Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | ** numeric.c - Numeric, Integer, Float class |
3 | | ** |
4 | | ** See Copyright Notice in mruby.h |
5 | | */ |
6 | | |
7 | | #include <mruby.h> |
8 | | #include <mruby/array.h> |
9 | | #include <mruby/numeric.h> |
10 | | #include <mruby/string.h> |
11 | | #include <mruby/class.h> |
12 | | #include <mruby/internal.h> |
13 | | #include <mruby/presym.h> |
14 | | #include <string.h> |
15 | | |
16 | | #ifndef MRB_NO_FLOAT |
17 | | #ifdef MRB_USE_FLOAT32 |
18 | | #define trunc(f) truncf(f) |
19 | | #define fmod(x,y) fmodf(x,y) |
20 | | #else |
21 | | #endif |
22 | | #endif |
23 | | |
24 | | /** |
25 | | * This function is called to raise a RangeError when an integer operation |
26 | | * results in an overflow. It's marked mrb_noreturn as it always raises an |
27 | | * exception and does not return. |
28 | | * |
29 | | * @param mrb The mruby state. |
30 | | * @param reason A string describing the operation that caused the overflow |
31 | | * (e.g., "addition", "multiplication"). |
32 | | */ |
33 | | mrb_noreturn void |
34 | | mrb_int_overflow(mrb_state *mrb, const char *reason) |
35 | 0 | { |
36 | 0 | mrb_raisef(mrb, E_RANGE_ERROR, "integer overflow in %s", reason); |
37 | 0 | } |
38 | | |
39 | | /** |
40 | | * This function is called to raise a ZeroDivisionError. It's marked |
41 | | * mrb_noreturn as it always raises an exception and does not return. |
42 | | * |
43 | | * @param mrb The mruby state. |
44 | | */ |
45 | | mrb_noreturn void |
46 | | mrb_int_zerodiv(mrb_state *mrb) |
47 | 30 | { |
48 | 30 | mrb_raise(mrb, E_ZERODIV_ERROR, "divided by 0"); |
49 | 30 | } |
50 | | |
51 | | static mrb_noreturn void |
52 | | mrb_int_noconv(mrb_state *mrb, mrb_value y) |
53 | 9 | { |
54 | 9 | mrb_raisef(mrb, E_TYPE_ERROR, "can't convert %Y into Integer", y); |
55 | 9 | } |
56 | | |
57 | | /** |
58 | | * Calculates x raised to the power of y, where x is an integer. |
59 | | * y can be an integer or float. The result type can be Integer, |
60 | | * Float, or BigInt depending on the inputs and intermediate calculations. |
61 | | * |
62 | | * @param mrb The mruby state. |
63 | | * @param x The base (must be an integer type, possibly BigInt). |
64 | | * @param y The exponent (can be Integer or Float). |
65 | | * @return An mrb_value representing the result of the exponentiation. |
66 | | * This can be an Integer, Float, or BigInt. |
67 | | * Handles potential overflows by promoting to BigInt if MRB_USE_BIGINT is defined, |
68 | | * or by raising RangeError if not. |
69 | | * Handles negative exponents by returning a Float if MRB_NO_FLOAT is not defined, |
70 | | * or raising RangeError if it is. |
71 | | */ |
72 | | mrb_value |
73 | | mrb_int_pow(mrb_state *mrb, mrb_value x, mrb_value y) |
74 | 3.11k | { |
75 | 3.11k | #ifdef MRB_USE_BIGINT |
76 | 3.11k | if (mrb_bigint_p(x)) { |
77 | 2 | #ifndef MRB_NO_FLOAT |
78 | 2 | if (mrb_float_p(y)) { |
79 | 0 | return mrb_float_value(mrb, pow(mrb_bint_as_float(mrb, x), mrb_float(y))); |
80 | 0 | } |
81 | 2 | #endif |
82 | 2 | return mrb_bint_pow(mrb, x, y); |
83 | 2 | } |
84 | 3.11k | #endif |
85 | 3.11k | mrb_int base = mrb_integer(x); |
86 | 3.11k | mrb_int result = 1; |
87 | 3.11k | mrb_int exp; |
88 | | |
89 | 3.11k | #ifndef MRB_NO_FLOAT |
90 | 3.11k | if (mrb_float_p(y)) { |
91 | 483 | return mrb_float_value(mrb, pow((double)base, mrb_float(y))); |
92 | 483 | } |
93 | 2.63k | else if (mrb_integer_p(y)) { |
94 | 2.63k | exp = mrb_integer(y); |
95 | 2.63k | } |
96 | 2 | else |
97 | 2 | #endif |
98 | 2 | { |
99 | 2 | exp = mrb_as_int(mrb, y); |
100 | 2 | } |
101 | 2.63k | if (exp < 0) { |
102 | 485 | #ifndef MRB_NO_FLOAT |
103 | 485 | return mrb_float_value(mrb, pow((double)base, (double)exp)); |
104 | | #else |
105 | | mrb_int_overflow(mrb, "negative power"); |
106 | | #endif |
107 | 485 | } |
108 | 5.77k | for (;;) { |
109 | 5.77k | if (exp & 1) { |
110 | 2.18k | if (mrb_int_mul_overflow(result, base, &result)) { |
111 | 10 | #ifdef MRB_USE_BIGINT |
112 | 10 | return mrb_bint_pow(mrb, mrb_bint_new_int(mrb, mrb_integer(x)), y); |
113 | | #else |
114 | | mrb_int_overflow(mrb, "power"); |
115 | | #endif |
116 | 10 | } |
117 | 2.18k | } |
118 | 5.76k | exp >>= 1; |
119 | 5.76k | if (exp == 0) break; |
120 | 5.26k | if (mrb_int_mul_overflow(base, base, &base)) { |
121 | 1.64k | #ifdef MRB_USE_BIGINT |
122 | 1.64k | return mrb_bint_pow(mrb, mrb_bint_new_int(mrb, mrb_integer(x)), y); |
123 | | #else |
124 | | mrb_int_overflow(mrb, "power"); |
125 | | #endif |
126 | 1.64k | } |
127 | 5.26k | } |
128 | 494 | return mrb_int_value(mrb, result); |
129 | 2.14k | } |
130 | | |
131 | | /* |
132 | | * call-seq: |
133 | | * |
134 | | * num ** other -> num |
135 | | * |
136 | | * Raises `num` the `other` power. |
137 | | * |
138 | | * 2.0**3 #=> 8.0 |
139 | | */ |
140 | | static mrb_value |
141 | | int_pow(mrb_state *mrb, mrb_value x) |
142 | 3.11k | { |
143 | 3.11k | return mrb_int_pow(mrb, x, mrb_get_arg1(mrb)); |
144 | 3.11k | } |
145 | | |
146 | | /** |
147 | | * Performs integer division of x by y. This function implements specific |
148 | | * rounding behavior for negative numbers to match Ruby's / operator for |
149 | | * integers (floor division). |
150 | | * |
151 | | * @param x The dividend. |
152 | | * @param y The divisor. |
153 | | * @return The result of the integer division (mrb_int). |
154 | | * Note: This function does not handle division by zero; the caller is |
155 | | * expected to check for this. |
156 | | */ |
157 | | mrb_int |
158 | | mrb_div_int(mrb_int x, mrb_int y) |
159 | 9.54k | { |
160 | 9.54k | mrb_int div = x / y; |
161 | | |
162 | 9.54k | if ((x ^ y) < 0 && x != div * y) { |
163 | 655 | div -= 1; |
164 | 655 | } |
165 | 9.54k | return div; |
166 | 9.54k | } |
167 | | |
168 | | /** |
169 | | * Performs integer division of x by y and returns the result as an mrb_value. |
170 | | * It uses mrb_div_int for the division logic. |
171 | | * |
172 | | * @param mrb The mruby state. |
173 | | * @param x The dividend. |
174 | | * @param y The divisor. |
175 | | * @return An mrb_value (integer) representing the result of the division. |
176 | | * @raise ZeroDivisionError if y is 0. |
177 | | * @raise RangeError for overflow conditions (specifically MRB_INT_MIN / -1). |
178 | | */ |
179 | | mrb_value |
180 | | mrb_div_int_value(mrb_state *mrb, mrb_int x, mrb_int y) |
181 | 6.65k | { |
182 | 6.65k | if (y == 0) { |
183 | 5 | mrb_int_zerodiv(mrb); |
184 | 5 | } |
185 | 6.64k | else if (x == MRB_INT_MIN && y == -1) { |
186 | 693 | #ifdef MRB_USE_BIGINT |
187 | 693 | return mrb_bint_mul_ii(mrb, x, y); |
188 | | #else |
189 | | mrb_int_overflow(mrb, "division"); |
190 | | #endif |
191 | 693 | } |
192 | 5.95k | return mrb_int_value(mrb, mrb_div_int(x, y)); |
193 | 6.65k | } |
194 | | |
195 | | /* 15.2.8.3.6 */ |
196 | | /* |
197 | | * call-seq: |
198 | | * int / num -> num |
199 | | * |
200 | | * Performs division: the class of the resulting object depends on |
201 | | * the class of `num` and on the magnitude of the |
202 | | * result. |
203 | | */ |
204 | | static mrb_value |
205 | | int_div(mrb_state *mrb, mrb_value x) |
206 | 9.34k | { |
207 | 9.34k | mrb_value y = mrb_get_arg1(mrb); |
208 | 9.34k | #ifdef MRB_USE_BIGINT |
209 | 9.34k | if (mrb_bigint_p(x)) { |
210 | 4.59k | if (mrb_bigint_p(y) || mrb_integer_p(y)) { |
211 | 4.58k | return mrb_bint_div(mrb, x, y); |
212 | 4.58k | } |
213 | 4.59k | } else |
214 | 4.75k | #endif |
215 | 4.75k | if (mrb_integer_p(y)) { |
216 | 4.23k | return mrb_div_int_value(mrb, mrb_integer(x), mrb_integer(y)); |
217 | 4.23k | } |
218 | 515 | switch (mrb_type(y)) { |
219 | 0 | #ifdef MRB_USE_BIGINT |
220 | 0 | case MRB_TT_INTEGER: |
221 | 510 | case MRB_TT_BIGINT: |
222 | 510 | return mrb_bint_div(mrb, mrb_as_bint(mrb, x), y); |
223 | 0 | #endif |
224 | 0 | #ifdef MRB_USE_RATIONAL |
225 | 1 | case MRB_TT_RATIONAL: |
226 | 1 | return mrb_rational_div(mrb, mrb_as_rational(mrb, x), y); |
227 | 0 | #endif |
228 | 0 | #ifdef MRB_USE_COMPLEX |
229 | 0 | case MRB_TT_COMPLEX: |
230 | 0 | x = mrb_complex_new(mrb, mrb_as_float(mrb, x), 0); |
231 | 0 | return mrb_complex_div(mrb, x, y); |
232 | 0 | #endif |
233 | 0 | #ifndef MRB_NO_FLOAT |
234 | 0 | case MRB_TT_FLOAT: |
235 | 0 | return mrb_float_value(mrb, mrb_div_float(mrb_as_float(mrb, x), mrb_as_float(mrb, y))); |
236 | 0 | #endif |
237 | 4 | default: |
238 | 4 | mrb_int_noconv(mrb, y); |
239 | 515 | } |
240 | 515 | } |
241 | | |
242 | | /* 15.2.9.3.19(x) */ |
243 | | /* |
244 | | * call-seq: |
245 | | * num.quo(numeric) -> real |
246 | | * |
247 | | * Returns most exact division. |
248 | | */ |
249 | | |
250 | | /* |
251 | | * call-seq: |
252 | | * int.div(other) -> int |
253 | | * |
254 | | * Performs division: resulting integer. |
255 | | */ |
256 | | static mrb_value |
257 | | int_idiv(mrb_state *mrb, mrb_value x) |
258 | 0 | { |
259 | 0 | #ifdef MRB_USE_BIGINT |
260 | 0 | if (mrb_bigint_p(x)) { |
261 | 0 | return mrb_bint_div(mrb, x, mrb_get_arg1(mrb)); |
262 | 0 | } |
263 | 0 | #endif |
264 | 0 | mrb_int y = mrb_as_int(mrb, mrb_get_arg1(mrb)); |
265 | 0 | return mrb_div_int_value(mrb, mrb_integer(x), y); |
266 | 0 | } |
267 | | |
268 | | #ifndef MRB_NO_FLOAT |
269 | | static mrb_value |
270 | | int_fdiv(mrb_state *mrb, mrb_value x) |
271 | 0 | { |
272 | 0 | mrb_float y = mrb_as_float(mrb, mrb_get_arg1(mrb)); |
273 | |
|
274 | 0 | if (y == 0) { |
275 | 0 | mrb_int_zerodiv(mrb); |
276 | 0 | } |
277 | 0 | #ifdef MRB_USE_BIGINT |
278 | 0 | if (mrb_bigint_p(x)) { |
279 | 0 | return mrb_float_value(mrb, mrb_bint_as_float(mrb, x) / y); |
280 | 0 | } |
281 | 0 | #endif |
282 | 0 | return mrb_float_value(mrb, mrb_integer(x) / y); |
283 | 0 | } |
284 | | #endif |
285 | | |
286 | | static mrb_value |
287 | | int_quo(mrb_state *mrb, mrb_value x) |
288 | 0 | { |
289 | | #ifndef MRB_USE_RATIONAL |
290 | | |
291 | | #ifdef MRB_NO_FLOAT |
292 | | return int_idiv(mrb, x); |
293 | | #else |
294 | | return int_fdiv(mrb, x); |
295 | | #endif |
296 | | |
297 | | #else |
298 | 0 | mrb_int a = mrb_integer(x); |
299 | 0 | mrb_value y = mrb_get_arg1(mrb); |
300 | 0 | if (mrb_integer_p(y) && mrb_class_defined_id(mrb, MRB_SYM(Rational))) { |
301 | 0 | return mrb_rational_new(mrb, a, mrb_integer(y)); |
302 | 0 | } |
303 | 0 | switch (mrb_type(y)) { |
304 | 0 | case MRB_TT_RATIONAL: |
305 | 0 | x = mrb_rational_new(mrb, a, 1); |
306 | 0 | return mrb_rational_div(mrb, x, y); |
307 | 0 | default: |
308 | 0 | #ifndef MRB_NO_FLOAT |
309 | 0 | return mrb_float_value(mrb, mrb_div_float((mrb_float)a, mrb_as_float(mrb, y))); |
310 | | #else |
311 | | mrb_int_noconv(mrb, y); |
312 | | break; |
313 | | #endif |
314 | 0 | } |
315 | 0 | #endif |
316 | 0 | } |
317 | | |
318 | | static mrb_value |
319 | | coerce_step_counter(mrb_state *mrb, mrb_value self) |
320 | 0 | { |
321 | 0 | mrb->c->ci->mid = 0; |
322 | 0 | #ifndef MRB_NO_FLOAT |
323 | 0 | mrb_value step = mrb_get_arg1(mrb); |
324 | 0 | if (mrb_float_p(step)) { |
325 | 0 | return mrb_ensure_float_type(mrb, self); |
326 | 0 | } |
327 | 0 | #endif |
328 | 0 | return self; |
329 | 0 | } |
330 | | |
331 | | #ifndef MRB_NO_FLOAT |
332 | | /******************************************************************** |
333 | | * |
334 | | * Document-class: Float |
335 | | * |
336 | | * `Float` objects represent inexact real numbers using |
337 | | * the native architecture's double-precision floating-point |
338 | | * representation. |
339 | | */ |
340 | | |
341 | | static mrb_value |
342 | | flo_pow(mrb_state *mrb, mrb_value x) |
343 | 4 | { |
344 | 4 | mrb_value y = mrb_get_arg1(mrb); |
345 | 4 | mrb_float d = pow(mrb_as_float(mrb, x), mrb_as_float(mrb, y)); |
346 | 4 | return mrb_float_value(mrb, d); |
347 | 4 | } |
348 | | |
349 | | static mrb_value |
350 | | flo_idiv(mrb_state *mrb, mrb_value xv) |
351 | 0 | { |
352 | 0 | mrb_float x = mrb_float(xv); |
353 | 0 | mrb_check_num_exact(mrb, x); |
354 | 0 | mrb_int y = mrb_as_int(mrb, mrb_get_arg1(mrb)); |
355 | 0 | return mrb_div_int_value(mrb, (mrb_int)x, y); |
356 | 0 | } |
357 | | |
358 | | mrb_float |
359 | | mrb_div_float(mrb_float x, mrb_float y) |
360 | 573 | { |
361 | 573 | if (y != 0.0) { |
362 | 573 | return x / y; |
363 | 573 | } |
364 | 0 | else if (x == 0.0) { |
365 | 0 | return NAN; |
366 | 0 | } |
367 | 0 | else { |
368 | 0 | return x * (signbit(y) ? -1.0 : 1.0) * INFINITY; |
369 | 0 | } |
370 | 573 | } |
371 | | |
372 | | /* 15.2.9.3.6 */ |
373 | | /* |
374 | | * call-seq: |
375 | | * float / num -> float |
376 | | * |
377 | | * Returns a new Float which is the result of dividing float by num. |
378 | | */ |
379 | | static mrb_value |
380 | | flo_div(mrb_state *mrb, mrb_value x) |
381 | 2 | { |
382 | 2 | mrb_value y = mrb_get_arg1(mrb); |
383 | 2 | mrb_float a = mrb_float(x); |
384 | | |
385 | 2 | switch(mrb_type(y)) { |
386 | 0 | #ifdef MRB_USE_COMPLEX |
387 | 0 | case MRB_TT_COMPLEX: |
388 | 0 | return mrb_complex_div(mrb, mrb_complex_new(mrb, a, 0), y); |
389 | 0 | #endif |
390 | 0 | case MRB_TT_FLOAT: |
391 | 0 | a = mrb_div_float(a, mrb_float(y)); |
392 | 0 | return mrb_float_value(mrb, a); |
393 | 2 | default: |
394 | 2 | a = mrb_div_float(a, mrb_as_float(mrb, y)); |
395 | 2 | return mrb_float_value(mrb, a); |
396 | 2 | } |
397 | 0 | return mrb_float_value(mrb, a); |
398 | 2 | } |
399 | | |
400 | | static mrb_value |
401 | | num_fdiv(mrb_state *mrb, mrb_value x) |
402 | 0 | { |
403 | 0 | return flo_div(mrb, mrb_ensure_float_type(mrb, x)); |
404 | 0 | } |
405 | | |
406 | | /** |
407 | | * Converts an mrb_value float to a new mrb_value string. |
408 | | * It handles formatting to ensure the string representation includes a |
409 | | * decimal point and fractional part (e.g., ".0" is appended if not present). |
410 | | * |
411 | | * @param mrb The mruby state. |
412 | | * @param flo The float mrb_value to convert. |
413 | | * @param fmt This argument is noted as no longer used and can be NULL. |
414 | | * The function uses a default format. |
415 | | * @return A new mrb_value string representing the float. |
416 | | */ |
417 | | /* the argument `fmt` is no longer used; you can pass `NULL` */ |
418 | | mrb_value |
419 | | mrb_float_to_str(mrb_state *mrb, mrb_value flo, const char *fmt) |
420 | 39.4k | { |
421 | 39.4k | char buf[25]; |
422 | | #ifdef MRB_USE_FLOAT32 |
423 | | const int prec = 7; |
424 | | #else |
425 | 39.4k | const int prec = 15; |
426 | 39.4k | #endif |
427 | | |
428 | 39.4k | mrb_format_float(mrb_float(flo), buf, sizeof(buf), 'g', prec, '\0'); |
429 | 119k | for (char *p = buf; *p; p++) { |
430 | 86.8k | if (*p == '.') goto exit; |
431 | 79.9k | if (*p == 'e') { |
432 | 0 | memmove(p+2, p, strlen(p)+1); |
433 | 0 | p[0] = '.'; |
434 | 0 | p[1] = '0'; |
435 | 0 | goto exit; |
436 | 0 | } |
437 | 79.9k | } |
438 | 32.6k | strcat(buf, ".0"); |
439 | 39.4k | exit: |
440 | 39.4k | return mrb_str_new_cstr(mrb, buf); |
441 | 32.6k | } |
442 | | |
443 | | /* 15.2.9.3.16(x) */ |
444 | | /* |
445 | | * call-seq: |
446 | | * flt.to_s -> string |
447 | | * flt.inspect -> string |
448 | | * |
449 | | * Returns a string containing a representation of self. As well as a |
450 | | * fixed or exponential form of the number, the call may return |
451 | | * "`NaN`", "`Infinity`", and |
452 | | * "`-Infinity`". |
453 | | * |
454 | | * 3.0.to_s #=> 3.0 |
455 | | * 3.25.to_s #=> 3.25 |
456 | | */ |
457 | | |
458 | | static mrb_value |
459 | | flo_to_s(mrb_state *mrb, mrb_value flt) |
460 | 39.4k | { |
461 | 39.4k | mrb_float f = mrb_float(flt); |
462 | 39.4k | mrb_value str; |
463 | | |
464 | 39.4k | if (isinf(f)) { |
465 | 0 | str = f < 0 ? mrb_str_new_lit(mrb, "-Infinity") |
466 | 0 | : mrb_str_new_lit(mrb, "Infinity"); |
467 | 0 | } |
468 | 39.4k | else if (isnan(f)) { |
469 | 0 | str = mrb_str_new_lit(mrb, "NaN"); |
470 | 0 | } |
471 | 39.4k | else { |
472 | 39.4k | str = mrb_float_to_str(mrb, flt, NULL); |
473 | 39.4k | } |
474 | | |
475 | 39.4k | RSTR_SET_ASCII_FLAG(mrb_str_ptr(str)); |
476 | 39.4k | return str; |
477 | 39.4k | } |
478 | | |
479 | | /* 15.2.9.3.3 */ |
480 | | /* |
481 | | * call-seq: |
482 | | * float + other -> float |
483 | | * |
484 | | * Returns a new float which is the sum of `float` |
485 | | * and `other`. |
486 | | */ |
487 | | static mrb_value |
488 | | flo_add(mrb_state *mrb, mrb_value x) |
489 | 3.33k | { |
490 | 3.33k | mrb_value y = mrb_get_arg1(mrb); |
491 | 3.33k | mrb_float a = mrb_float(x); |
492 | | |
493 | 3.33k | switch (mrb_type(y)) { |
494 | 0 | case MRB_TT_FLOAT: |
495 | 0 | return mrb_float_value(mrb, a + mrb_float(y)); |
496 | 0 | #if defined(MRB_USE_COMPLEX) |
497 | 0 | case MRB_TT_COMPLEX: |
498 | 0 | return mrb_complex_add(mrb, y, x); |
499 | 0 | #endif |
500 | 3.33k | default: |
501 | 3.33k | return mrb_float_value(mrb, a + mrb_as_float(mrb, y)); |
502 | 3.33k | } |
503 | 3.33k | } |
504 | | |
505 | | /* 15.2.9.3.4 */ |
506 | | /* |
507 | | * call-seq: |
508 | | * float - other -> float |
509 | | * |
510 | | * Returns a new float which is the difference of `float` |
511 | | * and `other`. |
512 | | */ |
513 | | |
514 | | static mrb_value |
515 | | flo_sub(mrb_state *mrb, mrb_value x) |
516 | 8.30k | { |
517 | 8.30k | mrb_value y = mrb_get_arg1(mrb); |
518 | 8.30k | mrb_float a = mrb_float(x); |
519 | | |
520 | 8.30k | switch (mrb_type(y)) { |
521 | 0 | case MRB_TT_FLOAT: |
522 | 0 | return mrb_float_value(mrb, a - mrb_float(y)); |
523 | 0 | #if defined(MRB_USE_COMPLEX) |
524 | 0 | case MRB_TT_COMPLEX: |
525 | 0 | return mrb_complex_sub(mrb, mrb_complex_new(mrb, a, 0), y); |
526 | 0 | #endif |
527 | 8.30k | default: |
528 | 8.30k | return mrb_float_value(mrb, a - mrb_as_float(mrb, y)); |
529 | 8.30k | } |
530 | 8.30k | } |
531 | | |
532 | | /* 15.2.9.3.5 */ |
533 | | /* |
534 | | * call-seq: |
535 | | * float * other -> float |
536 | | * |
537 | | * Returns a new float which is the product of `float` |
538 | | * and `other`. |
539 | | */ |
540 | | |
541 | | static mrb_value |
542 | | flo_mul(mrb_state *mrb, mrb_value x) |
543 | 0 | { |
544 | 0 | mrb_value y = mrb_get_arg1(mrb); |
545 | 0 | mrb_float a = mrb_float(x); |
546 | |
|
547 | 0 | switch (mrb_type(y)) { |
548 | 0 | case MRB_TT_FLOAT: |
549 | 0 | return mrb_float_value(mrb, a * mrb_float(y)); |
550 | 0 | #if defined(MRB_USE_COMPLEX) |
551 | 0 | case MRB_TT_COMPLEX: |
552 | 0 | return mrb_complex_mul(mrb, y, x); |
553 | 0 | #endif |
554 | 0 | default: |
555 | 0 | return mrb_float_value(mrb, a * mrb_as_float(mrb, y)); |
556 | 0 | } |
557 | 0 | } |
558 | | |
559 | | static void |
560 | | flodivmod(mrb_state *mrb, double x, double y, mrb_float *divp, mrb_float *modp) |
561 | 1.78k | { |
562 | 1.78k | double div, mod; |
563 | | |
564 | 1.78k | if (isnan(y)) { |
565 | | /* y is NaN so all results are NaN */ |
566 | 0 | div = mod = y; |
567 | 0 | goto exit; |
568 | 0 | } |
569 | 1.78k | if (y == 0.0) { |
570 | 0 | mrb_int_zerodiv(mrb); |
571 | 0 | } |
572 | 1.78k | if (isinf(y) && !isinf(x)) { |
573 | 0 | mod = x; |
574 | 0 | } |
575 | 1.78k | else { |
576 | 1.78k | mod = fmod(x, y); |
577 | 1.78k | } |
578 | 1.78k | if (isinf(x) && !isinf(y)) { |
579 | 0 | div = x; |
580 | 0 | } |
581 | 1.78k | else { |
582 | 1.78k | div = (x - mod) / y; |
583 | 1.78k | if (modp && divp) div = round(div); |
584 | 1.78k | } |
585 | 1.78k | if (div == 0) div = 0.0; |
586 | 1.78k | if (mod == 0) mod = 0.0; |
587 | 1.78k | if (y*mod < 0) { |
588 | 3 | mod += y; |
589 | 3 | div -= 1.0; |
590 | 3 | } |
591 | 1.78k | exit: |
592 | 1.78k | if (modp) *modp = mod; |
593 | 1.78k | if (divp) *divp = div; |
594 | 1.78k | } |
595 | | |
596 | | /* 15.2.9.3.5 */ |
597 | | /* |
598 | | * call-seq: |
599 | | * flt % other -> float |
600 | | * flt.modulo(other) -> float |
601 | | * |
602 | | * Return the modulo after division of `flt` by `other`. |
603 | | * |
604 | | * 6543.21.modulo(137) #=> 104.21 |
605 | | * 6543.21.modulo(137.24) #=> 92.9299999999996 |
606 | | */ |
607 | | |
608 | | static mrb_value |
609 | | flo_mod(mrb_state *mrb, mrb_value x) |
610 | 3 | { |
611 | 3 | mrb_value y = mrb_get_arg1(mrb); |
612 | 3 | mrb_float mod; |
613 | | |
614 | 3 | flodivmod(mrb, mrb_float(x), mrb_as_float(mrb, y), NULL, &mod); |
615 | 3 | return mrb_float_value(mrb, mod); |
616 | 3 | } |
617 | | #endif |
618 | | |
619 | | /* 15.2.8.3.16 */ |
620 | | /* |
621 | | * call-seq: |
622 | | * num.eql?(numeric) -> true or false |
623 | | * |
624 | | * Returns `true` if `num` and `numeric` are the |
625 | | * same type and have equal values. |
626 | | * |
627 | | * 1 == 1.0 #=> true |
628 | | * 1.eql?(1.0) #=> false |
629 | | * (1.0).eql?(1.0) #=> true |
630 | | */ |
631 | | static mrb_value |
632 | | num_eql(mrb_state *mrb, mrb_value x) |
633 | 299 | { |
634 | 299 | mrb_value y = mrb_get_arg1(mrb); |
635 | | |
636 | 299 | #ifdef MRB_USE_BIGINT |
637 | 299 | if (mrb_bigint_p(x)) { |
638 | 0 | return mrb_bool_value(mrb_bint_cmp(mrb, x, y) == 0); |
639 | 0 | } |
640 | 299 | #endif |
641 | 299 | #ifndef MRB_NO_FLOAT |
642 | 299 | if (mrb_float_p(x)) { |
643 | 0 | if (!mrb_float_p(y)) return mrb_false_value(); |
644 | 0 | return mrb_bool_value(mrb_float(x) == mrb_float(y)); |
645 | 0 | } |
646 | 299 | #endif |
647 | 299 | if (mrb_integer_p(x)) { |
648 | 299 | if (!mrb_integer_p(y)) return mrb_false_value(); |
649 | 14 | return mrb_bool_value(mrb_integer(x) == mrb_integer(y)); |
650 | 299 | } |
651 | 0 | return mrb_bool_value(mrb_equal(mrb, x, y)); |
652 | 299 | } |
653 | | |
654 | | #ifndef MRB_NO_FLOAT |
655 | | /* 15.2.9.3.7 */ |
656 | | /* |
657 | | * call-seq: |
658 | | * flt == obj -> true or false |
659 | | * |
660 | | * Returns `true` only if *obj* has the same value |
661 | | * as *flt*. Contrast this with `Float#eql?`, which |
662 | | * requires *obj* to be a `Float`. |
663 | | * |
664 | | * 1.0 == 1 #=> true |
665 | | * |
666 | | */ |
667 | | |
668 | | static mrb_value |
669 | | flo_eq(mrb_state *mrb, mrb_value x) |
670 | 5 | { |
671 | 5 | mrb_value y = mrb_get_arg1(mrb); |
672 | | |
673 | 5 | switch (mrb_type(y)) { |
674 | 0 | case MRB_TT_INTEGER: |
675 | 0 | return mrb_bool_value(mrb_float(x) == (mrb_float)mrb_integer(y)); |
676 | 0 | case MRB_TT_FLOAT: |
677 | 0 | return mrb_bool_value(mrb_float(x) == mrb_float(y)); |
678 | 0 | #ifdef MRB_USE_RATIONAL |
679 | 0 | case MRB_TT_RATIONAL: |
680 | 0 | return mrb_bool_value(mrb_float(x) == mrb_as_float(mrb, y)); |
681 | 0 | #endif |
682 | 0 | #ifdef MRB_USE_COMPLEX |
683 | 0 | case MRB_TT_COMPLEX: |
684 | 0 | return mrb_bool_value(mrb_equal(mrb, y, x)); |
685 | 0 | #endif |
686 | 5 | default: |
687 | 5 | return mrb_false_value(); |
688 | 5 | } |
689 | 5 | } |
690 | | |
691 | | /* 15.2.9.3.13 */ |
692 | | /* |
693 | | * Document-method: Float#to_f |
694 | | * |
695 | | * call-seq: |
696 | | * flt.to_f -> self |
697 | | * |
698 | | * As `flt` is already a float, returns `self`. |
699 | | */ |
700 | | |
701 | | /* 15.2.9.3.11 */ |
702 | | /* |
703 | | * call-seq: |
704 | | * flt.infinite? -> nil, -1, +1 |
705 | | * |
706 | | * Returns `nil`, -1, or +1 depending on whether *flt* |
707 | | * is finite, -infinity, or +infinity. |
708 | | * |
709 | | * (0.0).infinite? #=> nil |
710 | | * (-1.0/0.0).infinite? #=> -1 |
711 | | * (+1.0/0.0).infinite? #=> 1 |
712 | | */ |
713 | | |
714 | | static mrb_value |
715 | | flo_infinite_p(mrb_state *mrb, mrb_value num) |
716 | 0 | { |
717 | 0 | mrb_float value = mrb_float(num); |
718 | |
|
719 | 0 | if (isinf(value)) { |
720 | 0 | return mrb_fixnum_value(value < 0 ? -1 : 1); |
721 | 0 | } |
722 | 0 | return mrb_nil_value(); |
723 | 0 | } |
724 | | |
725 | | /* 15.2.9.3.9 */ |
726 | | /* |
727 | | * call-seq: |
728 | | * flt.finite? -> true or false |
729 | | * |
730 | | * Returns `true` if *flt* is a valid IEEE floating |
731 | | * point number (it is not infinite, and `nan?` is |
732 | | * `false`). |
733 | | * |
734 | | */ |
735 | | |
736 | | static mrb_value |
737 | | flo_finite_p(mrb_state *mrb, mrb_value num) |
738 | 16.3k | { |
739 | 16.3k | return mrb_bool_value(isfinite(mrb_float(num))); |
740 | 16.3k | } |
741 | | |
742 | | /* |
743 | | * Document-class: FloatDomainError |
744 | | * |
745 | | * Raised when attempting to convert special float values |
746 | | * (in particular infinite or NaN) |
747 | | * to numerical classes which don't support them. |
748 | | * |
749 | | * Float::INFINITY.to_i |
750 | | * |
751 | | * <em>raises the exception:</em> |
752 | | * |
753 | | * FloatDomainError: Infinity |
754 | | */ |
755 | | /* ------------------------------------------------------------------------*/ |
756 | | /** |
757 | | * Checks if a mrb_float value is Infinity or NaN. If it is, this function |
758 | | * raises a FloatDomainError. This is used to prevent conversions of these |
759 | | * special float values to exact number types like Integer. |
760 | | * |
761 | | * @param mrb The mruby state. |
762 | | * @param num The float value to check. |
763 | | * It does not return a value (void function) but will raise an exception |
764 | | * if the number is not exact. |
765 | | */ |
766 | | void |
767 | | mrb_check_num_exact(mrb_state *mrb, mrb_float num) |
768 | 274 | { |
769 | 274 | if (isinf(num)) { |
770 | 0 | mrb_raise(mrb, E_FLOATDOMAIN_ERROR, num < 0 ? "-Infinity" : "Infinity"); |
771 | 0 | } |
772 | 274 | if (isnan(num)) { |
773 | 0 | mrb_raise(mrb, E_FLOATDOMAIN_ERROR, "NaN"); |
774 | 0 | } |
775 | 274 | } |
776 | | |
777 | | static mrb_value |
778 | | flo_rounding_int(mrb_state *mrb, mrb_float f) |
779 | 0 | { |
780 | 0 | if (!FIXABLE_FLOAT(f)) { |
781 | 0 | #ifdef MRB_USE_BIGINT |
782 | 0 | return mrb_bint_new_float(mrb, f); |
783 | | #else |
784 | | mrb_int_overflow(mrb, "rounding"); |
785 | | #endif |
786 | 0 | } |
787 | 0 | return mrb_int_value(mrb, (mrb_int)f); |
788 | 0 | } |
789 | | |
790 | | static mrb_value |
791 | | flo_rounding(mrb_state *mrb, mrb_value num, double (*func)(double)) |
792 | 0 | { |
793 | 0 | mrb_float f = mrb_float(num); |
794 | 0 | mrb_int ndigits = 0; |
795 | | #ifdef MRB_USE_FLOAT32 |
796 | | const int fprec = 7; |
797 | | #else |
798 | 0 | const int fprec = 15; |
799 | 0 | #endif |
800 | |
|
801 | 0 | mrb_get_args(mrb, "|i", &ndigits); |
802 | 0 | if (f == 0.0) { |
803 | 0 | return ndigits > 0 ? mrb_float_value(mrb, f) : mrb_fixnum_value(0); |
804 | 0 | } |
805 | 0 | if (ndigits > 0) { |
806 | 0 | if (ndigits > fprec) return num; |
807 | 0 | mrb_float d = pow(10, (double)ndigits); |
808 | 0 | f = func(f * d) / d; |
809 | 0 | mrb_check_num_exact(mrb, f); |
810 | 0 | return mrb_float_value(mrb, f); |
811 | 0 | } |
812 | 0 | if (ndigits < 0) { |
813 | 0 | mrb_float d = pow(10, -(double)ndigits); |
814 | 0 | f = func(f / d) * d; |
815 | 0 | } |
816 | 0 | else { /* ndigits == 0 */ |
817 | 0 | f = func(f); |
818 | 0 | } |
819 | 0 | mrb_check_num_exact(mrb, f); |
820 | 0 | return flo_rounding_int(mrb, f); |
821 | 0 | } |
822 | | |
823 | | /* 15.2.9.3.10 */ |
824 | | /* |
825 | | * call-seq: |
826 | | * float.floor([ndigits]) -> integer or float |
827 | | * |
828 | | * Returns the largest number less than or equal to `float` with |
829 | | * a precision of `ndigits` decimal digits (default: 0). |
830 | | * |
831 | | * When the precision is negative, the returned value is an integer |
832 | | * with at least `ndigits.abs` trailing zeros. |
833 | | * |
834 | | * Returns a floating-point number when `ndigits` is positive, |
835 | | * otherwise returns an integer. |
836 | | * |
837 | | * 1.2.floor #=> 1 |
838 | | * 2.0.floor #=> 2 |
839 | | * (-1.2).floor #=> -2 |
840 | | * (-2.0).floor #=> -2 |
841 | | * |
842 | | * 1.234567.floor(2) #=> 1.23 |
843 | | * 1.234567.floor(3) #=> 1.234 |
844 | | * 1.234567.floor(4) #=> 1.2345 |
845 | | * 1.234567.floor(5) #=> 1.23456 |
846 | | * |
847 | | * 34567.89.floor(-5) #=> 0 |
848 | | * 34567.89.floor(-4) #=> 30000 |
849 | | * 34567.89.floor(-3) #=> 34000 |
850 | | * 34567.89.floor(-2) #=> 34500 |
851 | | * 34567.89.floor(-1) #=> 34560 |
852 | | * 34567.89.floor(0) #=> 34567 |
853 | | * 34567.89.floor(1) #=> 34567.8 |
854 | | * 34567.89.floor(2) #=> 34567.89 |
855 | | * 34567.89.floor(3) #=> 34567.89 |
856 | | * |
857 | | * Note that the limited precision of floating-point arithmetic |
858 | | * might lead to surprising results: |
859 | | * |
860 | | * (0.3 / 0.1).floor #=> 2 (!) |
861 | | */ |
862 | | static mrb_value |
863 | | flo_floor(mrb_state *mrb, mrb_value num) |
864 | 0 | { |
865 | 0 | return flo_rounding(mrb, num, floor); |
866 | 0 | } |
867 | | |
868 | | /* 15.2.9.3.8 */ |
869 | | /* |
870 | | * call-seq: |
871 | | * float.ceil([ndigits]) -> integer or float |
872 | | * |
873 | | * Returns the smallest number greater than or equal to `float` with |
874 | | * a precision of `ndigits` decimal digits (default: 0). |
875 | | * |
876 | | * When the precision is negative, the returned value is an integer |
877 | | * with at least `ndigits.abs` trailing zeros. |
878 | | * |
879 | | * Returns a floating-point number when `ndigits` is positive, |
880 | | * otherwise returns an integer. |
881 | | * |
882 | | * 1.2.ceil #=> 2 |
883 | | * 2.0.ceil #=> 2 |
884 | | * (-1.2).ceil #=> -1 |
885 | | * (-2.0).ceil #=> -2 |
886 | | * |
887 | | * 1.234567.ceil(2) #=> 1.24 |
888 | | * 1.234567.ceil(3) #=> 1.235 |
889 | | * 1.234567.ceil(4) #=> 1.2346 |
890 | | * 1.234567.ceil(5) #=> 1.23457 |
891 | | * |
892 | | * 34567.89.ceil(-5) #=> 100000 |
893 | | * 34567.89.ceil(-4) #=> 40000 |
894 | | * 34567.89.ceil(-3) #=> 35000 |
895 | | * 34567.89.ceil(-2) #=> 34600 |
896 | | * 34567.89.ceil(-1) #=> 34570 |
897 | | * 34567.89.ceil(0) #=> 34568 |
898 | | * 34567.89.ceil(1) #=> 34567.9 |
899 | | * 34567.89.ceil(2) #=> 34567.89 |
900 | | * 34567.89.ceil(3) #=> 34567.89 |
901 | | * |
902 | | * Note that the limited precision of floating-point arithmetic |
903 | | * might lead to surprising results: |
904 | | * |
905 | | * (2.1 / 0.7).ceil #=> 4 (!) |
906 | | */ |
907 | | |
908 | | static mrb_value |
909 | | flo_ceil(mrb_state *mrb, mrb_value num) |
910 | 0 | { |
911 | 0 | return flo_rounding(mrb, num, ceil); |
912 | 0 | } |
913 | | |
914 | | /* 15.2.9.3.12 */ |
915 | | /* |
916 | | * call-seq: |
917 | | * flt.round([ndigits]) -> integer or float |
918 | | * |
919 | | * Rounds *flt* to a given precision in decimal digits (default 0 digits). |
920 | | * Precision may be negative. Returns a floating-point number when ndigits |
921 | | * is more than zero. |
922 | | * |
923 | | * 1.4.round #=> 1 |
924 | | * 1.5.round #=> 2 |
925 | | * 1.6.round #=> 2 |
926 | | * (-1.5).round #=> -2 |
927 | | * |
928 | | * 1.234567.round(2) #=> 1.23 |
929 | | * 1.234567.round(3) #=> 1.235 |
930 | | * 1.234567.round(4) #=> 1.2346 |
931 | | * 1.234567.round(5) #=> 1.23457 |
932 | | * |
933 | | * 34567.89.round(-5) #=> 0 |
934 | | * 34567.89.round(-4) #=> 30000 |
935 | | * 34567.89.round(-3) #=> 35000 |
936 | | * 34567.89.round(-2) #=> 34600 |
937 | | * 34567.89.round(-1) #=> 34570 |
938 | | * 34567.89.round(0) #=> 34568 |
939 | | * 34567.89.round(1) #=> 34567.9 |
940 | | * 34567.89.round(2) #=> 34567.89 |
941 | | * 34567.89.round(3) #=> 34567.89 |
942 | | * |
943 | | */ |
944 | | |
945 | | static mrb_value |
946 | | flo_round(mrb_state *mrb, mrb_value num) |
947 | 6 | { |
948 | 6 | double number, f; |
949 | 6 | mrb_int ndigits = 0; |
950 | 6 | mrb_int i; |
951 | | |
952 | 6 | mrb_get_args(mrb, "|i", &ndigits); |
953 | 6 | number = mrb_float(num); |
954 | | |
955 | 6 | if (0 < ndigits && (isinf(number) || isnan(number))) { |
956 | 0 | return num; |
957 | 0 | } |
958 | 6 | mrb_check_num_exact(mrb, number); |
959 | | |
960 | 6 | f = 1.0; |
961 | 6 | if (ndigits < -DBL_DIG-2) return mrb_fixnum_value(0); |
962 | 6 | i = ndigits >= 0 ? ndigits : -ndigits; |
963 | 6 | if (ndigits > DBL_DIG+2) return num; |
964 | 102 | while (--i >= 0) |
965 | 96 | f = f*10.0; |
966 | | |
967 | 6 | if (isinf(f)) { |
968 | 0 | if (ndigits < 0) number = 0; |
969 | 0 | } |
970 | 6 | else { |
971 | 6 | double d; |
972 | | |
973 | 6 | if (ndigits < 0) number /= f; |
974 | 6 | else number *= f; |
975 | | |
976 | | /* home-made inline implementation of round(3) */ |
977 | 6 | if (number > 0.0) { |
978 | 0 | d = floor(number); |
979 | 0 | number = d + (number - d >= 0.5); |
980 | 0 | } |
981 | 6 | else if (number < 0.0) { |
982 | 6 | d = ceil(number); |
983 | 6 | number = d - (d - number >= 0.5); |
984 | 6 | } |
985 | | |
986 | 6 | if (ndigits < 0) number *= f; |
987 | 6 | else number /= f; |
988 | 6 | } |
989 | | |
990 | 6 | if (ndigits > 0) { |
991 | 6 | if (!isfinite(number)) return num; |
992 | 6 | return mrb_float_value(mrb, number); |
993 | 6 | } |
994 | 0 | if (!FIXABLE_FLOAT(number)) |
995 | 0 | return mrb_float_value(mrb, number); |
996 | 0 | return mrb_int_value(mrb, (mrb_int)number); |
997 | 0 | } |
998 | | |
999 | | /* 15.2.9.3.14 */ |
1000 | | static mrb_value |
1001 | | flo_to_i(mrb_state *mrb, mrb_value num) |
1002 | 235 | { |
1003 | 235 | mrb_float f = mrb_float(num); |
1004 | | |
1005 | 235 | mrb_check_num_exact(mrb, f); |
1006 | 235 | if (!FIXABLE_FLOAT(f)) { |
1007 | 0 | #ifdef MRB_USE_BIGINT |
1008 | 0 | return mrb_bint_new_float(mrb, f); |
1009 | | #else |
1010 | | mrb_int_overflow(mrb, "to_f"); |
1011 | | #endif |
1012 | 0 | } |
1013 | 235 | if (f > 0.0) f = floor(f); |
1014 | 235 | if (f < 0.0) f = ceil(f); |
1015 | | |
1016 | 235 | return mrb_int_value(mrb, (mrb_int)f); |
1017 | 235 | } |
1018 | | |
1019 | | /* 15.2.9.3.15 */ |
1020 | | /* |
1021 | | * call-seq: |
1022 | | * flt.to_i -> integer |
1023 | | * flt.truncate -> integer |
1024 | | * |
1025 | | * Returns *flt* truncated to an `Integer`. |
1026 | | */ |
1027 | | |
1028 | | static mrb_value |
1029 | | flo_truncate(mrb_state *mrb, mrb_value num) |
1030 | 0 | { |
1031 | 0 | if (signbit(mrb_float(num))) return flo_ceil(mrb, num); |
1032 | 0 | return flo_floor(mrb, num); |
1033 | 0 | } |
1034 | | |
1035 | | static mrb_value |
1036 | | flo_nan_p(mrb_state *mrb, mrb_value num) |
1037 | 0 | { |
1038 | 0 | return mrb_bool_value(isnan(mrb_float(num))); |
1039 | 0 | } |
1040 | | |
1041 | | static mrb_value |
1042 | | flo_abs(mrb_state *mrb, mrb_value num) |
1043 | 0 | { |
1044 | 0 | mrb_float f = mrb_float(num); |
1045 | |
|
1046 | 0 | if (signbit(f)) return mrb_float_value(mrb, -f); |
1047 | 0 | return num; |
1048 | 0 | } |
1049 | | #endif |
1050 | | |
1051 | | /* |
1052 | | * Document-class: Integer |
1053 | | * |
1054 | | * `Integer` is hold whole numbers. |
1055 | | * |
1056 | | */ |
1057 | | |
1058 | | /* 15.2.9.3.24 */ |
1059 | | /* |
1060 | | * Document-method: Integer#to_i |
1061 | | * Document-method: Integer#to_int |
1062 | | * |
1063 | | * call-seq: |
1064 | | * int.to_i -> integer |
1065 | | * int.to_int -> integer |
1066 | | * |
1067 | | * As *int* is already an `Integer`, all these |
1068 | | * methods simply return the receiver. |
1069 | | */ |
1070 | | |
1071 | | /** |
1072 | | * Multiplies two mrb_values, x and y, where x is expected to be an integer. |
1073 | | * y can be an integer, BigInt, Rational, Complex, or Float. The function |
1074 | | * handles type promotion and dispatches to appropriate handlers |
1075 | | * (e.g., mrb_bint_mul for BigInts). |
1076 | | * |
1077 | | * @param mrb The mruby state. |
1078 | | * @param x The first operand (integer). |
1079 | | * @param y The second operand (can be various numeric types). |
1080 | | * @return An mrb_value representing the product. The type of the result |
1081 | | * depends on the types of the inputs and the magnitude of the result |
1082 | | * (e.g., could be Integer, BigInt, Float, Rational, Complex). |
1083 | | * Handles potential integer overflows by promoting to BigInt if MRB_USE_BIGINT |
1084 | | * is defined, or raising RangeError otherwise. |
1085 | | * If y is not a recognized numeric type, it raises E_TYPE_ERROR. |
1086 | | */ |
1087 | | mrb_value |
1088 | | mrb_int_mul(mrb_state *mrb, mrb_value x, mrb_value y) |
1089 | 5.08k | { |
1090 | 5.08k | mrb_int a; |
1091 | | |
1092 | 5.08k | a = mrb_integer(x); |
1093 | 5.08k | if (mrb_integer_p(y)) { |
1094 | 2.11k | mrb_int b, c; |
1095 | | |
1096 | 2.11k | if (a == 0) return x; |
1097 | 2.11k | if (a == 1) return y; |
1098 | 2.11k | b = mrb_integer(y); |
1099 | 2.11k | if (b == 0) return y; |
1100 | 2.11k | if (b == 1) return x; |
1101 | 0 | if (mrb_int_mul_overflow(a, b, &c)) { |
1102 | 0 | #ifdef MRB_USE_BIGINT |
1103 | 0 | x = mrb_bint_new_int(mrb, a); |
1104 | 0 | return mrb_bint_mul(mrb, x, y); |
1105 | | #else |
1106 | | mrb_int_overflow(mrb, "multiplication"); |
1107 | | #endif |
1108 | 0 | } |
1109 | 0 | return mrb_int_value(mrb, c); |
1110 | 0 | } |
1111 | 2.96k | switch (mrb_type(y)) { |
1112 | 0 | #ifdef MRB_USE_BIGINT |
1113 | 2.95k | case MRB_TT_BIGINT: |
1114 | 2.95k | if (a == 0) return x; |
1115 | 2.57k | if (a == 1) return y; |
1116 | 1.85k | return mrb_bint_mul(mrb, y, x); |
1117 | 0 | #endif |
1118 | 0 | #ifdef MRB_USE_RATIONAL |
1119 | 3 | case MRB_TT_RATIONAL: |
1120 | 3 | if (a == 0) return x; |
1121 | 3 | if (a == 1) return y; |
1122 | 3 | return mrb_rational_mul(mrb, y, x); |
1123 | 0 | #endif |
1124 | 0 | #ifdef MRB_USE_COMPLEX |
1125 | 3 | case MRB_TT_COMPLEX: |
1126 | 3 | if (a == 0) return x; |
1127 | 3 | if (a == 1) return y; |
1128 | 3 | return mrb_complex_mul(mrb, y, x); |
1129 | 0 | #endif |
1130 | 0 | #ifndef MRB_NO_FLOAT |
1131 | 0 | case MRB_TT_FLOAT: |
1132 | 0 | return mrb_float_value(mrb, (mrb_float)a * mrb_as_float(mrb, y)); |
1133 | 0 | #endif |
1134 | 5 | default: |
1135 | 5 | mrb_int_noconv(mrb, y); |
1136 | 2.96k | } |
1137 | 2.96k | } |
1138 | | |
1139 | | /* 15.2.8.3.5 */ |
1140 | | /* |
1141 | | * call-seq: |
1142 | | * int * numeric -> numeric_result |
1143 | | * |
1144 | | * Performs multiplication: the class of the resulting object depends on |
1145 | | * the class of `numeric` and on the magnitude of the |
1146 | | * result. |
1147 | | */ |
1148 | | |
1149 | | static mrb_value |
1150 | | int_mul(mrb_state *mrb, mrb_value x) |
1151 | 14.6k | { |
1152 | 14.6k | mrb_value y = mrb_get_arg1(mrb); |
1153 | | |
1154 | 14.6k | #ifdef MRB_USE_BIGINT |
1155 | 14.6k | if (mrb_bigint_p(x)) { |
1156 | 9.55k | return mrb_bint_mul(mrb, x, y); |
1157 | 9.55k | } |
1158 | 5.08k | #endif |
1159 | 5.08k | return mrb_int_mul(mrb, x, y); |
1160 | 14.6k | } |
1161 | | |
1162 | | static void |
1163 | | intdivmod(mrb_state *mrb, mrb_int x, mrb_int y, mrb_int *divp, mrb_int *modp) |
1164 | 0 | { |
1165 | 0 | if (y == 0) { |
1166 | 0 | mrb_int_zerodiv(mrb); |
1167 | 0 | } |
1168 | 0 | else if (x == MRB_INT_MIN && y == -1) { |
1169 | 0 | mrb_int_overflow(mrb, "division"); |
1170 | 0 | } |
1171 | 0 | else { |
1172 | 0 | mrb_int div = x / y; |
1173 | 0 | mrb_int mod = x - div * y; |
1174 | |
|
1175 | 0 | if ((x ^ y) < 0 && x != div * y) { |
1176 | 0 | mod += y; |
1177 | 0 | div -= 1; |
1178 | 0 | } |
1179 | 0 | if (divp) *divp = div; |
1180 | 0 | if (modp) *modp = mod; |
1181 | 0 | } |
1182 | 0 | } |
1183 | | |
1184 | | /* 15.2.8.3.7 */ |
1185 | | /* |
1186 | | * call-seq: |
1187 | | * int % num -> num |
1188 | | * |
1189 | | * Returns `int` modulo `other`. |
1190 | | * See `numeric.divmod` for more information. |
1191 | | */ |
1192 | | |
1193 | | static mrb_value |
1194 | | int_mod(mrb_state *mrb, mrb_value x) |
1195 | 6.07k | { |
1196 | 6.07k | mrb_value y = mrb_get_arg1(mrb); |
1197 | 6.07k | mrb_int a, b; |
1198 | | |
1199 | 6.07k | #ifdef MRB_USE_BIGINT |
1200 | 6.07k | if (mrb_bigint_p(x)) { |
1201 | 2.37k | return mrb_bint_mod(mrb, x, y); |
1202 | 2.37k | } |
1203 | 3.70k | if (mrb_bigint_p(y)) { |
1204 | 1.14k | return mrb_bint_mod(mrb, mrb_as_bint(mrb, x), y); |
1205 | 1.14k | } |
1206 | 2.55k | #endif |
1207 | 2.55k | a = mrb_integer(x); |
1208 | 2.55k | if (a == 0) return x; |
1209 | 2.35k | if (mrb_integer_p(y)) { |
1210 | 574 | b = mrb_integer(y); |
1211 | 574 | if (b == 0) mrb_int_zerodiv(mrb); |
1212 | 570 | if (a == MRB_INT_MIN && b == -1) return mrb_fixnum_value(0); |
1213 | 570 | mrb_int mod = a % b; |
1214 | 570 | if ((a < 0) != (b < 0) && mod != 0) { |
1215 | 115 | mod += b; |
1216 | 115 | } |
1217 | 570 | return mrb_int_value(mrb, mod); |
1218 | 570 | } |
1219 | | #ifdef MRB_NO_FLOAT |
1220 | | mrb_raise(mrb, E_TYPE_ERROR, "non integer modulo"); |
1221 | | #else |
1222 | 1.77k | mrb_float mod; |
1223 | | |
1224 | 1.77k | flodivmod(mrb, (mrb_float)a, mrb_as_float(mrb, y), NULL, &mod); |
1225 | 1.77k | return mrb_float_value(mrb, mod); |
1226 | 2.35k | #endif |
1227 | 2.35k | } |
1228 | | |
1229 | | #ifndef MRB_NO_FLOAT |
1230 | | static mrb_value flo_divmod(mrb_state *mrb, mrb_value x); |
1231 | | #endif |
1232 | | |
1233 | | /* |
1234 | | * call-seq: |
1235 | | * int.divmod(numeric) -> array |
1236 | | * |
1237 | | * See `Numeric#divmod`. |
1238 | | */ |
1239 | | static mrb_value |
1240 | | int_divmod(mrb_state *mrb, mrb_value x) |
1241 | 0 | { |
1242 | 0 | mrb_value y = mrb_get_arg1(mrb); |
1243 | |
|
1244 | 0 | #ifdef MRB_USE_BIGINT |
1245 | 0 | if (mrb_bigint_p(x)) { |
1246 | 0 | #ifndef MRB_NO_FLOAT |
1247 | 0 | if (mrb_float_p(y)) { |
1248 | 0 | mrb_float f = mrb_bint_as_float(mrb, x); |
1249 | 0 | return flo_divmod(mrb, mrb_float_value(mrb, f)); |
1250 | 0 | } |
1251 | 0 | #endif |
1252 | 0 | return mrb_bint_divmod(mrb, x, y); |
1253 | 0 | } |
1254 | 0 | if (mrb_bigint_p(y)) { |
1255 | 0 | return mrb_bint_divmod(mrb, mrb_as_bint(mrb, x), y); |
1256 | 0 | } |
1257 | 0 | #endif |
1258 | 0 | if (mrb_integer_p(y)) { |
1259 | 0 | mrb_int div, mod; |
1260 | |
|
1261 | 0 | intdivmod(mrb, mrb_integer(x), mrb_integer(y), &div, &mod); |
1262 | 0 | return mrb_assoc_new(mrb, mrb_int_value(mrb, div), mrb_int_value(mrb, mod)); |
1263 | 0 | } |
1264 | | #ifdef MRB_NO_FLOAT |
1265 | | mrb_raise(mrb, E_TYPE_ERROR, "non integer divmod"); |
1266 | | #else |
1267 | 0 | return flo_divmod(mrb, x); |
1268 | 0 | #endif |
1269 | 0 | } |
1270 | | |
1271 | | #ifndef MRB_NO_FLOAT |
1272 | | static mrb_value |
1273 | | flo_divmod(mrb_state *mrb, mrb_value x) |
1274 | 0 | { |
1275 | 0 | mrb_value y = mrb_get_arg1(mrb); |
1276 | 0 | mrb_float div, mod; |
1277 | 0 | mrb_value a, b; |
1278 | |
|
1279 | 0 | flodivmod(mrb, mrb_float(x), mrb_as_float(mrb, y), &div, &mod); |
1280 | 0 | if (!FIXABLE_FLOAT(div)) |
1281 | 0 | a = mrb_float_value(mrb, div); |
1282 | 0 | else |
1283 | 0 | a = mrb_int_value(mrb, (mrb_int)div); |
1284 | 0 | b = mrb_float_value(mrb, mod); |
1285 | 0 | return mrb_assoc_new(mrb, a, b); |
1286 | 0 | } |
1287 | | #endif |
1288 | | |
1289 | | /* 15.2.8.3.2 */ |
1290 | | /* |
1291 | | * call-seq: |
1292 | | * int == other -> true or false |
1293 | | * |
1294 | | * Return `true` if `int` equals `other` |
1295 | | * numerically. |
1296 | | * |
1297 | | * 1 == 2 #=> false |
1298 | | * 1 == 1.0 #=> true |
1299 | | */ |
1300 | | |
1301 | | static mrb_value |
1302 | | int_equal(mrb_state *mrb, mrb_value x) |
1303 | 24.3k | { |
1304 | 24.3k | mrb_value y = mrb_get_arg1(mrb); |
1305 | | |
1306 | 24.3k | switch (mrb_type(y)) { |
1307 | 24.0k | case MRB_TT_INTEGER: |
1308 | 24.0k | return mrb_bool_value(mrb_integer(x) == mrb_integer(y)); |
1309 | 0 | #ifndef MRB_NO_FLOAT |
1310 | 0 | case MRB_TT_FLOAT: |
1311 | 0 | return mrb_bool_value((mrb_float)mrb_integer(x) == mrb_float(y)); |
1312 | 0 | #endif |
1313 | 0 | #ifdef MRB_USE_BIGINT |
1314 | 46 | case MRB_TT_BIGINT: |
1315 | 46 | return mrb_bool_value(mrb_bint_cmp(mrb, y, x) == 0); |
1316 | 0 | #endif |
1317 | 0 | #ifdef MRB_USE_RATIONAL |
1318 | 0 | case MRB_TT_RATIONAL: |
1319 | 0 | return mrb_bool_value(mrb_equal(mrb, y, x)); |
1320 | 0 | #endif |
1321 | 0 | #ifdef MRB_USE_COMPLEX |
1322 | 0 | case MRB_TT_COMPLEX: |
1323 | 0 | return mrb_bool_value(mrb_equal(mrb, y, x)); |
1324 | 0 | #endif |
1325 | 264 | default: |
1326 | 264 | return mrb_false_value(); |
1327 | 24.3k | } |
1328 | 24.3k | } |
1329 | | |
1330 | | /* 15.2.8.3.8 */ |
1331 | | /* |
1332 | | * call-seq: |
1333 | | * ~int -> integer |
1334 | | * |
1335 | | * One's complement: returns a number where each bit is flipped. |
1336 | | * ex.0---00001 (1)-> 1---11110 (-2) |
1337 | | * ex.0---00010 (2)-> 1---11101 (-3) |
1338 | | * ex.0---00100 (4)-> 1---11011 (-5) |
1339 | | */ |
1340 | | |
1341 | | static mrb_value |
1342 | | int_rev(mrb_state *mrb, mrb_value num) |
1343 | 0 | { |
1344 | 0 | #ifdef MRB_USE_BIGINT |
1345 | 0 | if (mrb_bigint_p(num)) { |
1346 | 0 | return mrb_bint_rev(mrb, num); |
1347 | 0 | } |
1348 | 0 | #endif |
1349 | 0 | mrb_int val = mrb_integer(num); |
1350 | 0 | return mrb_int_value(mrb, ~val); |
1351 | 0 | } |
1352 | | |
1353 | 4.29k | #define bit_op(x,y,op1,op2) do {\ |
1354 | 4.29k | return mrb_int_value(mrb, (mrb_integer(x) op2 mrb_integer(y)));\ |
1355 | 4.29k | } while(0) |
1356 | | |
1357 | | /* 15.2.8.3.9 */ |
1358 | | /* |
1359 | | * call-seq: |
1360 | | * int & integer -> integer_result |
1361 | | * |
1362 | | * Bitwise AND. |
1363 | | */ |
1364 | | |
1365 | | static mrb_value |
1366 | | int_and(mrb_state *mrb, mrb_value x) |
1367 | 1.96k | { |
1368 | 1.96k | mrb_value y = mrb_get_arg1(mrb); |
1369 | | |
1370 | 1.96k | #ifdef MRB_USE_BIGINT |
1371 | 1.96k | if (mrb_bigint_p(x)) { |
1372 | 0 | return mrb_bint_and(mrb, x, y); |
1373 | 0 | } |
1374 | 1.96k | if (mrb_bigint_p(y)) { |
1375 | 10 | return mrb_bint_and(mrb, mrb_as_bint(mrb, x), y); |
1376 | 10 | } |
1377 | 1.95k | #endif |
1378 | 1.95k | bit_op(x, y, and, &); |
1379 | 1.95k | } |
1380 | | |
1381 | | /* 15.2.8.3.10 */ |
1382 | | /* |
1383 | | * call-seq: |
1384 | | * int | integer -> integer_result |
1385 | | * |
1386 | | * Bitwise OR. |
1387 | | */ |
1388 | | |
1389 | | static mrb_value |
1390 | | int_or(mrb_state *mrb, mrb_value x) |
1391 | 60 | { |
1392 | 60 | mrb_value y = mrb_get_arg1(mrb); |
1393 | | |
1394 | 60 | #ifdef MRB_USE_BIGINT |
1395 | 60 | if (mrb_bigint_p(x)) { |
1396 | 52 | return mrb_bint_or(mrb, x, y); |
1397 | 52 | } |
1398 | 8 | if (mrb_bigint_p(y)) { |
1399 | 2 | return mrb_bint_or(mrb, mrb_as_bint(mrb, x), y); |
1400 | 2 | } |
1401 | 6 | #endif |
1402 | 6 | bit_op(x, y, or, |); |
1403 | 6 | } |
1404 | | |
1405 | | /* 15.2.8.3.11 */ |
1406 | | /* |
1407 | | * call-seq: |
1408 | | * int ^ integer -> integer_result |
1409 | | * |
1410 | | * Bitwise EXCLUSIVE OR. |
1411 | | */ |
1412 | | |
1413 | | static mrb_value |
1414 | | int_xor(mrb_state *mrb, mrb_value x) |
1415 | 4.82k | { |
1416 | 4.82k | mrb_value y = mrb_get_arg1(mrb); |
1417 | | |
1418 | 4.82k | #ifdef MRB_USE_BIGINT |
1419 | 4.82k | if (mrb_bigint_p(x)) { |
1420 | 1.78k | return mrb_bint_xor(mrb, x, y); |
1421 | 1.78k | } |
1422 | 3.03k | if (mrb_bigint_p(y)) { |
1423 | 700 | return mrb_bint_xor(mrb, mrb_as_bint(mrb, x), y); |
1424 | 700 | } |
1425 | 2.33k | #endif |
1426 | 2.33k | bit_op(x, y, xor, ^); |
1427 | 2.33k | } |
1428 | | |
1429 | 5.27k | #define NUMERIC_SHIFT_WIDTH_MAX (MRB_INT_BIT-1) |
1430 | | |
1431 | | /** |
1432 | | * Performs a bitwise shift operation (left or right) on an mrb_int value |
1433 | | * (val) by width positions. |
1434 | | * |
1435 | | * @param mrb The mruby state (though not directly used in the function |
1436 | | * logic, it's often part of MRB_API signatures). |
1437 | | * @param val The integer value to be shifted. |
1438 | | * @param width The number of positions to shift. Positive for left shift, |
1439 | | * negative for right shift. |
1440 | | * @param num A pointer to an mrb_int where the result of the shift will be |
1441 | | * stored. |
1442 | | * @return An mrb_bool indicating whether the shift was successful. |
1443 | | * - TRUE if the shift was performed without overflow. |
1444 | | * - FALSE if the shift would result in an overflow (e.g., shifting |
1445 | | * a large positive number too far left, or a negative number |
1446 | | * too far left). |
1447 | | * Special handling for right shifts of negative numbers (arithmetic shift) |
1448 | | * and large shift widths. |
1449 | | */ |
1450 | | mrb_bool |
1451 | | mrb_num_shift(mrb_state *mrb, mrb_int val, mrb_int width, mrb_int *num) |
1452 | 4.85k | { |
1453 | 4.85k | if (width < 0) { /* rshift */ |
1454 | 2.21k | if (width == MRB_INT_MIN || -width >= NUMERIC_SHIFT_WIDTH_MAX) { |
1455 | 199 | if (val < 0) { |
1456 | 69 | *num = -1; |
1457 | 69 | } |
1458 | 130 | else { |
1459 | 130 | *num = 0; |
1460 | 130 | } |
1461 | 199 | } |
1462 | 2.01k | else { |
1463 | 2.01k | *num = val >> -width; |
1464 | 2.01k | } |
1465 | 2.21k | } |
1466 | 2.63k | else if (val > 0) { |
1467 | 2.08k | if ((width > NUMERIC_SHIFT_WIDTH_MAX) || |
1468 | 2.08k | (val > (MRB_INT_MAX >> width))) { |
1469 | 359 | return FALSE; |
1470 | 359 | } |
1471 | 1.72k | *num = val << width; |
1472 | 1.72k | } |
1473 | 553 | else { |
1474 | 553 | if ((width > NUMERIC_SHIFT_WIDTH_MAX) || |
1475 | 553 | (val < (MRB_INT_MIN >> width))) { |
1476 | 130 | return FALSE; |
1477 | 130 | } |
1478 | 423 | if (width == NUMERIC_SHIFT_WIDTH_MAX) |
1479 | 130 | *num = MRB_INT_MIN; |
1480 | 293 | else |
1481 | 293 | *num = val * ((mrb_int)1 << width); |
1482 | 423 | } |
1483 | 4.36k | return TRUE; |
1484 | 4.85k | } |
1485 | | |
1486 | | /* 15.2.8.3.12 */ |
1487 | | /* |
1488 | | * call-seq: |
1489 | | * int << count -> integer or float |
1490 | | * |
1491 | | * Shifts _int_ left _count_ positions (right if _count_ is negative). |
1492 | | */ |
1493 | | |
1494 | | static mrb_value |
1495 | | int_lshift(mrb_state *mrb, mrb_value x) |
1496 | 269 | { |
1497 | 269 | mrb_int width, val; |
1498 | | |
1499 | 269 | width = mrb_as_int(mrb, mrb_get_arg1(mrb)); |
1500 | 269 | if (width == 0) { |
1501 | 1 | return x; |
1502 | 1 | } |
1503 | 268 | if (width == MRB_INT_MIN) mrb_int_overflow(mrb, "bit shift"); |
1504 | 268 | #ifdef MRB_USE_BIGINT |
1505 | 268 | if (mrb_bigint_p(x)) { |
1506 | 18 | return mrb_bint_lshift(mrb, x, width); |
1507 | 18 | } |
1508 | 250 | #endif |
1509 | 250 | val = mrb_integer(x); |
1510 | 250 | if (val == 0) return x; |
1511 | 50 | if (!mrb_num_shift(mrb, val, width, &val)) { |
1512 | 48 | #ifdef MRB_USE_BIGINT |
1513 | 48 | return mrb_bint_lshift(mrb, mrb_bint_new_int(mrb, val), width); |
1514 | | #else |
1515 | | mrb_int_overflow(mrb, "bit shift"); |
1516 | | #endif |
1517 | 48 | } |
1518 | 2 | return mrb_int_value(mrb, val); |
1519 | 50 | } |
1520 | | |
1521 | | /* 15.2.8.3.13 */ |
1522 | | /* |
1523 | | * call-seq: |
1524 | | * int >> count -> integer or float |
1525 | | * |
1526 | | * Shifts _int_ right _count_ positions (left if _count_ is negative). |
1527 | | */ |
1528 | | |
1529 | | static mrb_value |
1530 | | int_rshift(mrb_state *mrb, mrb_value x) |
1531 | 1.13k | { |
1532 | 1.13k | mrb_int width, val; |
1533 | | |
1534 | 1.13k | width = mrb_as_int(mrb, mrb_get_arg1(mrb)); |
1535 | 1.13k | if (width == 0) { |
1536 | 217 | return x; |
1537 | 217 | } |
1538 | 920 | if (width == MRB_INT_MIN) mrb_int_overflow(mrb, "bit shift"); |
1539 | 920 | #ifdef MRB_USE_BIGINT |
1540 | 920 | if (mrb_bigint_p(x)) { |
1541 | 272 | return mrb_bint_rshift(mrb, x, width); |
1542 | 272 | } |
1543 | 648 | #endif |
1544 | 648 | val = mrb_integer(x); |
1545 | 648 | if (val == 0) return x; |
1546 | 542 | if (!mrb_num_shift(mrb, val, -width, &val)) { |
1547 | 203 | #ifdef MRB_USE_BIGINT |
1548 | 203 | return mrb_bint_rshift(mrb, mrb_bint_new_int(mrb, val), width); |
1549 | | #else |
1550 | | mrb_int_overflow(mrb, "bit shift"); |
1551 | | #endif |
1552 | 203 | } |
1553 | 339 | return mrb_int_value(mrb, val); |
1554 | 542 | } |
1555 | | |
1556 | | static mrb_value |
1557 | | prepare_int_rounding(mrb_state *mrb, mrb_value x) |
1558 | 2 | { |
1559 | 2 | mrb_int nd = 0; |
1560 | 2 | size_t bytes; |
1561 | | |
1562 | 2 | mrb_get_args(mrb, "|i", &nd); |
1563 | 2 | if (nd >= 0) { |
1564 | 0 | return mrb_nil_value(); |
1565 | 0 | } |
1566 | 2 | #ifdef MRB_USE_BIGINT |
1567 | 2 | if (mrb_bigint_p(x)) { |
1568 | 0 | bytes = mrb_bint_memsize(x); |
1569 | 0 | } |
1570 | 2 | else |
1571 | 2 | #endif |
1572 | 2 | bytes = sizeof(mrb_int); |
1573 | 2 | if (-0.415241 * nd - 0.125 > bytes) { |
1574 | 2 | return mrb_undef_value(); |
1575 | 2 | } |
1576 | 0 | return mrb_int_pow(mrb, mrb_fixnum_value(10), mrb_fixnum_value(-nd)); |
1577 | 2 | } |
1578 | | |
1579 | | /* 15.2.8.3.14 Integer#ceil */ |
1580 | | /* |
1581 | | * call-seq: |
1582 | | * int.ceil -> int |
1583 | | * int.ceil(ndigits) -> int |
1584 | | * |
1585 | | * Returns self. |
1586 | | * |
1587 | | * When the precision (ndigits) is negative, the returned value is an integer |
1588 | | * with at least `ndigits.abs` trailing zeros. |
1589 | | */ |
1590 | | static mrb_value |
1591 | | int_ceil(mrb_state *mrb, mrb_value x) |
1592 | 2 | { |
1593 | 2 | mrb_value f = prepare_int_rounding(mrb, x); |
1594 | 2 | if (mrb_undef_p(f)) return mrb_fixnum_value(0); |
1595 | 0 | if (mrb_nil_p(f)) return x; |
1596 | 0 | #ifdef MRB_USE_BIGINT |
1597 | 0 | if (mrb_bigint_p(x)) { |
1598 | 0 | x = mrb_bint_add_n(mrb, x, f); |
1599 | 0 | return mrb_bint_sub(mrb, x, mrb_bint_mod(mrb, x, f)); |
1600 | 0 | } |
1601 | 0 | #endif |
1602 | 0 | mrb_int a = mrb_integer(x); |
1603 | 0 | mrb_int b = mrb_integer(f); |
1604 | 0 | mrb_int c = a % b; |
1605 | 0 | int neg = a < 0; |
1606 | 0 | a -= c; |
1607 | 0 | if (!neg) { |
1608 | 0 | if (mrb_int_add_overflow(a, b, &c)) { |
1609 | 0 | #ifdef MRB_USE_BIGINT |
1610 | 0 | x = mrb_bint_new_int(mrb, a); |
1611 | 0 | return mrb_bint_add(mrb, x, f); |
1612 | | #else |
1613 | | mrb_int_overflow(mrb, "ceil"); |
1614 | | #endif |
1615 | 0 | } |
1616 | 0 | a = c; |
1617 | 0 | } |
1618 | 0 | return mrb_int_value(mrb, a); |
1619 | 0 | } |
1620 | | |
1621 | | /* 15.2.8.3.17 Integer#floor */ |
1622 | | /* |
1623 | | * call-seq: |
1624 | | * int.floor -> int |
1625 | | * int.floor(ndigits) -> int |
1626 | | * |
1627 | | * Returns self. |
1628 | | * |
1629 | | * When the precision (ndigits) is negative, the returned value is an integer |
1630 | | * with at least `ndigits.abs` trailing zeros. |
1631 | | */ |
1632 | | static mrb_value |
1633 | | int_floor(mrb_state *mrb, mrb_value x) |
1634 | 0 | { |
1635 | 0 | mrb_value f = prepare_int_rounding(mrb, x); |
1636 | 0 | if (mrb_undef_p(f)) return mrb_fixnum_value(0); |
1637 | 0 | if (mrb_nil_p(f)) return x; |
1638 | 0 | #ifdef MRB_USE_BIGINT |
1639 | 0 | if (mrb_bigint_p(x)) { |
1640 | 0 | return mrb_bint_sub(mrb, x, mrb_bint_mod(mrb, x, f)); |
1641 | 0 | } |
1642 | 0 | #endif |
1643 | 0 | mrb_int a = mrb_integer(x); |
1644 | 0 | mrb_int b = mrb_integer(f); |
1645 | 0 | mrb_int c = a % b; |
1646 | 0 | int neg = a < 0; |
1647 | 0 | a -= c; |
1648 | 0 | if (neg) { |
1649 | 0 | if (mrb_int_sub_overflow(a, b, &c)) { |
1650 | 0 | #ifdef MRB_USE_BIGINT |
1651 | 0 | x = mrb_bint_new_int(mrb, a); |
1652 | 0 | return mrb_bint_sub(mrb, x, f); |
1653 | | #else |
1654 | | mrb_int_overflow(mrb, "floor"); |
1655 | | #endif |
1656 | 0 | } |
1657 | 0 | a = c; |
1658 | 0 | } |
1659 | 0 | return mrb_int_value(mrb, a); |
1660 | 0 | } |
1661 | | |
1662 | | /* 15.2.8.3.20 Integer#round */ |
1663 | | /* |
1664 | | * call-seq: |
1665 | | * int.round -> int |
1666 | | * int.round(ndigits) -> int |
1667 | | * |
1668 | | * Returns self. |
1669 | | * |
1670 | | * When the precision (ndigits) is negative, the returned value is an integer |
1671 | | * with at least `ndigits.abs` trailing zeros. |
1672 | | */ |
1673 | | static mrb_value |
1674 | | int_round(mrb_state *mrb, mrb_value x) |
1675 | 0 | { |
1676 | 0 | mrb_value f = prepare_int_rounding(mrb, x); |
1677 | 0 | if (mrb_undef_p(f)) return mrb_fixnum_value(0); |
1678 | 0 | if (mrb_nil_p(f)) return x; |
1679 | 0 | #ifdef MRB_USE_BIGINT |
1680 | 0 | if (mrb_bigint_p(x)) { |
1681 | 0 | mrb_value r = mrb_bint_mod(mrb, x, f); |
1682 | 0 | mrb_value n = mrb_bint_sub(mrb, x, r); |
1683 | 0 | mrb_value h = mrb_bigint_p(f) ? mrb_bint_rshift(mrb, f, 1) : mrb_int_value(mrb, mrb_integer(f)>>1); |
1684 | 0 | mrb_int cmp = mrb_bigint_p(r) ? mrb_bint_cmp(mrb, r, h) : (mrb_bigint_p(h) ? -mrb_bint_cmp(mrb, h, r) : (mrb_integer(r)-mrb_integer(h))); |
1685 | 0 | if ((cmp > 0) || (cmp == 0 && mrb_bint_cmp(mrb, x, mrb_fixnum_value(0)) > 0)) { |
1686 | 0 | n = mrb_as_bint(mrb, n); |
1687 | 0 | n = mrb_bint_add(mrb, n, f); |
1688 | 0 | } |
1689 | 0 | return n; |
1690 | 0 | } |
1691 | 0 | #endif |
1692 | 0 | mrb_int a = mrb_integer(x); |
1693 | 0 | mrb_int b = mrb_integer(f); |
1694 | 0 | mrb_int c = a % b; |
1695 | 0 | a -= c; |
1696 | 0 | if (c < 0) { |
1697 | 0 | c = -c; |
1698 | 0 | if (b/2 < c) { |
1699 | 0 | if (mrb_int_sub_overflow(a, b, &c)) { |
1700 | 0 | #ifdef MRB_USE_BIGINT |
1701 | 0 | x = mrb_bint_new_int(mrb, a); |
1702 | 0 | return mrb_bint_sub(mrb, x, f); |
1703 | | #else |
1704 | | mrb_int_overflow(mrb, "round"); |
1705 | | #endif |
1706 | 0 | } |
1707 | 0 | } |
1708 | 0 | a = c; |
1709 | 0 | } |
1710 | 0 | else { |
1711 | 0 | if (b/2 < c) { |
1712 | 0 | if (mrb_int_add_overflow(a, b, &c)) { |
1713 | 0 | #ifdef MRB_USE_BIGINT |
1714 | 0 | x = mrb_bint_new_int(mrb, a); |
1715 | 0 | return mrb_bint_add(mrb, x, f); |
1716 | | #else |
1717 | | mrb_int_overflow(mrb, "round"); |
1718 | | #endif |
1719 | 0 | } |
1720 | 0 | } |
1721 | 0 | a = c; |
1722 | 0 | } |
1723 | 0 | return mrb_int_value(mrb, a); |
1724 | 0 | } |
1725 | | |
1726 | | /* 15.2.8.3.26 Integer#truncate */ |
1727 | | /* |
1728 | | * call-seq: |
1729 | | * int.truncate -> int |
1730 | | * int.truncate(ndigits) -> int |
1731 | | * |
1732 | | * Returns self. |
1733 | | * |
1734 | | * When the precision (ndigits) is negative, the returned value is an integer |
1735 | | * with at least `ndigits.abs` trailing zeros. |
1736 | | */ |
1737 | | static mrb_value |
1738 | | int_truncate(mrb_state *mrb, mrb_value x) |
1739 | 0 | { |
1740 | 0 | mrb_value f = prepare_int_rounding(mrb, x); |
1741 | 0 | if (mrb_undef_p(f)) return mrb_fixnum_value(0); |
1742 | 0 | if (mrb_nil_p(f)) return x; |
1743 | 0 | #ifdef MRB_USE_BIGINT |
1744 | 0 | if (mrb_bigint_p(x)) { |
1745 | 0 | mrb_value m = mrb_bint_mod(mrb, x, f); |
1746 | 0 | x = mrb_bint_sub_n(mrb, x, m); |
1747 | 0 | if (mrb_bint_cmp(mrb, x, mrb_fixnum_value(0)) < 0) { |
1748 | 0 | return mrb_bint_add(mrb, x, f); |
1749 | 0 | } |
1750 | 0 | return x; |
1751 | 0 | } |
1752 | 0 | #endif |
1753 | 0 | mrb_int a = mrb_integer(x); |
1754 | 0 | mrb_int b = mrb_integer(f); |
1755 | 0 | return mrb_int_value(mrb, a - (a % b)); |
1756 | 0 | } |
1757 | | |
1758 | | /* 15.2.8.3.23 */ |
1759 | | /* |
1760 | | * call-seq: |
1761 | | * int.to_f -> float |
1762 | | * |
1763 | | * Converts *int* to a `Float`. |
1764 | | * |
1765 | | */ |
1766 | | |
1767 | | #ifndef MRB_NO_FLOAT |
1768 | | static mrb_value |
1769 | | int_to_f(mrb_state *mrb, mrb_value num) |
1770 | 0 | { |
1771 | 0 | #ifdef MRB_USE_BIGINT |
1772 | 0 | if (mrb_bigint_p(num)) { |
1773 | 0 | return mrb_float_value(mrb, mrb_bint_as_float(mrb, num)); |
1774 | 0 | } |
1775 | 0 | #endif |
1776 | 0 | return mrb_float_value(mrb, (mrb_float)mrb_integer(num)); |
1777 | 0 | } |
1778 | | |
1779 | | /** |
1780 | | * Converts an mrb_value float to an mrb_value integer. |
1781 | | * |
1782 | | * @param mrb The mruby state. |
1783 | | * @param x The float mrb_value to convert. |
1784 | | * @return An mrb_value integer if the conversion is successful. |
1785 | | * @raise E_TYPE_ERROR if the input is not a float. |
1786 | | * @raise E_RANGE_ERROR if the float is Infinity or NaN. |
1787 | | */ |
1788 | | MRB_API mrb_value |
1789 | | mrb_float_to_integer(mrb_state *mrb, mrb_value x) |
1790 | 235 | { |
1791 | 235 | if (!mrb_float_p(x)) { |
1792 | 0 | mrb_raise(mrb, E_TYPE_ERROR, "non float value"); |
1793 | 0 | } |
1794 | 235 | mrb_float f = mrb_float(x); |
1795 | 235 | if (isinf(f) || isnan(f)) { |
1796 | 0 | mrb_raisef(mrb, E_RANGE_ERROR, "float %f out of range", f); |
1797 | 0 | } |
1798 | 235 | return flo_to_i(mrb, x); |
1799 | 235 | } |
1800 | | #endif |
1801 | | |
1802 | | /** |
1803 | | * Adds two mrb_values, x and y, where x is expected to be an integer. |
1804 | | * y can be an integer, BigInt, Rational, Complex, or Float. The function |
1805 | | * handles type promotion and dispatches to appropriate handlers. |
1806 | | * |
1807 | | * @param mrb The mruby state. |
1808 | | * @param x The first operand (integer). |
1809 | | * @param y The second operand (can be various numeric types). |
1810 | | * @return An mrb_value representing the sum. The type of the result depends |
1811 | | * on the types of the inputs and the magnitude of the result. |
1812 | | * Handles potential integer overflows by promoting to BigInt if MRB_USE_BIGINT |
1813 | | * is defined, or raising RangeError otherwise. |
1814 | | * If y is not a recognized numeric type and MRB_NO_FLOAT is defined, it |
1815 | | * raises E_TYPE_ERROR. If MRB_NO_FLOAT is not defined, it attempts to |
1816 | | * convert y to a float. |
1817 | | */ |
1818 | | mrb_value |
1819 | | mrb_int_add(mrb_state *mrb, mrb_value x, mrb_value y) |
1820 | 18.6k | { |
1821 | 18.6k | mrb_int a; |
1822 | | |
1823 | 18.6k | a = mrb_integer(x); |
1824 | 18.6k | if (mrb_integer_p(y)) { |
1825 | 1.09k | mrb_int b, c; |
1826 | | |
1827 | 1.09k | if (a == 0) return y; |
1828 | 0 | b = mrb_integer(y); |
1829 | 0 | if (b == 0) return x; |
1830 | 0 | if (mrb_int_add_overflow(a, b, &c)) { |
1831 | 0 | #ifdef MRB_USE_BIGINT |
1832 | 0 | x = mrb_bint_new_int(mrb, a); |
1833 | 0 | return mrb_bint_add(mrb, x, y); |
1834 | | #else |
1835 | | mrb_int_overflow(mrb, "addition"); |
1836 | | #endif |
1837 | 0 | } |
1838 | 0 | return mrb_int_value(mrb, c); |
1839 | 0 | } |
1840 | 17.5k | switch (mrb_type(y)) { |
1841 | 0 | #ifdef MRB_USE_BIGINT |
1842 | 1.72k | case MRB_TT_BIGINT: |
1843 | 1.72k | return mrb_bint_add(mrb, y, x); |
1844 | 0 | #endif |
1845 | 0 | #ifdef MRB_USE_RATIONAL |
1846 | 6 | case MRB_TT_RATIONAL: |
1847 | 6 | return mrb_rational_add(mrb, y, x); |
1848 | 0 | #endif |
1849 | 0 | #ifdef MRB_USE_COMPLEX |
1850 | 15.7k | case MRB_TT_COMPLEX: |
1851 | 15.7k | return mrb_complex_add(mrb, y, x); |
1852 | 0 | #endif |
1853 | 7 | default: |
1854 | | #ifdef MRB_NO_FLOAT |
1855 | | mrb_raise(mrb, E_TYPE_ERROR, "non integer addition"); |
1856 | | #else |
1857 | 7 | return mrb_float_value(mrb, (mrb_float)a + mrb_as_float(mrb, y)); |
1858 | 17.5k | #endif |
1859 | 17.5k | } |
1860 | 17.5k | } |
1861 | | |
1862 | | /* 15.2.8.3.3 */ |
1863 | | /* |
1864 | | * call-seq: |
1865 | | * int + numeric -> numeric_result |
1866 | | * |
1867 | | * Performs addition: the class of the resulting object depends on |
1868 | | * the class of `numeric` and on the magnitude of the |
1869 | | * result. |
1870 | | */ |
1871 | | static mrb_value |
1872 | | int_add(mrb_state *mrb, mrb_value self) |
1873 | 21.3k | { |
1874 | 21.3k | mrb_value other = mrb_get_arg1(mrb); |
1875 | | |
1876 | 21.3k | #ifdef MRB_USE_BIGINT |
1877 | 21.3k | if (mrb_bigint_p(self)) { |
1878 | 2.77k | return mrb_bint_add(mrb, self, other); |
1879 | 2.77k | } |
1880 | 18.6k | #endif |
1881 | 18.6k | return mrb_int_add(mrb, self, other); |
1882 | 21.3k | } |
1883 | | |
1884 | | /** |
1885 | | * Subtracts mrb_value y from mrb_value x, where x is expected to be an |
1886 | | * integer. y can be an integer, BigInt, Rational, Complex, or Float. |
1887 | | * The function handles type promotion and dispatches to appropriate handlers. |
1888 | | * |
1889 | | * @param mrb The mruby state. |
1890 | | * @param x The minuend (integer). |
1891 | | * @param y The subtrahend (can be various numeric types). |
1892 | | * @return An mrb_value representing the difference. The type of the result |
1893 | | * depends on the types of the inputs and the magnitude of the result. |
1894 | | * Handles potential integer overflows by promoting to BigInt if MRB_USE_BIGINT |
1895 | | * is defined, or raising RangeError otherwise. |
1896 | | * If y is not a recognized numeric type and MRB_NO_FLOAT is defined, it |
1897 | | * raises E_TYPE_ERROR. If MRB_NO_FLOAT is not defined, it attempts to |
1898 | | * convert y to a float. |
1899 | | */ |
1900 | | mrb_value |
1901 | | mrb_int_sub(mrb_state *mrb, mrb_value x, mrb_value y) |
1902 | 2.42k | { |
1903 | 2.42k | mrb_int a; |
1904 | | |
1905 | 2.42k | a = mrb_integer(x); |
1906 | 2.42k | if (mrb_integer_p(y)) { |
1907 | 0 | mrb_int b, c; |
1908 | |
|
1909 | 0 | b = mrb_integer(y); |
1910 | 0 | if (mrb_int_sub_overflow(a, b, &c)) { |
1911 | 0 | #ifdef MRB_USE_BIGINT |
1912 | 0 | x = mrb_bint_new_int(mrb, a); |
1913 | 0 | return mrb_bint_sub(mrb, x, y); |
1914 | | #else |
1915 | | mrb_int_overflow(mrb, "subtraction"); |
1916 | | #endif |
1917 | 0 | } |
1918 | 0 | return mrb_int_value(mrb, c); |
1919 | 0 | } |
1920 | 2.42k | switch (mrb_type(y)) { |
1921 | 0 | #ifdef MRB_USE_BIGINT |
1922 | 2.41k | case MRB_TT_BIGINT: |
1923 | 2.41k | return mrb_bint_sub(mrb, mrb_bint_new_int(mrb, a), y); |
1924 | 0 | #endif |
1925 | 0 | #ifdef MRB_USE_RATIONAL |
1926 | 6 | case MRB_TT_RATIONAL: |
1927 | 6 | return mrb_rational_sub(mrb, mrb_rational_new(mrb, a, 1), y); |
1928 | 0 | #endif |
1929 | 0 | #ifdef MRB_USE_COMPLEX |
1930 | 0 | case MRB_TT_COMPLEX: |
1931 | 0 | return mrb_complex_sub(mrb, mrb_complex_new(mrb, (mrb_float)a, 0), y); |
1932 | 0 | #endif |
1933 | 5 | default: |
1934 | | #ifdef MRB_NO_FLOAT |
1935 | | mrb_raise(mrb, E_TYPE_ERROR, "non integer subtraction"); |
1936 | | #else |
1937 | 5 | return mrb_float_value(mrb, (mrb_float)a - mrb_as_float(mrb, y)); |
1938 | 2.42k | #endif |
1939 | 2.42k | } |
1940 | 2.42k | } |
1941 | | |
1942 | | /* 15.2.8.3.4 */ |
1943 | | /* |
1944 | | * call-seq: |
1945 | | * int - numeric -> numeric |
1946 | | * |
1947 | | * Performs subtraction: the class of the resulting object depends on |
1948 | | * the class of `numeric` and on the magnitude of the |
1949 | | * result. |
1950 | | */ |
1951 | | static mrb_value |
1952 | | int_sub(mrb_state *mrb, mrb_value self) |
1953 | 9.81k | { |
1954 | 9.81k | mrb_value other = mrb_get_arg1(mrb); |
1955 | | |
1956 | 9.81k | #ifdef MRB_USE_BIGINT |
1957 | 9.81k | if (mrb_bigint_p(self)) { |
1958 | 7.39k | return mrb_bint_sub(mrb, self, other); |
1959 | 7.39k | } |
1960 | 2.42k | #endif |
1961 | 2.42k | return mrb_int_sub(mrb, self, other); |
1962 | 9.81k | } |
1963 | | |
1964 | | /** |
1965 | | * Converts an mrb_int to a C-style string. |
1966 | | * |
1967 | | * @param buf The buffer to write the string to. |
1968 | | * @param len The size of the buffer. |
1969 | | * @param n The integer to convert. |
1970 | | * @param base The radix for conversion (2-36). |
1971 | | * @return A pointer to the beginning of the string in the buffer, |
1972 | | * or NULL if an error occurs (e.g., invalid base, buffer too small). |
1973 | | */ |
1974 | | MRB_API char* |
1975 | | mrb_int_to_cstr(char *buf, size_t len, mrb_int n, mrb_int base) |
1976 | 60.8k | { |
1977 | 60.8k | char *bufend = buf + len; |
1978 | 60.8k | char *b = bufend-1; |
1979 | | |
1980 | 60.8k | if (base < 2 || 36 < base) return NULL; |
1981 | 60.8k | if (len < 2) return NULL; |
1982 | | |
1983 | 60.8k | if (n == 0) { |
1984 | 677 | buf[0] = '0'; |
1985 | 677 | buf[1] = '\0'; |
1986 | 677 | return buf; |
1987 | 677 | } |
1988 | | |
1989 | 60.2k | *b = '\0'; |
1990 | 60.2k | if (n < 0) { |
1991 | 34 | do { |
1992 | 34 | if (b-- == buf) return NULL; |
1993 | 34 | *b = mrb_digitmap[-(n % base)]; |
1994 | 34 | } while (n /= base); |
1995 | 14 | if (b-- == buf) return NULL; |
1996 | 14 | *b = '-'; |
1997 | 14 | } |
1998 | 60.2k | else { |
1999 | 141k | do { |
2000 | 141k | if (b-- == buf) return NULL; |
2001 | 141k | *b = mrb_digitmap[(int)(n % base)]; |
2002 | 141k | } while (n /= base); |
2003 | 60.2k | } |
2004 | 60.2k | return b; |
2005 | 60.2k | } |
2006 | | |
2007 | | /** |
2008 | | * Converts an mrb_value representing an integer to a new mrb_value string. |
2009 | | * |
2010 | | * @param mrb The mruby state. |
2011 | | * @param x The integer mrb_value to convert. |
2012 | | * @param base The radix for conversion (2-36). |
2013 | | * @return A new mrb_value string representing the integer, |
2014 | | * or raises an E_ARGUMENT_ERROR if the base is invalid. |
2015 | | */ |
2016 | | MRB_API mrb_value |
2017 | | mrb_integer_to_str(mrb_state *mrb, mrb_value x, mrb_int base) |
2018 | 60.8k | { |
2019 | 60.8k | char buf[MRB_INT_BIT+1]; |
2020 | | |
2021 | 60.8k | if (base < 2 || 36 < base) { |
2022 | 0 | mrb_raisef(mrb, E_ARGUMENT_ERROR, "invalid radix %i", base); |
2023 | 0 | } |
2024 | 60.8k | #ifdef MRB_USE_BIGINT |
2025 | 60.8k | if (mrb_bigint_p(x)) { |
2026 | 2 | return mrb_bint_to_s(mrb, x, base); |
2027 | 2 | } |
2028 | 60.8k | #endif |
2029 | 60.8k | mrb_int val = mrb_integer(x); |
2030 | 60.8k | const char *p = mrb_int_to_cstr(buf, sizeof(buf), val, base); |
2031 | 60.8k | mrb_assert(p != NULL); |
2032 | 60.8k | mrb_value str = mrb_str_new_cstr(mrb, p); |
2033 | 60.8k | RSTR_SET_ASCII_FLAG(mrb_str_ptr(str)); |
2034 | 60.8k | return str; |
2035 | 60.8k | } |
2036 | | |
2037 | | /* 15.2.8.3.25 */ |
2038 | | /* |
2039 | | * call-seq: |
2040 | | * int.to_s(base=10) -> string |
2041 | | * |
2042 | | * Returns a string containing the representation of *int* radix |
2043 | | * *base* (between 2 and 36). |
2044 | | * |
2045 | | * 12345.to_s #=> "12345" |
2046 | | * 12345.to_s(2) #=> "11000000111001" |
2047 | | * 12345.to_s(8) #=> "30071" |
2048 | | * 12345.to_s(10) #=> "12345" |
2049 | | * 12345.to_s(16) #=> "3039" |
2050 | | * 12345.to_s(36) #=> "9ix" |
2051 | | * |
2052 | | */ |
2053 | | static mrb_value |
2054 | | int_to_s(mrb_state *mrb, mrb_value self) |
2055 | 42.6k | { |
2056 | 42.6k | mrb_int base; |
2057 | | |
2058 | 42.6k | if (mrb_get_argc(mrb) > 0) { |
2059 | 0 | base = mrb_integer(mrb_get_arg1(mrb)); |
2060 | 0 | } |
2061 | 42.6k | else { |
2062 | 42.6k | base = 10; |
2063 | 42.6k | } |
2064 | 42.6k | return mrb_integer_to_str(mrb, self, base); |
2065 | 42.6k | } |
2066 | | |
2067 | | /* compare two numbers: (1:0:-1; -2 for error) */ |
2068 | | static mrb_int |
2069 | | cmpnum(mrb_state *mrb, mrb_value v1, mrb_value v2) |
2070 | 8.61k | { |
2071 | | #ifdef MRB_NO_FLOAT /* integer version */ |
2072 | | |
2073 | | if (!mrb_fixnum_p(v2)) { |
2074 | | if (!mrb_obj_is_kind_of(mrb, v2, mrb_class_get_id(mrb, MRB_SYM(Numeric)))) { |
2075 | | return -2; |
2076 | | } |
2077 | | v1 = mrb_funcall_argv(mrb, v2, MRB_OPSYM(cmp), 1, &v1); |
2078 | | if (mrb_integer_p(v1)) { |
2079 | | return -mrb_integer(v1); |
2080 | | } |
2081 | | return -2; |
2082 | | } |
2083 | | mrb_int x = mrb_as_int(mrb, v1); |
2084 | | mrb_int y = mrb_integer(v2); |
2085 | | |
2086 | | #else /* float version */ |
2087 | | |
2088 | 8.61k | mrb_float x, y; |
2089 | | |
2090 | 8.61k | if (mrb_fixnum_p(v1)) { |
2091 | 6.87k | if (mrb_fixnum_p(v2)) { |
2092 | 4.21k | mrb_int x = mrb_integer(v1); |
2093 | 4.21k | mrb_int y = mrb_integer(v2); |
2094 | | |
2095 | 4.21k | if (x > y) return 1; |
2096 | 4.20k | else if (x < y) return -1; |
2097 | 2.10k | return 0; |
2098 | 4.21k | } |
2099 | 2.65k | x = (mrb_float)mrb_integer(v1); |
2100 | 2.65k | } |
2101 | 1.73k | else { |
2102 | 1.73k | x = mrb_as_float(mrb, v1); |
2103 | 1.73k | } |
2104 | | |
2105 | 4.39k | switch (mrb_type(v2)) { |
2106 | 0 | #ifdef MRB_USE_RATIONAL |
2107 | 396 | case MRB_TT_RATIONAL: |
2108 | 396 | #endif |
2109 | 396 | #ifdef MRB_USE_BIGINT |
2110 | 1.33k | case MRB_TT_BIGINT: |
2111 | 1.33k | #endif |
2112 | 1.89k | case MRB_TT_INTEGER: |
2113 | 1.89k | if (mrb_fixnum_p(v2)) { |
2114 | 559 | y = (mrb_float)mrb_integer(v2); |
2115 | 559 | break; |
2116 | 559 | } |
2117 | | /* fall through */ |
2118 | 1.61k | case MRB_TT_FLOAT: |
2119 | 1.61k | y = mrb_as_float(mrb, v2); |
2120 | 1.61k | break; |
2121 | 2.22k | default: |
2122 | 2.22k | if (!mrb_obj_is_kind_of(mrb, v2, mrb_class_get_id(mrb, MRB_SYM(Numeric)))) { |
2123 | 2.22k | return -2; |
2124 | 2.22k | } |
2125 | | /* fall through */ |
2126 | 0 | #ifdef MRB_USE_COMPLEX |
2127 | 0 | case MRB_TT_COMPLEX: |
2128 | 0 | #endif |
2129 | 0 | v1 = mrb_funcall_argv(mrb, v2, MRB_OPSYM(cmp), 1, &v1); |
2130 | 0 | if (mrb_fixnum_p(v1)) { |
2131 | 0 | return -mrb_integer(v1); |
2132 | 0 | } |
2133 | 0 | return -2; |
2134 | 4.39k | } |
2135 | 2.17k | #endif |
2136 | 2.17k | if (x > y) |
2137 | 395 | return 1; |
2138 | 1.78k | else if (x < y) |
2139 | 909 | return -1; |
2140 | 871 | return 0; |
2141 | 2.17k | } |
2142 | | |
2143 | | static mrb_value |
2144 | | int_hash(mrb_state *mrb, mrb_value self) |
2145 | 4.83k | { |
2146 | 4.83k | #ifdef MRB_USE_BIGINT |
2147 | 4.83k | if (mrb_bigint_p(self)) { |
2148 | 0 | return mrb_bint_hash(mrb, self); |
2149 | 0 | } |
2150 | 4.83k | #endif |
2151 | 4.83k | mrb_int n = mrb_integer(self); |
2152 | 4.83k | return mrb_int_value(mrb, mrb_byte_hash((uint8_t*)&n, sizeof(n))); |
2153 | 4.83k | } |
2154 | | |
2155 | | /* 15.2.8.3.1 */ |
2156 | | /* 15.2.9.3.1 */ |
2157 | | /* |
2158 | | * call-seq: |
2159 | | * self.f <=> other.f => -1, 0, +1, or nil |
2160 | | * < => -1 |
2161 | | * = => 0 |
2162 | | * > => +1 |
2163 | | * Comparison---Returns -1, 0, or +1 depending on whether *int* is |
2164 | | * less than, equal to, or greater than *numeric*. This is the |
2165 | | * basis for the tests in `Comparable`. When the operands are |
2166 | | * not comparable, it returns nil instead of raising an exception. |
2167 | | */ |
2168 | | static mrb_value |
2169 | | num_cmp(mrb_state *mrb, mrb_value self) |
2170 | 2.23k | { |
2171 | 2.23k | mrb_value other = mrb_get_arg1(mrb); |
2172 | 2.23k | mrb_int n; |
2173 | | |
2174 | 2.23k | n = cmpnum(mrb, self, other); |
2175 | 2.23k | if (n == -2) return mrb_nil_value(); |
2176 | 15 | return mrb_fixnum_value(n); |
2177 | 2.23k | } |
2178 | | |
2179 | | static mrb_noreturn void |
2180 | | cmperr(mrb_state *mrb, mrb_value v1, mrb_value v2) |
2181 | 6 | { |
2182 | 6 | mrb_raisef(mrb, E_ARGUMENT_ERROR, "comparison of %t with %t failed", v1, v2); |
2183 | 6 | } |
2184 | | |
2185 | | static mrb_value |
2186 | | num_lt(mrb_state *mrb, mrb_value self) |
2187 | 416 | { |
2188 | 416 | mrb_value other = mrb_get_arg1(mrb); |
2189 | 416 | mrb_int n; |
2190 | | |
2191 | 416 | n = cmpnum(mrb, self, other); |
2192 | 416 | if (n == -2) cmperr(mrb, self, other); |
2193 | 416 | if (n < 0) return mrb_true_value(); |
2194 | 18 | return mrb_false_value(); |
2195 | 416 | } |
2196 | | |
2197 | | static mrb_value |
2198 | | num_le(mrb_state *mrb, mrb_value self) |
2199 | 874 | { |
2200 | 874 | mrb_value other = mrb_get_arg1(mrb); |
2201 | 874 | mrb_int n; |
2202 | | |
2203 | 874 | n = cmpnum(mrb, self, other); |
2204 | 874 | if (n == -2) cmperr(mrb, self, other); |
2205 | 868 | if (n <= 0) return mrb_true_value(); |
2206 | 85 | return mrb_false_value(); |
2207 | 868 | } |
2208 | | |
2209 | | static mrb_value |
2210 | | num_gt(mrb_state *mrb, mrb_value self) |
2211 | 16 | { |
2212 | 16 | mrb_value other = mrb_get_arg1(mrb); |
2213 | 16 | mrb_int n; |
2214 | | |
2215 | 16 | n = cmpnum(mrb, self, other); |
2216 | 16 | if (n == -2) cmperr(mrb, self, other); |
2217 | 16 | if (n > 0) return mrb_true_value(); |
2218 | 7 | return mrb_false_value(); |
2219 | 16 | } |
2220 | | |
2221 | | static mrb_value |
2222 | | num_ge(mrb_state *mrb, mrb_value self) |
2223 | 875 | { |
2224 | 875 | mrb_value other = mrb_get_arg1(mrb); |
2225 | 875 | mrb_int n; |
2226 | | |
2227 | 875 | n = cmpnum(mrb, self, other); |
2228 | 875 | if (n == -2) cmperr(mrb, self, other); |
2229 | 875 | if (n >= 0) return mrb_true_value(); |
2230 | 462 | return mrb_false_value(); |
2231 | 875 | } |
2232 | | |
2233 | | /** |
2234 | | * Compares two mrb_value objects (obj1 and obj2). |
2235 | | * |
2236 | | * @param mrb The mruby state. |
2237 | | * @param obj1 The first object. |
2238 | | * @param obj2 The second object. |
2239 | | * @return An mrb_int indicating the comparison result: |
2240 | | * - 0 if obj1 is equal to obj2. |
2241 | | * - 1 if obj1 is greater than obj2. |
2242 | | * - -1 if obj1 is less than obj2. |
2243 | | * - -2 if the objects are not comparable (error). |
2244 | | * It handles comparisons for integers, floats, bigints, and strings directly. |
2245 | | * For other types, it attempts to call the <=> (spaceship) operator on obj1 |
2246 | | * with obj2 as an argument. |
2247 | | */ |
2248 | | MRB_API mrb_int |
2249 | | mrb_cmp(mrb_state *mrb, mrb_value obj1, mrb_value obj2) |
2250 | 5.88M | { |
2251 | 5.88M | mrb_value v; |
2252 | | |
2253 | 5.88M | if (mrb_fixnum_p(obj1) || mrb_float_p(obj1)) { |
2254 | 4.20k | return cmpnum(mrb, obj1, obj2); |
2255 | 4.20k | } |
2256 | 5.87M | switch (mrb_type(obj1)) { |
2257 | 0 | case MRB_TT_INTEGER: |
2258 | 0 | case MRB_TT_FLOAT: |
2259 | 0 | case MRB_TT_BIGINT: |
2260 | 0 | return cmpnum(mrb, obj1, obj2); |
2261 | 0 | case MRB_TT_STRING: |
2262 | 0 | if (!mrb_string_p(obj2)) |
2263 | 0 | return -2; |
2264 | 0 | return mrb_str_cmp(mrb, obj1, obj2); |
2265 | 5.87M | default: |
2266 | 5.87M | v = mrb_funcall_argv(mrb, obj1, MRB_OPSYM(cmp), 1, &obj2); |
2267 | 5.87M | if (mrb_nil_p(v) || !mrb_integer_p(v)) |
2268 | 192 | return -2; |
2269 | 5.87M | return mrb_integer(v); |
2270 | 5.87M | } |
2271 | 5.87M | } |
2272 | | |
2273 | | static mrb_value |
2274 | | num_finite_p(mrb_state *mrb, mrb_value self) |
2275 | 0 | { |
2276 | 0 | return mrb_true_value(); |
2277 | 0 | } |
2278 | | |
2279 | | static mrb_value |
2280 | | num_infinite_p(mrb_state *mrb, mrb_value self) |
2281 | 0 | { |
2282 | 0 | return mrb_false_value(); |
2283 | 0 | } |
2284 | | |
2285 | | #ifndef MRB_NO_FLOAT |
2286 | | static mrb_value |
2287 | | flo_hash(mrb_state *mrb, mrb_value flo) |
2288 | 0 | { |
2289 | 0 | mrb_float f = mrb_float(flo); |
2290 | | /* normalize -0.0 to 0.0 */ |
2291 | 0 | if (f == 0) f = 0.0; |
2292 | 0 | return mrb_int_value(mrb, (mrb_int)mrb_byte_hash((uint8_t*)&f, sizeof(f))); |
2293 | 0 | } |
2294 | | #endif |
2295 | | |
2296 | | /* ------------------------------------------------------------------------*/ |
2297 | | void |
2298 | | mrb_init_numeric(mrb_state *mrb) |
2299 | 784 | { |
2300 | 784 | struct RClass *numeric, *integer; |
2301 | 784 | #ifndef MRB_NO_FLOAT |
2302 | 784 | struct RClass *fl; |
2303 | 784 | #endif |
2304 | | |
2305 | | /* Numeric Class */ |
2306 | 784 | numeric = mrb_define_class_id(mrb, MRB_SYM(Numeric), mrb->object_class); /* 15.2.7 */ |
2307 | 784 | mrb_define_method_id(mrb, numeric, MRB_SYM_Q(finite), num_finite_p, MRB_ARGS_NONE()); |
2308 | 784 | mrb_define_method_id(mrb, numeric, MRB_SYM_Q(infinite),num_infinite_p, MRB_ARGS_NONE()); |
2309 | 784 | mrb_define_method_id(mrb, numeric, MRB_SYM_Q(eql), num_eql, MRB_ARGS_REQ(1)); /* 15.2.8.3.16 */ |
2310 | 784 | #ifndef MRB_NO_FLOAT |
2311 | 784 | mrb_define_method_id(mrb, numeric, MRB_SYM(fdiv), num_fdiv, MRB_ARGS_REQ(1)); |
2312 | 784 | #endif |
2313 | | |
2314 | | /* Integer Class */ |
2315 | 784 | mrb->integer_class = integer = mrb_define_class_id(mrb, MRB_SYM(Integer), numeric); /* 15.2.8 */ |
2316 | 784 | MRB_SET_INSTANCE_TT(integer, MRB_TT_INTEGER); |
2317 | 784 | MRB_UNDEF_ALLOCATOR(integer); |
2318 | 784 | mrb_undef_class_method_id(mrb, integer, MRB_SYM(new)); |
2319 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(pow), int_pow, MRB_ARGS_REQ(1)); |
2320 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(cmp), num_cmp, MRB_ARGS_REQ(1)); /* 15.2.8.3.1 */ |
2321 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(lt), num_lt, MRB_ARGS_REQ(1)); |
2322 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(le), num_le, MRB_ARGS_REQ(1)); |
2323 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(gt), num_gt, MRB_ARGS_REQ(1)); |
2324 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(ge), num_ge, MRB_ARGS_REQ(1)); |
2325 | | |
2326 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(to_i), mrb_obj_itself, MRB_ARGS_NONE()); /* 15.2.8.3.24 */ |
2327 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(to_int), mrb_obj_itself, MRB_ARGS_NONE()); |
2328 | | |
2329 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(add), int_add, MRB_ARGS_REQ(1)); /* 15.2.8.3.1 */ |
2330 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(sub), int_sub, MRB_ARGS_REQ(1)); /* 15.2.8.3.2 */ |
2331 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(mul), int_mul, MRB_ARGS_REQ(1)); /* 15.2.8.3.3 */ |
2332 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(mod), int_mod, MRB_ARGS_REQ(1)); /* 15.2.8.3.5 */ |
2333 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(div), int_div, MRB_ARGS_REQ(1)); /* 15.2.8.3.6 */ |
2334 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(quo), int_quo, MRB_ARGS_REQ(1)); /* 15.2.7.4.5(x) */ |
2335 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(div), int_idiv, MRB_ARGS_REQ(1)); |
2336 | 784 | #ifndef MRB_NO_FLOAT |
2337 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(fdiv), int_fdiv, MRB_ARGS_REQ(1)); |
2338 | 784 | #endif |
2339 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(eq), int_equal, MRB_ARGS_REQ(1)); /* 15.2.8.3.7 */ |
2340 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(neg), int_rev, MRB_ARGS_NONE()); /* 15.2.8.3.8 */ |
2341 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(and), int_and, MRB_ARGS_REQ(1)); /* 15.2.8.3.9 */ |
2342 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(or), int_or, MRB_ARGS_REQ(1)); /* 15.2.8.3.10 */ |
2343 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(xor), int_xor, MRB_ARGS_REQ(1)); /* 15.2.8.3.11 */ |
2344 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(lshift), int_lshift, MRB_ARGS_REQ(1)); /* 15.2.8.3.12 */ |
2345 | 784 | mrb_define_method_id(mrb, integer, MRB_OPSYM(rshift), int_rshift, MRB_ARGS_REQ(1)); /* 15.2.8.3.13 */ |
2346 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(ceil), int_ceil, MRB_ARGS_OPT(1)); /* 15.2.8.3.14 */ |
2347 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(floor), int_floor, MRB_ARGS_OPT(1)); /* 15.2.8.3.17 */ |
2348 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(round), int_round, MRB_ARGS_OPT(1)); /* 15.2.8.3.20 */ |
2349 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(truncate), int_truncate, MRB_ARGS_OPT(1)); /* 15.2.8.3.26 */ |
2350 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(hash), int_hash, MRB_ARGS_NONE()); /* 15.2.8.3.18 */ |
2351 | 784 | #ifndef MRB_NO_FLOAT |
2352 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(to_f), int_to_f, MRB_ARGS_NONE()); /* 15.2.8.3.23 */ |
2353 | 784 | #endif |
2354 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(to_s), int_to_s, MRB_ARGS_OPT(1)); /* 15.2.8.3.25 */ |
2355 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(inspect), int_to_s, MRB_ARGS_OPT(1)); |
2356 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(divmod), int_divmod, MRB_ARGS_REQ(1)); /* 15.2.8.3.30(x) */ |
2357 | 784 | mrb_define_method_id(mrb, integer, MRB_SYM(__coerce_step_counter), coerce_step_counter, MRB_ARGS_REQ(1)); |
2358 | | |
2359 | | /* Fixnum Class for compatibility */ |
2360 | 784 | mrb_define_const_id(mrb, mrb->object_class, MRB_SYM(Fixnum), mrb_obj_value(integer)); |
2361 | | |
2362 | 784 | #ifndef MRB_NO_FLOAT |
2363 | | /* Float Class */ |
2364 | 784 | mrb->float_class = fl = mrb_define_class_id(mrb, MRB_SYM(Float), numeric); /* 15.2.9 */ |
2365 | 784 | MRB_SET_INSTANCE_TT(fl, MRB_TT_FLOAT); |
2366 | 784 | MRB_UNDEF_ALLOCATOR(fl); |
2367 | 784 | mrb_undef_class_method(mrb, fl, "new"); |
2368 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(pow), flo_pow, MRB_ARGS_REQ(1)); |
2369 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(div), flo_div, MRB_ARGS_REQ(1)); /* 15.2.9.3.6 */ |
2370 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(quo), flo_div, MRB_ARGS_REQ(1)); /* 15.2.7.4.5(x) */ |
2371 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(fdiv), flo_div, MRB_ARGS_REQ(1)); |
2372 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(div), flo_idiv, MRB_ARGS_REQ(1)); |
2373 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(add), flo_add, MRB_ARGS_REQ(1)); /* 15.2.9.3.3 */ |
2374 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(sub), flo_sub, MRB_ARGS_REQ(1)); /* 15.2.9.3.4 */ |
2375 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(mul), flo_mul, MRB_ARGS_REQ(1)); /* 15.2.9.3.5 */ |
2376 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(mod), flo_mod, MRB_ARGS_REQ(1)); /* 15.2.9.3.7 */ |
2377 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(cmp), num_cmp, MRB_ARGS_REQ(1)); /* 15.2.9.3.1 */ |
2378 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(lt), num_lt, MRB_ARGS_REQ(1)); |
2379 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(le), num_le, MRB_ARGS_REQ(1)); |
2380 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(gt), num_gt, MRB_ARGS_REQ(1)); |
2381 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(ge), num_ge, MRB_ARGS_REQ(1)); |
2382 | 784 | mrb_define_method_id(mrb, fl, MRB_OPSYM(eq), flo_eq, MRB_ARGS_REQ(1)); /* 15.2.9.3.2 */ |
2383 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(ceil), flo_ceil, MRB_ARGS_OPT(1)); /* 15.2.9.3.8 */ |
2384 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM_Q(finite), flo_finite_p, MRB_ARGS_NONE()); /* 15.2.9.3.9 */ |
2385 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(floor), flo_floor, MRB_ARGS_OPT(1)); /* 15.2.9.3.10 */ |
2386 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM_Q(infinite),flo_infinite_p, MRB_ARGS_NONE()); /* 15.2.9.3.11 */ |
2387 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(round), flo_round, MRB_ARGS_OPT(1)); /* 15.2.9.3.12 */ |
2388 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(to_f), mrb_obj_itself, MRB_ARGS_NONE()); /* 15.2.9.3.13 */ |
2389 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(to_i), flo_to_i, MRB_ARGS_NONE()); /* 15.2.9.3.14 */ |
2390 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(truncate), flo_truncate, MRB_ARGS_OPT(1)); /* 15.2.9.3.15 */ |
2391 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(divmod), flo_divmod, MRB_ARGS_REQ(1)); |
2392 | | |
2393 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(to_s), flo_to_s, MRB_ARGS_NONE()); /* 15.2.9.3.16(x) */ |
2394 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(inspect), flo_to_s, MRB_ARGS_NONE()); |
2395 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM_Q(nan), flo_nan_p, MRB_ARGS_NONE()); |
2396 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(abs), flo_abs, MRB_ARGS_NONE()); /* 15.2.7.4.3 */ |
2397 | 784 | mrb_define_method_id(mrb, fl, MRB_SYM(hash), flo_hash, MRB_ARGS_NONE()); |
2398 | | |
2399 | 784 | #ifdef INFINITY |
2400 | 784 | mrb_define_const_id(mrb, fl, MRB_SYM(INFINITY), mrb_float_value(mrb, INFINITY)); |
2401 | 784 | #endif |
2402 | 784 | #ifdef NAN |
2403 | 784 | mrb_define_const_id(mrb, fl, MRB_SYM(NAN), mrb_float_value(mrb, NAN)); |
2404 | 784 | #endif |
2405 | 784 | #endif |
2406 | 784 | } |