#include <cstring>
64
#include <iterator>
65
#include <string>
66
67
#include "absl/base/const_init.h"
68
#include "absl/base/internal/identity.h"
69
#include "absl/base/internal/low_level_alloc.h"
70
#include "absl/base/internal/thread_identity.h"
71
#include "absl/base/internal/tsan_mutex_interface.h"
72
#include "absl/base/port.h"
73
#include "absl/base/thread_annotations.h"
74
#include "absl/synchronization/internal/kernel_timeout.h"
75
#include "absl/synchronization/internal/per_thread_sem.h"
76
#include "absl/time/time.h"
77
78
namespace absl {
79
ABSL_NAMESPACE_BEGIN
80
81
class Condition;
82
struct SynchWaitParams;
83
84
// -----------------------------------------------------------------------------
85
// Mutex
86
// -----------------------------------------------------------------------------
87
//
88
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89
// on some resource, typically a variable or data structure with associated
90
// invariants. Proper usage of mutexes prevents concurrent access by different
91
// threads to the same resource.
92
//
93
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
94
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
95
// *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
96
// Mutex. During the span of time between the Lock() and Unlock() operations,
97
// a mutex is said to be *held*. By design all mutexes support exclusive/write
98
// locks, as this is the most common way to use a mutex.
99
//
100
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
101
//
102
// |                | Lock()     | Unlock() |
103
// |----------------+------------+----------|
104
// | Free           | Exclusive  | invalid  |
105
// | Exclusive      | blocks     | Free     |
106
//
107
// Attempts to `Unlock()` must originate from the thread that performed the
108
// corresponding `Lock()` operation.
109
//
110
// An "invalid" operation is disallowed by the API. The `Mutex` implementation
111
// is allowed to do anything on an invalid call, including but not limited to
112
// crashing with a useful error message, silently succeeding, or corrupting
113
// data structures. In debug mode, the implementation attempts to crash with a
114
// useful error message.
115
//
116
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
117
// is, however, approximately fair over long periods, and starvation-free for
118
// threads at the same priority.
119
//
120
// The lock/unlock primitives are now annotated with lock annotations
121
// defined in (base/thread_annotations.h). When writing multi-threaded code,
122
// you should use lock annotations whenever possible to document your lock
123
// synchronization policy. Besides acting as documentation, these annotations
124
// also help compilers or static analysis tools to identify and warn about
125
// issues that could potentially result in race conditions and deadlocks.
126
//
127
// For more information about the lock annotations, please see
128
// [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
129
// in the Clang documentation.
130
//
131
// See also `MutexLock`, below, for scoped `Mutex` acquisition.
132
133
class ABSL_LOCKABLE Mutex {
134
 public:
135
  // Creates a `Mutex` that is not held by anyone. This constructor is
136
  // typically used for Mutexes allocated on the heap or the stack.
137
  //
138
  // To create `Mutex` instances with static storage duration
139
  // (e.g. a namespace-scoped or global variable), see
140
  // `Mutex::Mutex(absl::kConstInit)` below instead.
141
  Mutex();
142
143
  // Creates a mutex with static storage duration.  A global variable
144
  // constructed this way avoids the lifetime issues that can occur on program
145
  // startup and shutdown.  (See absl/base/const_init.h.)
146
  //
147
  // For Mutexes allocated on the heap and stack, instead use the default
148
  // constructor, which can interact more fully with the thread sanitizer.
149
  //
150
  // Example usage:
151
  //   namespace foo {
152
  //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
153
  //   }
154
  explicit constexpr Mutex(absl::ConstInitType);
155
156
  ~Mutex();
157
158
  // Mutex::Lock()
159
  //
160
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
161
  // then acquires it exclusively. (This lock is also known as a "write lock.")
162
  void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
163
164
  // Mutex::Unlock()
165
  //
166
  // Releases this `Mutex` and returns it from the exclusive/write state to the
167
  // free state. Calling thread must hold the `Mutex` exclusively.
168
  void Unlock() ABSL_UNLOCK_FUNCTION();
169
170
  // Mutex::TryLock()
171
  //
172
  // If the mutex can be acquired without blocking, does so exclusively and
173
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
174
  // probability if the `Mutex` was free.
175
  bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
176
177
  // Mutex::AssertHeld()
178
  //
179
  // Require that the mutex be held exclusively (write mode) by this thread.
180
  //
181
  // If the mutex is not currently held by this thread, this function may report
182
  // an error (typically by crashing with a diagnostic) or it may do nothing.
183
  // This function is intended only as a tool to assist debugging; it doesn't
184
  // guarantee correctness.
185
  void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
186
187
  // ---------------------------------------------------------------------------
188
  // Reader-Writer Locking
189
  // ---------------------------------------------------------------------------
190
191
  // A Mutex can also be used as a starvation-free reader-writer lock.
192
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
193
  // potential client programming errors.
194
  //
195
  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
196
  // `Unlock()` and `TryLock()` methods for use within applications mixing
197
  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
198
  // manner can make locking behavior clearer when mixing read and write modes.
199
  //
200
  // Introducing reader locks necessarily complicates the `Mutex` state
201
  // machine somewhat. The table below illustrates the allowed state transitions
202
  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
203
  // is held in shared mode; this occurs when another thread is blocked on a
204
  // call to WriterLock().
205
  //
206
  // ---------------------------------------------------------------------------
207
  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
208
  // ---------------------------------------------------------------------------
209
  // State
210
  // ---------------------------------------------------------------------------
211
  // Free           Exclusive    invalid   Shared(1)              invalid
212
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
213
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
214
  // Exclusive      blocks       Free      blocks                 invalid
215
  // ---------------------------------------------------------------------------
216
  //
217
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
218
219
  // Mutex::ReaderLock()
220
  //
221
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
222
  // or in shared mode, and then acquires a share of it. Note that
223
  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
224
  // on the mutex.
225
226
  void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
227
228
  // Mutex::ReaderUnlock()
229
  //
230
  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
231
  // the free state if this thread holds the last reader lock on the mutex. Note
232
  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
233
  void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
234
235
  // Mutex::ReaderTryLock()
236
  //
237
  // If the mutex can be acquired without blocking, acquires this mutex for
238
  // shared access and returns `true`. Otherwise, returns `false`. Returns
239
  // `true` with high probability if the `Mutex` was free or shared.
240
  bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
241
242
  // Mutex::AssertReaderHeld()
243
  //
244
  // Require that the mutex be held at least in shared mode (read mode) by this
245
  // thread.
246
  //
247
  // If the mutex is not currently held by this thread, this function may report
248
  // an error (typically by crashing with a diagnostic) or it may do nothing.
249
  // This function is intended only as a tool to assist debugging; it doesn't
250
  // guarantee correctness.
251
  void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
252
253
  // Mutex::WriterLock()
254
  // Mutex::WriterUnlock()
255
  // Mutex::WriterTryLock()
256
  //
257
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
258
  //
259
  // These methods may be used (along with the complementary `Reader*()`
260
  // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
261
  // etc.) from reader/writer lock usage.
262
0
  void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
263
264
0
  void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
265
266
0
  bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
267
0
    return this->TryLock();
268
0
  }
269
270
  // ---------------------------------------------------------------------------
271
  // Conditional Critical Regions
272
  // ---------------------------------------------------------------------------
273
274
  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
275
  //
276
  //   * Use of `Mutex` member functions with `Condition` objects.
277
  //   * Use of the separate `CondVar` abstraction.
278
  //
279
  // In general, prefer use of `Condition` and the `Mutex` member functions
280
  // listed below over `CondVar`. When there are multiple threads waiting on
281
  // distinctly different conditions, however, a battery of `CondVar`s may be
282
  // more efficient. This section discusses use of `Condition` objects.
283
  //
284
  // `Mutex` contains member functions for performing lock operations only under
285
  // certain conditions, of class `Condition`. For correctness, the `Condition`
286
  // must return a boolean that is a pure function, only of state protected by
287
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
288
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
289
  // always be invoked with the mutex held in at least read mode, so you should
290
  // not block it for long periods or sleep it on a timer.
291
  //
292
  // Since a condition must not depend directly on the current time, use
293
  // `*WithTimeout()` member function variants to make your condition
294
  // effectively true after a given duration, or `*WithDeadline()` variants to
295
  // make your condition effectively true after a given time.
296
  //
297
  // The condition function should have no side-effects aside from debug
298
  // logging; as a special exception, the function may acquire other mutexes
299
  // provided it releases all those that it acquires.  (This exception was
300
  // required to allow logging.)
301
302
  // Mutex::Await()
303
  //
304
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
305
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
306
  // same mode in which it was previously held. If the condition is initially
307
  // `true`, `Await()` *may* skip the release/re-acquire step.
308
  //
309
  // `Await()` requires that this thread holds this `Mutex` in some mode.
310
  void Await(const Condition &cond);
311
312
  // Mutex::LockWhen()
313
  // Mutex::ReaderLockWhen()
314
  // Mutex::WriterLockWhen()
315
  //
316
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
317
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
318
  // logically equivalent to `*Lock(); Await();` though they may have different
319
  // performance characteristics.
320
  void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
321
322
  void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
323
324
0
  void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
325
0
    this->LockWhen(cond);
326
0
  }
327
328
  // ---------------------------------------------------------------------------
329
  // Mutex Variants with Timeouts/Deadlines
330
  // ---------------------------------------------------------------------------
331
332
  // Mutex::AwaitWithTimeout()
333
  // Mutex::AwaitWithDeadline()
334
  //
335
  // Unlocks this `Mutex` and blocks until simultaneously:
336
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
337
  //     and
338
  //   - this `Mutex` can be reacquired,
339
  // then reacquire this `Mutex` in the same mode in which it was previously
340
  // held, returning `true` iff `cond` is `true` on return.
341
  //
342
  // If the condition is initially `true`, the implementation *may* skip the
343
  // release/re-acquire step and return immediately.
344
  //
345
  // Deadlines in the past are equivalent to an immediate deadline.
346
  // Negative timeouts are equivalent to a zero timeout.
347
  //
348
  // This method requires that this thread holds this `Mutex` in some mode.
349
  bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
350
351
  bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
352
353
  // Mutex::LockWhenWithTimeout()
354
  // Mutex::ReaderLockWhenWithTimeout()
355
  // Mutex::WriterLockWhenWithTimeout()
356
  //
357
  // Blocks until simultaneously both:
358
  //   - either `cond` is `true` or the timeout has expired, and
359
  //   - this `Mutex` can be acquired,
360
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
361
  // `true` on return.
362
  //
363
  // Negative timeouts are equivalent to a zero timeout.
364
  bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
365
      ABSL_EXCLUSIVE_LOCK_FUNCTION();
366
  bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
367
      ABSL_SHARED_LOCK_FUNCTION();
368
  bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
369
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
370
0
    return this->LockWhenWithTimeout(cond, timeout);
371
0
  }
372
373
  // Mutex::LockWhenWithDeadline()
374
  // Mutex::ReaderLockWhenWithDeadline()
375
  // Mutex::WriterLockWhenWithDeadline()
376
  //
377
  // Blocks until simultaneously both:
378
  //   - either `cond` is `true` or the deadline has been passed, and
379
  //   - this `Mutex` can be acquired,
380
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
381
  // on return.
382
  //
383
  // Deadlines in the past are equivalent to an immediate deadline.
384
  bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
385
      ABSL_EXCLUSIVE_LOCK_FUNCTION();
386
  bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
387
      ABSL_SHARED_LOCK_FUNCTION();
388
  bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
389
0
      ABSL_EXCLUSIVE_LOCK_FUNCTION() {
390
0
    return this->LockWhenWithDeadline(cond, deadline);
391
0
  }
392
393
  // ---------------------------------------------------------------------------
394
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
395
  // ---------------------------------------------------------------------------
396
397
  // Mutex::EnableInvariantDebugging()
398
  //
399
  // If `invariant`!=null and if invariant debugging has been enabled globally,
400
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
401
  // this `Mutex` should hold (for example: just after acquire, just before
402
  // release).
403
  //
404
  // The routine `invariant` should have no side-effects since it is not
405
  // guaranteed how many times it will be called; it should check the invariant
406
  // and crash if it does not hold. Enabling global invariant debugging may
407
  // substantially reduce `Mutex` performance; it should be set only for
408
  // non-production runs.  Optimization options may also disable invariant
409
  // checks.
410
  void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
411
412
  // Mutex::EnableDebugLog()
413
  //
414
  // Cause all subsequent uses of this `Mutex` to be logged via
415
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
416
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
417
  //
418
  // Note: This method substantially reduces `Mutex` performance.
419
  void EnableDebugLog(const char *name);
420
421
  // Deadlock detection
422
423
  // Mutex::ForgetDeadlockInfo()
424
  //
425
  // Forget any deadlock-detection information previously gathered
426
  // about this `Mutex`. Call this method in debug mode when the lock ordering
427
  // of a `Mutex` changes.
428
  void ForgetDeadlockInfo();
429
430
  // Mutex::AssertNotHeld()
431
  //
432
  // Return immediately if this thread does not hold this `Mutex` in any
433
  // mode; otherwise, may report an error (typically by crashing with a
434
  // diagnostic), or may return immediately.
435
  //
436
  // Currently this check is performed only if all of:
437
  //    - in debug mode
438
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
439
  //    - number of locks concurrently held by this thread is not large.
440
  // are true.
441
  void AssertNotHeld() const;
442
443
  // Special cases.
444
445
  // A `MuHow` is a constant that indicates how a lock should be acquired.
446
  // Internal implementation detail.  Clients should ignore.
447
  typedef const struct MuHowS *MuHow;
448
449
  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
450
  //
451
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
452
  // future use of `Mutex` within a fatal signal handler. This method is
453
  // intended for use only for last-ditch attempts to log crash information.
454
  // It does not guarantee that attempts to use Mutexes within the handler will
455
  // not deadlock; it merely makes other faults less likely.
456
  //
457
  // WARNING:  This routine must be invoked from a signal handler, and the
458
  // signal handler must either loop forever or terminate the process.
459
  // Attempts to return from (or `longjmp` out of) the signal handler once this
460
  // call has been made may cause arbitrary program behaviour including
461
  // crashes and deadlocks.
462
  static void InternalAttemptToUseMutexInFatalSignalHandler();
463
464
 private:
465
  std::atomic<intptr_t> mu_;  // The Mutex state.
466
467
  // Post()/Wait() versus associated PerThreadSem; in class for required
468
  // friendship with PerThreadSem.
469
  static void IncrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w);
470
  static bool DecrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w,
471
                                synchronization_internal::KernelTimeout t);
472
473
  // slow path acquire
474
  void LockSlowLoop(SynchWaitParams *waitp, int flags);
475
  // wrappers around LockSlowLoop()
476
  bool LockSlowWithDeadline(MuHow how, const Condition *cond,
477
                            synchronization_internal::KernelTimeout t,
478
                            int flags);
479
  void LockSlow(MuHow how, const Condition *cond,
480
                int flags) ABSL_ATTRIBUTE_COLD;
481
  // slow path release
482
  void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
483
  // Common code between Await() and AwaitWithTimeout/Deadline()
484
  bool AwaitCommon(const Condition &cond,
485
                   synchronization_internal::KernelTimeout t);
486
  // Attempt to remove thread s from queue.
487
  void TryRemove(base_internal::PerThreadSynch *s);
488
  // Block a thread on mutex.
489
  void Block(base_internal::PerThreadSynch *s);
490
  // Wake a thread; return successor.
491
  base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
492
493
  friend class CondVar;   // for access to Trans()/Fer().
494
  void Trans(MuHow how);  // used for CondVar->Mutex transfer
495
  void Fer(
496
      base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
497
498
  // Catch the error of writing Mutex when intending MutexLock.
499
0
  Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
500
501
  Mutex(const Mutex&) = delete;
502
  Mutex& operator=(const Mutex&) = delete;
503
};
504
505
// -----------------------------------------------------------------------------
506
// Mutex RAII Wrappers
507
// -----------------------------------------------------------------------------
508
509
// MutexLock
510
//
511
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
512
// RAII.
513
//
514
// Example:
515
//
516
// Class Foo {
517
//  public:
518
//   Foo::Bar* Baz() {
519
//     MutexLock lock(&mu_);
520
//     ...
521
//     return bar;
522
//   }
523
//
524
// private:
525
//   Mutex mu_;
526
// };
527
class ABSL_SCOPED_LOCKABLE MutexLock {
528
 public:
529
  // Constructors
530
531
  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
532
  // guaranteed to be locked when this object is constructed. Requires that
533
  // `mu` be dereferenceable.
534
0
  explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
535
0
    this->mu_->Lock();
536
0
  }
537
538
  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
539
  // the above, the condition given by `cond` is also guaranteed to hold when
540
  // this object is constructed.
541
  explicit MutexLock(Mutex *mu, const Condition &cond)
542
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
543
0
      : mu_(mu) {
544
0
    this->mu_->LockWhen(cond);
545
0
  }
546
547
  MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
548
  MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
549
  MutexLock& operator=(const MutexLock&) = delete;
550
  MutexLock& operator=(MutexLock&&) = delete;
551
552
0
  ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
553
554
 private:
555
  Mutex *const mu_;
556
};
557
558
// ReaderMutexLock
559
//
560
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
561
// releases a shared lock on a `Mutex` via RAII.
562
class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
563
 public:
564
0
  explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
565
0
    mu->ReaderLock();
566
0
  }
567
568
  explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
569
      ABSL_SHARED_LOCK_FUNCTION(mu)
570
0
      : mu_(mu) {
571
0
    mu->ReaderLockWhen(cond);
572
0
  }
573
574
  ReaderMutexLock(const ReaderMutexLock&) = delete;
575
  ReaderMutexLock(ReaderMutexLock&&) = delete;
576
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
577
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
578
579
0
  ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
580
581
 private:
582
  Mutex *const mu_;
583
};
584
585
// WriterMutexLock
586
//
587
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
588
// releases a write (exclusive) lock on a `Mutex` via RAII.
589
class ABSL_SCOPED_LOCKABLE WriterMutexLock {
590
 public:
591
  explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
592
0
      : mu_(mu) {
593
0
    mu->WriterLock();
594
0
  }
595
596
  explicit WriterMutexLock(Mutex *mu, const Condition &cond)
597
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
598
0
      : mu_(mu) {
599
0
    mu->WriterLockWhen(cond);
600
0
  }
601
602
  WriterMutexLock(const WriterMutexLock&) = delete;
603
  WriterMutexLock(WriterMutexLock&&) = delete;
604
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
605
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;
606
607
0
  ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
608
609
 private:
610
  Mutex *const mu_;
611
};
612
613
// -----------------------------------------------------------------------------
614
// Condition
615
// -----------------------------------------------------------------------------
616
//
617
// `Mutex` contains a number of member functions which take a `Condition` as an
618
// argument; clients can wait for conditions to become `true` before attempting
619
// to acquire the mutex. These sections are known as "condition critical"
620
// sections. To use a `Condition`, you simply need to construct it, and use
621
// within an appropriate `Mutex` member function; everything else in the
622
// `Condition` class is an implementation detail.
623
//
624
// A `Condition` is specified as a function pointer which returns a boolean.
625
// `Condition` functions should be pure functions -- their results should depend
626
// only on passed arguments, should not consult any external state (such as
627
// clocks), and should have no side-effects, aside from debug logging. Any
628
// objects that the function may access should be limited to those which are
629
// constant while the mutex is blocked on the condition (e.g. a stack variable),
630
// or objects of state protected explicitly by the mutex.
631
//
632
// No matter which construction is used for `Condition`, the underlying
633
// function pointer / functor / callable must not throw any
634
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
635
// the face of a throwing `Condition`. (When Abseil is allowed to depend
636
// on C++17, these function pointers will be explicitly marked
637
// `noexcept`; until then this requirement cannot be enforced in the
638
// type system.)
639
//
640
// Note: to use a `Condition`, you need only construct it and pass it to a
641
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
642
// constructor of one of the scope guard classes.
643
//
644
// Example using LockWhen/Unlock:
645
//
646
//   // assume count_ is not internal reference count
647
//   int count_ ABSL_GUARDED_BY(mu_);
648
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
649
//
650
//   mu_.LockWhen(count_is_zero);
651
//   // ...
652
//   mu_.Unlock();
653
//
654
// Example using a scope guard:
655
//
656
//   {
657
//     MutexLock lock(&mu_, count_is_zero);
658
//     // ...
659
//   }
660
//
661
// When multiple threads are waiting on exactly the same condition, make sure
662
// that they are constructed with the same parameters (same pointer to function
663
// + arg, or same pointer to object + method), so that the mutex implementation
664
// can avoid redundantly evaluating the same condition for each thread.
665
class Condition {
666
 public:
667
  // A Condition that returns the result of "(*func)(arg)"
668
  Condition(bool (*func)(void *), void *arg);
669
670
  // Templated version for people who are averse to casts.
671
  //
672
  // To use a lambda, prepend it with unary plus, which converts the lambda
673
  // into a function pointer:
674
  //     Condition(+[](T* t) { return ...; }, arg).
675
  //
676
  // Note: lambdas in this case must contain no bound variables.
677
  //
678
  // See class comment for performance advice.
679
  template<typename T>
680
  Condition(bool (*func)(T *), T *arg);
681
682
  // Templated version for invoking a method that returns a `bool`.
683
  //
684
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
685
  // `object->Method()`.
686
  //
687
  // Implementation Note: `absl::internal::identity` is used to allow methods to
688
  // come from base classes. A simpler signature like
689
  // `Condition(T*, bool (T::*)())` does not suffice.
690
  template<typename T>
691
  Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
692
693
  // Same as above, for const members
694
  template<typename T>
695
  Condition(const T *object,
696
            bool (absl::internal::identity<T>::type::* method)() const);
697
698
  // A Condition that returns the value of `*cond`
699
  explicit Condition(const bool *cond);
700
701
  // Templated version for invoking a functor that returns a `bool`.
702
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
703
  // the result of` std::bind` and user-defined functors that define
704
  // `bool F::operator()() const`.
705
  //
706
  // Example:
707
  //
708
  //   auto reached = [this, current]() {
709
  //     mu_.AssertReaderHeld();                // For annotalysis.
710
  //     return processed_ >= current;
711
  //   };
712
  //   mu_.Await(Condition(&reached));
713
  //
714
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
715
  // the lambda as it may be called when the mutex is being unlocked from a
716
  // scope holding only a reader lock, which will make the assertion not
717
  // fulfilled and crash the binary.
718
719
  // See class comment for performance advice. In particular, if there
720
  // might be more than one waiter for the same condition, make sure
721
  // that all waiters construct the condition with the same pointers.
722
723
  // Implementation note: The second template parameter ensures that this
724
  // constructor doesn't participate in overload resolution if T doesn't have
725
  // `bool operator() const`.
726
  template <typename T, typename E = decltype(
727
      static_cast<bool (T::*)() const>(&T::operator()))>
728
  explicit Condition(const T *obj)
729
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
730
731
  // A Condition that always returns `true`.
732
  ABSL_CONST_INIT static const Condition kTrue;
733
734
  // Evaluates the condition.
735
  bool Eval() const;
736
737
  // Returns `true` if the two conditions are guaranteed to return the same
738
  // value if evaluated at the same time, `false` if the evaluation *may* return
739
  // different results.
740
  //
741
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
742
  // components are the same. A null pointer is equivalent to a `true`
743
  // condition.
744
  static bool GuaranteedEqual(const Condition *a, const Condition *b);
745
746
 private:
747
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
748
  // specifications, a method pointer has a predictable, uniform size. On the
749
  // other hand, MSVC ABI, method pointer sizes vary based on the
750
  // inheritance of the class. Specifically, method pointers from classes with
751
  // multiple inheritance are bigger than those of classes with single
752
  // inheritance. Other variations also exist.
753
754
#ifndef _MSC_VER
755
  // Allocation for a function pointer or method pointer.
756
  // The {0} initializer ensures that all unused bytes of this buffer are
757
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
758
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
759
  using MethodPtr = bool (Condition::*)();
760
  char callback_[sizeof(MethodPtr)] = {0};
761
#else
762
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
763
  // may be the largest known pointer-to-member of any platform. For this
764
  // reason we will allocate 24 bytes for MSVC platform toolchains.
765
  char callback_[24] = {0};
766
#endif
767
768
  // Function with which to evaluate callbacks and/or arguments.
769
  bool (*eval_)(const Condition*) = nullptr;
770
771
  // Either an argument for a function call or an object for a method call.
772
  void *arg_ = nullptr;
773
774
  // Various functions eval_ can point to:
775
  static bool CallVoidPtrFunction(const Condition*);
776
  template <typename T> static bool CastAndCallFunction(const Condition* c);
777
  template <typename T> static bool CastAndCallMethod(const Condition* c);
778
779
  // Helper methods for storing, validating, and reading callback arguments.
780
  template <typename T>
781
  inline void StoreCallback(T callback) {
782
    static_assert(
783
        sizeof(callback) <= sizeof(callback_),
784
        "An overlarge pointer was passed as a callback to Condition.");
785
    std::memcpy(callback_, &callback, sizeof(callback));
786
  }
787
788
  template <typename T>
789
  inline void ReadCallback(T *callback) const {
790
    std::memcpy(callback, callback_, sizeof(*callback));
791
  }
792
793
  // Used only to create kTrue.
794
  constexpr Condition() = default;
795
};
796
797
// -----------------------------------------------------------------------------
798
// CondVar
799
// -----------------------------------------------------------------------------
800
//
801
// A condition variable, reflecting state evaluated separately outside of the
802
// `Mutex` object, which can be signaled to wake callers.
803
// This class is not normally needed; use `Mutex` member functions such as
804
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
805
// with many threads and many conditions, `CondVar` may be faster.
806
//
807
// The implementation may deliver signals to any condition variable at
808
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
809
// result, upon being awoken, you must check the logical condition you have
810
// been waiting upon.
811
//
812
// Examples:
813
//
814
// Usage for a thread waiting for some condition C protected by mutex mu:
815
//       mu.Lock();
816
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
817
//       //  C holds; process data
818
//       mu.Unlock();
819
//
820
// Usage to wake T is:
821
//       mu.Lock();
822
//       // process data, possibly establishing C
823
//       if (C) { cv->Signal(); }
824
//       mu.Unlock();
825
//
826
// If C may be useful to more than one waiter, use `SignalAll()` instead of
827
// `Signal()`.
828
//
829
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
830
// the locked region; this usage can make reasoning about your program easier.
831
//
832
class CondVar {
833
 public:
834
  // A `CondVar` allocated on the heap or on the stack can use the this
835
  // constructor.
836
  CondVar();
837
  ~CondVar();
838
839
  // CondVar::Wait()
840
  //
841
  // Atomically releases a `Mutex` and blocks on this condition variable.
842
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
843
  // spurious wakeup), then reacquires the `Mutex` and returns.
844
  //
845
  // Requires and ensures that the current thread holds the `Mutex`.
846
  void Wait(Mutex *mu);
847
848
  // CondVar::WaitWithTimeout()
849
  //
850
  // Atomically releases a `Mutex` and blocks on this condition variable.
851
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
852
  // spurious wakeup), or until the timeout has expired, then reacquires
853
  // the `Mutex` and returns.
854
  //
855
  // Returns true if the timeout has expired without this `CondVar`
856
  // being signalled in any manner. If both the timeout has expired
857
  // and this `CondVar` has been signalled, the implementation is free
858
  // to return `true` or `false`.
859
  //
860
  // Requires and ensures that the current thread holds the `Mutex`.
861
  bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
862
863
  // CondVar::WaitWithDeadline()
864
  //
865
  // Atomically releases a `Mutex` and blocks on this condition variable.
866
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
867
  // spurious wakeup), or until the deadline has passed, then reacquires
868
  // the `Mutex` and returns.
869
  //
870
  // Deadlines in the past are equivalent to an immediate deadline.
871
  //
872
  // Returns true if the deadline has passed without this `CondVar`
873
  // being signalled in any manner. If both the deadline has passed
874
  // and this `CondVar` has been signalled, the implementation is free
875
  // to return `true` or `false`.
876
  //
877
  // Requires and ensures that the current thread holds the `Mutex`.
878
  bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
879
880
  // CondVar::Signal()
881
  //
882
  // Signal this `CondVar`; wake at least one waiter if one exists.
883
  void Signal();
884
885
  // CondVar::SignalAll()
886
  //
887
  // Signal this `CondVar`; wake all waiters.
888
  void SignalAll();
889
890
  // CondVar::EnableDebugLog()
891
  //
892
  // Causes all subsequent uses of this `CondVar` to be logged via
893
  // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
894
  // Note: this method substantially reduces `CondVar` performance.
895
  void EnableDebugLog(const char *name);
896
897
 private:
898
  bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
899
  void Remove(base_internal::PerThreadSynch *s);
900
  void Wakeup(base_internal::PerThreadSynch *w);
901
  std::atomic<intptr_t> cv_;  // Condition variable state.
902
  CondVar(const CondVar&) = delete;
903
  CondVar& operator=(const CondVar&) = delete;
904
};
905
906
907
// Variants of MutexLock.
908
//
909
// If you find yourself using one of these, consider instead using
910
// Mutex::Unlock() and/or if-statements for clarity.
911
912
// MutexLockMaybe
913
//
914
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
915
class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
916
 public:
917
  explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
918
0
      : mu_(mu) {
919
0
    if (this->mu_ != nullptr) {
920
0
      this->mu_->Lock();
921
0
    }
922
0
  }
923
924
  explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
925
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
926
0
      : mu_(mu) {
927
0
    if (this->mu_ != nullptr) {
928
0
      this->mu_->LockWhen(cond);
929
0
    }
930
0
  }
931
932
0
  ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
933
0
    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
934
0
  }
935
936
 private:
937
  Mutex *const mu_;
938
  MutexLockMaybe(const MutexLockMaybe&) = delete;
939
  MutexLockMaybe(MutexLockMaybe&&) = delete;
940
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
941
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
942
};
943
944
// ReleasableMutexLock
945
//
946
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
947
// mutex before destruction. `Release()` may be called at most once.
948
class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
949
 public:
950
  explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
951
0
      : mu_(mu) {
952
0
    this->mu_->Lock();
953
0
  }
954
955
  explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
956
      ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
957
0
      : mu_(mu) {
958
0
    this->mu_->LockWhen(cond);
959
0
  }
960
961
0
  ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
962
0
    if (this->mu_ != nullptr) { this->mu_->Unlock(); }
963
0
  }
964
965
  void Release() ABSL_UNLOCK_FUNCTION();
966
967
 private:
968
  Mutex *mu_;
969
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
970
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
971
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
972
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
973
};
974
975
inline Mutex::Mutex() : mu_(0) {
976
  ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
977
}
978
979
inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
980
981
inline CondVar::CondVar() : cv_(0) {}
982
983
// static
984
template <typename T>
985
bool Condition::CastAndCallMethod(const Condition *c) {
986
  T *object = static_cast<T *>(c->arg_);
987
  bool (T::*method_pointer)();
988
  c->ReadCallback(&method_pointer);
989
  return (object->*method_pointer)();
990
}
991
992
// static
993
template <typename T>
994
bool Condition::CastAndCallFunction(const Condition *c) {
995
  bool (*function)(T *);
996
  c->ReadCallback(&function);
997
  T *argument = static_cast<T *>(c->arg_);
998
  return (*function)(argument);
999
}
1000
1001
template <typename T>
1002
inline Condition::Condition(bool (*func)(T *), T *arg)
1003
    : eval_(&CastAndCallFunction<T>),
1004
      arg_(const_cast<void *>(static_cast<const void *>(arg))) {
1005
  static_assert(sizeof(&func) <= sizeof(callback_),
1006
                "An overlarge function pointer was passed to Condition.");
1007
  StoreCallback(func);
1008
}
1009
1010
template <typename T>
1011
inline Condition::Condition(T *object,
1012
                            bool (absl::internal::identity<T>::type::*method)())
1013
    : eval_(&CastAndCallMethod<T>),
1014
      arg_(object) {
1015
  static_assert(sizeof(&method) <= sizeof(callback_),
1016
                "An overlarge method pointer was passed to Condition.");
1017
  StoreCallback(method);
1018
}
1019
1020
template <typename T>
1021
inline Condition::Condition(const T *object,
1022
                            bool (absl::internal::identity<T>::type::*method)()
1023
                                const)
1024
    : eval_(&CastAndCallMethod<T>),
1025
      arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {
1026
  StoreCallback(method);
1027
}
1028
1029
// Register hooks for profiling support.
1030
//
1031
// The function pointer registered here will be called whenever a mutex is
1032
// contended.  The callback is given the cycles for which waiting happened (as
1033
// measured by //absl/base/internal/cycleclock.h, and which may not
1034
// be real "cycle" counts.)
1035
//
1036
// There is no ordering guarantee between when the hook is registered and when
1037
// callbacks will begin.  Only a single profiler can be installed in a running
1038
// binary; if this function is called a second time with a different function
1039
// pointer, the value is ignored (and will cause an assertion failure in debug
1040
// mode.)
1041
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1042
1043
// Register a hook for Mutex tracing.
1044
//
1045
// The function pointer registered here will be called whenever a mutex is
1046
// contended.  The callback is given an opaque handle to the contended mutex,
1047
// an event name, and the number of wait cycles (as measured by
1048
// //absl/base/internal/cycleclock.h, and which may not be real
1049
// "cycle" counts.)
1050
//
1051
// The only event name currently sent is "slow release".
1052
//
1053
// This has the same ordering and single-use limitations as
1054
// RegisterMutexProfiler() above.
1055
void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1056
                                    int64_t wait_cycles));
1057
1058
// Register a hook for CondVar tracing.
1059
//
1060
// The function pointer registered here will be called here on various CondVar
1061
// events.  The callback is given an opaque handle to the CondVar object and
1062
// a string identifying the event.  This is thread-safe, but only a single
1063
// tracer can be registered.
1064
//
1065
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1066
// "SignalAll wakeup".
1067
//
1068
// This has the same ordering and single-use limitations as
1069
// RegisterMutexProfiler() above.
1070
void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1071
1072
// Register a hook for symbolizing stack traces in deadlock detector reports.
1073
//
1074
// 'pc' is the program counter being symbolized, 'out' is the buffer to write
1075
// into, and 'out_size' is the size of the buffer.  This function can return
1076
// false if symbolizing failed, or true if a NUL-terminated symbol was written
1077
// to 'out.'
1078
//
1079
// This has the same ordering and single-use limitations as
1080
// RegisterMutexProfiler() above.
1081
//
1082
// DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1083
// ability to register a different hook for symbolizing stack traces will be
1084
// removed on or after 2023-05-01.
1085
ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1086
                "on or after 2023-05-01")
1087
void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1088
1089
// EnableMutexInvariantDebugging()
1090
//
1091
// Enable or disable global support for Mutex invariant debugging.  If enabled,
1092
// then invariant predicates can be registered per-Mutex for debug checking.
1093
// See Mutex::EnableInvariantDebugging().
1094
void EnableMutexInvariantDebugging(bool enabled);
1095
1096
// When in debug mode, and when the feature has been enabled globally, the
1097
// implementation will keep track of lock ordering and complain (or optionally
1098
// crash) if a cycle is detected in the acquired-before graph.
1099
1100
// Possible modes of operation for the deadlock detector in debug mode.
1101
enum class OnDeadlockCycle {
1102
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1103
  kReport,  // Report lock cycles to stderr when detected
1104
  kAbort,  // Report lock cycles to stderr when detected, then abort
1105
};
1106
1107
// SetMutexDeadlockDetectionMode()
1108
//
1109
// Enable or disable global support for detection of potential deadlocks
1110
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1111
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1112
// will be maintained internally, and detected cycles will be reported in
1113
// the manner chosen here.
1114
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1115
1116
ABSL_NAMESPACE_END
1117
}  // namespace absl
1118
1119
// In some build configurations we pass --detect-odr-violations to the
1120
// gold linker.  This causes it to flag weak symbol overrides as ODR
1121
// violations.  Because ODR only applies to C++ and not C,
1122
// --detect-odr-violations ignores symbols not mangled with C++ names.
1123
// By changing our extension points to be extern "C", we dodge this
1124
// check.
1125
extern "C" {
1126
void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1127
}  // extern "C"
1128
1129
#endif  // ABSL_SYNCHRONIZATION_MUTEX_H_