/src/mupdf/source/fitz/image.c
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (C) 2004-2023 Artifex Software, Inc. |
2 | | // |
3 | | // This file is part of MuPDF. |
4 | | // |
5 | | // MuPDF is free software: you can redistribute it and/or modify it under the |
6 | | // terms of the GNU Affero General Public License as published by the Free |
7 | | // Software Foundation, either version 3 of the License, or (at your option) |
8 | | // any later version. |
9 | | // |
10 | | // MuPDF is distributed in the hope that it will be useful, but WITHOUT ANY |
11 | | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
12 | | // FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more |
13 | | // details. |
14 | | // |
15 | | // You should have received a copy of the GNU Affero General Public License |
16 | | // along with MuPDF. If not, see <https://www.gnu.org/licenses/agpl-3.0.en.html> |
17 | | // |
18 | | // Alternative licensing terms are available from the licensor. |
19 | | // For commercial licensing, see <https://www.artifex.com/> or contact |
20 | | // Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, |
21 | | // CA 94129, USA, for further information. |
22 | | |
23 | | #include "mupdf/fitz.h" |
24 | | |
25 | | #include "context-imp.h" |
26 | | #include "image-imp.h" |
27 | | #include "pixmap-imp.h" |
28 | | |
29 | | #include <string.h> |
30 | | #include <math.h> |
31 | | #include <assert.h> |
32 | | |
33 | | /* TODO: here or public? */ |
34 | | static int |
35 | | fz_key_storable_needs_reaping(fz_context *ctx, const fz_key_storable *ks) |
36 | 87.5k | { |
37 | 87.5k | return ks == NULL ? 0 : (ks->store_key_refs == ks->storable.refs); |
38 | 87.5k | } |
39 | | |
40 | 176 | #define SANE_DPI 72.0f |
41 | 132 | #define INSANE_DPI 4800.0f |
42 | | |
43 | 0 | #define SCALABLE_IMAGE_DPI 96 |
44 | | |
45 | | struct fz_compressed_image |
46 | | { |
47 | | fz_image super; |
48 | | fz_compressed_buffer *buffer; |
49 | | }; |
50 | | |
51 | | struct fz_pixmap_image |
52 | | { |
53 | | fz_image super; |
54 | | fz_pixmap *tile; |
55 | | }; |
56 | | |
57 | | typedef struct |
58 | | { |
59 | | int refs; |
60 | | fz_image *image; |
61 | | int l2factor; |
62 | | fz_irect rect; |
63 | | } fz_image_key; |
64 | | |
65 | | fz_image * |
66 | | fz_keep_image(fz_context *ctx, fz_image *image) |
67 | 63.9k | { |
68 | 63.9k | return fz_keep_key_storable(ctx, &image->key_storable); |
69 | 63.9k | } |
70 | | |
71 | | fz_image * |
72 | | fz_keep_image_store_key(fz_context *ctx, fz_image *image) |
73 | 43.6k | { |
74 | 43.6k | return fz_keep_key_storable_key(ctx, &image->key_storable); |
75 | 43.6k | } |
76 | | |
77 | | void |
78 | | fz_drop_image_store_key(fz_context *ctx, fz_image *image) |
79 | 43.6k | { |
80 | 43.6k | fz_drop_key_storable_key(ctx, &image->key_storable); |
81 | 43.6k | } |
82 | | |
83 | | static int |
84 | | fz_make_hash_image_key(fz_context *ctx, fz_store_hash *hash, void *key_) |
85 | 215k | { |
86 | 215k | fz_image_key *key = (fz_image_key *)key_; |
87 | 215k | hash->u.pir.ptr = key->image; |
88 | 215k | hash->u.pir.i = key->l2factor; |
89 | 215k | hash->u.pir.r = key->rect; |
90 | 215k | return 1; |
91 | 215k | } |
92 | | |
93 | | static void * |
94 | | fz_keep_image_key(fz_context *ctx, void *key_) |
95 | 43.6k | { |
96 | 43.6k | fz_image_key *key = (fz_image_key *)key_; |
97 | 43.6k | return fz_keep_imp(ctx, key, &key->refs); |
98 | 43.6k | } |
99 | | |
100 | | static void |
101 | | fz_drop_image_key(fz_context *ctx, void *key_) |
102 | 87.3k | { |
103 | 87.3k | fz_image_key *key = (fz_image_key *)key_; |
104 | 87.3k | if (fz_drop_imp(ctx, key, &key->refs)) |
105 | 43.6k | { |
106 | 43.6k | fz_drop_image_store_key(ctx, key->image); |
107 | 43.6k | fz_free(ctx, key); |
108 | 43.6k | } |
109 | 87.3k | } |
110 | | |
111 | | static int |
112 | | fz_cmp_image_key(fz_context *ctx, void *k0_, void *k1_) |
113 | 0 | { |
114 | 0 | fz_image_key *k0 = (fz_image_key *)k0_; |
115 | 0 | fz_image_key *k1 = (fz_image_key *)k1_; |
116 | 0 | return k0->image == k1->image && k0->l2factor == k1->l2factor && k0->rect.x0 == k1->rect.x0 && k0->rect.y0 == k1->rect.y0 && k0->rect.x1 == k1->rect.x1 && k0->rect.y1 == k1->rect.y1; |
117 | 0 | } |
118 | | |
119 | | static void |
120 | | fz_format_image_key(fz_context *ctx, char *s, size_t n, void *key_) |
121 | 0 | { |
122 | 0 | fz_image_key *key = (fz_image_key *)key_; |
123 | 0 | fz_snprintf(s, n, "(image %d x %d sf=%d)", key->image->w, key->image->h, key->l2factor); |
124 | 0 | } |
125 | | |
126 | | static int |
127 | | fz_needs_reap_image_key(fz_context *ctx, void *key_) |
128 | 87.5k | { |
129 | 87.5k | fz_image_key *key = (fz_image_key *)key_; |
130 | | |
131 | 87.5k | return fz_key_storable_needs_reaping(ctx, &key->image->key_storable); |
132 | 87.5k | } |
133 | | |
134 | | static const fz_store_type fz_image_store_type = |
135 | | { |
136 | | "fz_image", |
137 | | fz_make_hash_image_key, |
138 | | fz_keep_image_key, |
139 | | fz_drop_image_key, |
140 | | fz_cmp_image_key, |
141 | | fz_format_image_key, |
142 | | fz_needs_reap_image_key |
143 | | }; |
144 | | |
145 | | void |
146 | | fz_drop_image(fz_context *ctx, fz_image *image) |
147 | 206k | { |
148 | 206k | fz_drop_key_storable(ctx, &image->key_storable); |
149 | 206k | } |
150 | | |
151 | | static void |
152 | | fz_mask_color_key(fz_pixmap *pix, int n, int bpc, const int *colorkey) |
153 | 58 | { |
154 | 58 | unsigned char *p = pix->samples; |
155 | 58 | int w; |
156 | 58 | int k, t; |
157 | 58 | int h = pix->h; |
158 | 58 | size_t stride = pix->stride - pix->w * (size_t)pix->n; |
159 | 58 | int scaledcolorkey[FZ_MAX_COLORS * 2]; |
160 | 58 | int scale, shift, max; |
161 | | |
162 | 58 | if (pix->w == 0) |
163 | 0 | return; |
164 | | |
165 | 306 | for (k = 0; k < 2 * n; k++) |
166 | 248 | scaledcolorkey[k] = fz_clampi(colorkey[k], 0, (1 << bpc) - 1); |
167 | | |
168 | 58 | switch (bpc) |
169 | 58 | { |
170 | 0 | case 1: scale = 255; shift = 0; max = 1; break; |
171 | 0 | case 2: scale = 85; shift = 0; max = 3; break; |
172 | 0 | case 4: scale = 17; shift = 0; max = 15; break; |
173 | 0 | default: |
174 | 58 | case 8: scale = 1; shift = 0; max = 0xff; break; |
175 | 0 | case 16: scale = 1; shift = 8; max = 0xffff; break; |
176 | 0 | case 24: scale = 1; shift = 16; max = 0xffffff; break; |
177 | 0 | case 32: scale = 1; shift = 24; max = 0xffffffff; break; |
178 | 58 | } |
179 | | |
180 | 306 | for (k = 0; k < 2 * n; k++) |
181 | 248 | scaledcolorkey[k] = fz_clampi(colorkey[k], 0, max); |
182 | | |
183 | 58 | if (scale > 1) |
184 | 0 | for (k = 0; k < 2 * n; k++) |
185 | 0 | scaledcolorkey[k] *= scale; |
186 | 58 | else if (shift > 0) |
187 | 0 | for (k = 0; k < 2 * n; k++) |
188 | 0 | scaledcolorkey[k] >>= shift; |
189 | | |
190 | 14.8k | while (h--) |
191 | 14.8k | { |
192 | 14.8k | w = pix->w; |
193 | 14.8k | do |
194 | 2.57M | { |
195 | 2.57M | t = 1; |
196 | 8.33M | for (k = 0; k < n; k++) |
197 | 5.76M | if (p[k] < scaledcolorkey[k * 2] || p[k] > scaledcolorkey[k * 2 + 1]) |
198 | 2.29M | t = 0; |
199 | 2.57M | if (t) |
200 | 1.00M | for (k = 0; k < pix->n; k++) |
201 | 728k | p[k] = 0; |
202 | 2.57M | p += pix->n; |
203 | 2.57M | } |
204 | 2.57M | while (--w); |
205 | 14.8k | p += stride; |
206 | 14.8k | } |
207 | 58 | } |
208 | | |
209 | | static void |
210 | | fz_unblend_masked_tile(fz_context *ctx, fz_pixmap *tile, fz_image *image, const fz_irect *isa) |
211 | 10 | { |
212 | 10 | fz_pixmap *mask; |
213 | 10 | unsigned char *s, *d = tile->samples; |
214 | 10 | int n = tile->n; |
215 | 10 | int k; |
216 | 10 | size_t sstride, dstride = tile->stride - tile->w * (size_t)tile->n; |
217 | 10 | int h; |
218 | 10 | fz_irect subarea; |
219 | | |
220 | | /* We need at least as much of the mask as there was of the tile. */ |
221 | 10 | if (isa) |
222 | 0 | subarea = *isa; |
223 | 10 | else |
224 | 10 | { |
225 | 10 | subarea.x0 = 0; |
226 | 10 | subarea.y0 = 0; |
227 | 10 | subarea.x1 = tile->w; |
228 | 10 | subarea.y1 = tile->h; |
229 | 10 | } |
230 | | |
231 | 10 | mask = fz_get_pixmap_from_image(ctx, image->mask, &subarea, NULL, NULL, NULL); |
232 | 10 | s = mask->samples; |
233 | | /* RJW: Urgh, bit of nastiness here. fz_pixmap_from_image will either return |
234 | | * an exact match for the subarea we asked for, or the full image, and the |
235 | | * normal way to know is that the matrix will be updated. That doesn't help |
236 | | * us here. */ |
237 | 10 | if (image->mask->w == mask->w && image->mask->h == mask->h) { |
238 | 10 | subarea.x0 = 0; |
239 | 10 | subarea.y0 = 0; |
240 | 10 | } |
241 | 10 | if (isa) |
242 | 0 | s += (isa->x0 - subarea.x0) * (size_t)mask->n + (isa->y0 - subarea.y0) * (size_t)mask->stride; |
243 | 10 | sstride = mask->stride - tile->w * (size_t)mask->n; |
244 | 10 | h = tile->h; |
245 | | |
246 | 10 | if (tile->w != 0) |
247 | 10 | { |
248 | 42.5k | while (h--) |
249 | 42.5k | { |
250 | 42.5k | int w = tile->w; |
251 | 42.5k | do |
252 | 127M | { |
253 | 127M | if (*s == 0) |
254 | 418M | for (k = 0; k < image->n; k++) |
255 | 313M | d[k] = image->colorkey[k]; |
256 | 22.9M | else |
257 | 91.9M | for (k = 0; k < image->n; k++) |
258 | 68.9M | d[k] = fz_clampi(image->colorkey[k] + (d[k] - image->colorkey[k]) * 255 / *s, 0, 255); |
259 | 127M | s++; |
260 | 127M | d += n; |
261 | 127M | } |
262 | 127M | while (--w); |
263 | 42.5k | s += sstride; |
264 | 42.5k | d += dstride; |
265 | 42.5k | } |
266 | 10 | } |
267 | | |
268 | 10 | fz_drop_pixmap(ctx, mask); |
269 | 10 | } |
270 | | |
271 | | static void fz_adjust_image_subarea(fz_context *ctx, fz_image *image, fz_irect *subarea, int l2factor) |
272 | 107k | { |
273 | 107k | int f = 1<<l2factor; |
274 | 107k | int bpp = image->bpc * image->n; |
275 | 107k | int mask; |
276 | | |
277 | 107k | switch (bpp) |
278 | 107k | { |
279 | 71.0k | case 1: mask = 8*f; break; |
280 | 7.13k | case 2: mask = 4*f; break; |
281 | 116 | case 4: mask = 2*f; break; |
282 | 28.9k | default: mask = (bpp & 7) == 0 ? f : 0; break; |
283 | 107k | } |
284 | | |
285 | 107k | if (mask != 0) |
286 | 107k | { |
287 | 107k | subarea->x0 &= ~(mask - 1); |
288 | 107k | subarea->x1 = (subarea->x1 + mask - 1) & ~(mask - 1); |
289 | 107k | } |
290 | 61 | else |
291 | 61 | { |
292 | | /* Awkward case - mask cannot be a power of 2. */ |
293 | 61 | mask = bpp*f; |
294 | 61 | switch (bpp) |
295 | 61 | { |
296 | 24 | case 3: |
297 | 24 | case 5: |
298 | 26 | case 7: |
299 | 28 | case 9: |
300 | 28 | case 11: |
301 | 28 | case 13: |
302 | 28 | case 15: |
303 | 32 | default: |
304 | 32 | mask *= 8; |
305 | 32 | break; |
306 | 10 | case 6: |
307 | 10 | case 10: |
308 | 10 | case 14: |
309 | 10 | mask *= 4; |
310 | 10 | break; |
311 | 19 | case 12: |
312 | 19 | mask *= 2; |
313 | 19 | break; |
314 | 61 | } |
315 | 61 | subarea->x0 = (subarea->x0 / mask) * mask; |
316 | 61 | subarea->x1 = ((subarea->x1 + mask - 1) / mask) * mask; |
317 | 61 | } |
318 | | |
319 | 107k | subarea->y0 &= ~(f - 1); |
320 | 107k | if (subarea->x1 > image->w) |
321 | 77.5k | subarea->x1 = image->w; |
322 | 107k | subarea->y1 = (subarea->y1 + f - 1) & ~(f - 1); |
323 | 107k | if (subarea->y1 > image->h) |
324 | 13.8k | subarea->y1 = image->h; |
325 | 107k | } |
326 | | |
327 | | static void fz_compute_image_key(fz_context *ctx, fz_image *image, fz_matrix *ctm, |
328 | | fz_image_key *key, const fz_irect *subarea, int l2factor, int *w, int *h, int *dw, int *dh) |
329 | 148k | { |
330 | 148k | key->refs = 1; |
331 | 148k | key->image = image; |
332 | 148k | key->l2factor = l2factor; |
333 | | |
334 | 148k | if (subarea == NULL) |
335 | 43.8k | { |
336 | 43.8k | key->rect.x0 = 0; |
337 | 43.8k | key->rect.y0 = 0; |
338 | 43.8k | key->rect.x1 = image->w; |
339 | 43.8k | key->rect.y1 = image->h; |
340 | 43.8k | } |
341 | 104k | else |
342 | 104k | { |
343 | 104k | key->rect = *subarea; |
344 | 104k | ctx->tuning->image_decode(ctx->tuning->image_decode_arg, image->w, image->h, key->l2factor, &key->rect); |
345 | 104k | fz_adjust_image_subarea(ctx, image, &key->rect, key->l2factor); |
346 | 104k | } |
347 | | |
348 | | /* Based on that subarea, recalculate the extents */ |
349 | 148k | if (ctm) |
350 | 148k | { |
351 | 148k | float frac_w = (float) (key->rect.x1 - key->rect.x0) / image->w; |
352 | 148k | float frac_h = (float) (key->rect.y1 - key->rect.y0) / image->h; |
353 | 148k | float a = ctm->a * frac_w; |
354 | 148k | float b = ctm->b * frac_h; |
355 | 148k | float c = ctm->c * frac_w; |
356 | 148k | float d = ctm->d * frac_h; |
357 | 148k | *w = sqrtf(a * a + b * b); |
358 | 148k | *h = sqrtf(c * c + d * d); |
359 | 148k | } |
360 | 30 | else |
361 | 30 | { |
362 | 30 | *w = image->w; |
363 | 30 | *h = image->h; |
364 | 30 | } |
365 | | |
366 | | /* Return the true sizes to the caller */ |
367 | 148k | if (dw) |
368 | 148k | *dw = *w; |
369 | 148k | if (dh) |
370 | 148k | *dh = *h; |
371 | 148k | if (*w > image->w) |
372 | 31.8k | *w = image->w; |
373 | 148k | if (*h > image->h) |
374 | 29.3k | *h = image->h; |
375 | | |
376 | 148k | if (*w == 0 || *h == 0) |
377 | 37.8k | key->l2factor = 0; |
378 | 148k | } |
379 | | |
380 | | typedef struct { |
381 | | fz_stream *src; |
382 | | size_t l_skip; /* Number of bytes to skip on the left. */ |
383 | | size_t r_skip; /* Number of bytes to skip on the right. */ |
384 | | size_t b_skip; /* Number of bytes to skip on the bottom. */ |
385 | | int lines; /* Number of lines left to copy. */ |
386 | | size_t stride; /* Number of bytes to read in the image. */ |
387 | | size_t nskip; /* Number of bytes left to skip on this line. */ |
388 | | size_t nread; /* Number of bytes left to read on this line. */ |
389 | | } subarea_state; |
390 | | |
391 | | static int |
392 | | subarea_next(fz_context *ctx, fz_stream *stm, size_t len) |
393 | 109k | { |
394 | 109k | subarea_state *state = stm->state; |
395 | 109k | size_t n; |
396 | | |
397 | 109k | stm->wp = stm->rp = NULL; |
398 | | |
399 | 179k | while (state->nskip > 0) |
400 | 69.8k | { |
401 | 69.8k | n = fz_skip(ctx, state->src, state->nskip); |
402 | 69.8k | if (n == 0) |
403 | 207 | return EOF; |
404 | 69.5k | state->nskip -= n; |
405 | 69.5k | } |
406 | 109k | if (state->lines == 0) |
407 | 0 | return EOF; |
408 | 109k | n = fz_available(ctx, state->src, state->nread); |
409 | 109k | if (n > state->nread) |
410 | 51.1k | n = state->nread; |
411 | 109k | if (n == 0) |
412 | 284 | return EOF; |
413 | 109k | stm->rp = state->src->rp; |
414 | 109k | stm->wp = stm->rp + n; |
415 | 109k | stm->pos += n; |
416 | 109k | state->src->rp = stm->wp; |
417 | 109k | state->nread -= n; |
418 | 109k | if (state->nread == 0) |
419 | 74.5k | { |
420 | 74.5k | state->lines--; |
421 | 74.5k | if (state->lines == 0) |
422 | 1.94k | state->nskip = state->r_skip + state->b_skip; |
423 | 72.6k | else |
424 | 72.6k | state->nskip = state->l_skip + state->r_skip; |
425 | 74.5k | state->nread = state->stride; |
426 | 74.5k | } |
427 | 109k | return *stm->rp++; |
428 | 109k | } |
429 | | |
430 | | static void |
431 | | subarea_drop(fz_context *ctx, void *state) |
432 | 2.43k | { |
433 | 2.43k | fz_free(ctx, state); |
434 | 2.43k | } |
435 | | |
436 | | static fz_stream * |
437 | | subarea_stream(fz_context *ctx, fz_stream *stm, fz_image *image, const fz_irect *subarea, int l2factor) |
438 | 2.43k | { |
439 | 2.43k | subarea_state *state; |
440 | 2.43k | int f = 1<<l2factor; |
441 | 2.43k | int stream_w = (image->w + f - 1)>>l2factor; |
442 | 2.43k | size_t stream_stride = (stream_w * (size_t)image->n * image->bpc + 7) / 8; |
443 | 2.43k | int l_margin = subarea->x0 >> l2factor; |
444 | 2.43k | int t_margin = subarea->y0 >> l2factor; |
445 | 2.43k | int r_margin = (image->w + f - 1 - subarea->x1) >> l2factor; |
446 | 2.43k | int b_margin = (image->h + f - 1 - subarea->y1) >> l2factor; |
447 | 2.43k | size_t l_skip = (l_margin * (size_t)image->n * image->bpc)/8; |
448 | 2.43k | size_t r_skip = (r_margin * (size_t)image->n * image->bpc + 7)/8; |
449 | 2.43k | size_t t_skip = t_margin * stream_stride; |
450 | 2.43k | size_t b_skip = b_margin * stream_stride; |
451 | 2.43k | int h = (subarea->y1 - subarea->y0 + f - 1) >> l2factor; |
452 | 2.43k | int w = (subarea->x1 - subarea->x0 + f - 1) >> l2factor; |
453 | 2.43k | size_t stride = (w * (size_t)image->n * image->bpc + 7) / 8; |
454 | | |
455 | 2.43k | state = fz_malloc_struct(ctx, subarea_state); |
456 | 2.43k | state->src = stm; |
457 | 2.43k | state->l_skip = l_skip; |
458 | 2.43k | state->r_skip = r_skip; |
459 | 2.43k | state->b_skip = b_skip; |
460 | 2.43k | state->lines = h; |
461 | 2.43k | state->nskip = l_skip+t_skip; |
462 | 2.43k | state->stride = stride; |
463 | 2.43k | state->nread = stride; |
464 | | |
465 | 2.43k | return fz_new_stream(ctx, state, subarea_next, subarea_drop); |
466 | 2.43k | } |
467 | | |
468 | | typedef struct |
469 | | { |
470 | | fz_stream *src; |
471 | | int w; /* Width in source pixels. */ |
472 | | int h; /* Height (remaining) in scanlines. */ |
473 | | int n; /* Number of components. */ |
474 | | int f; /* Fill level (how many scanlines we've copied in). */ |
475 | | size_t r; /* How many samples Remain to be filled in this line. */ |
476 | | int l2; /* The amount of subsampling we're doing. */ |
477 | | unsigned char data[1]; |
478 | | } l2sub_state; |
479 | | |
480 | | static void |
481 | | subsample_drop(fz_context *ctx, void *state) |
482 | 6.61k | { |
483 | 6.61k | fz_free(ctx, state); |
484 | 6.61k | } |
485 | | |
486 | | static int |
487 | | subsample_next(fz_context *ctx, fz_stream *stm, size_t len) |
488 | 302k | { |
489 | 302k | l2sub_state *state = (l2sub_state *)stm->state; |
490 | 302k | size_t fill; |
491 | | |
492 | 302k | stm->rp = stm->wp = &state->data[0]; |
493 | 302k | if (state->h == 0) |
494 | 0 | return EOF; |
495 | | |
496 | | /* Copy in data */ |
497 | 302k | do |
498 | 865k | { |
499 | 865k | if (state->r == 0) |
500 | 865k | state->r = state->w * (size_t)state->n; |
501 | | |
502 | 1.79M | while (state->r > 0) |
503 | 931k | { |
504 | 931k | size_t a; |
505 | 931k | a = fz_available(ctx, state->src, state->r); |
506 | 931k | if (a == 0) |
507 | 460 | return EOF; |
508 | 931k | if (a > state->r) |
509 | 423k | a = state->r; |
510 | 931k | memcpy(&state->data[state->w * (size_t)state->n * (state->f+1) - state->r], |
511 | 931k | state->src->rp, a); |
512 | 931k | state->src->rp += a; |
513 | 931k | state->r -= a; |
514 | 931k | } |
515 | 864k | state->f++; |
516 | 864k | state->h--; |
517 | 864k | } |
518 | 864k | while (state->h > 0 && state->f != (1<<state->l2)); |
519 | | |
520 | | /* Perform the subsample */ |
521 | 302k | fz_subsample_pixblock(state->data, state->w, state->f, state->n, state->l2, state->w * (size_t)state->n); |
522 | 302k | state->f = 0; |
523 | | |
524 | | /* Update data pointers. */ |
525 | 302k | fill = ((state->w + (1<<state->l2) - 1)>>state->l2) * (size_t)state->n; |
526 | 302k | stm->pos += fill; |
527 | 302k | stm->rp = &state->data[0]; |
528 | 302k | stm->wp = &state->data[fill]; |
529 | | |
530 | 302k | return *stm->rp++; |
531 | 302k | } |
532 | | |
533 | | static fz_stream * |
534 | | subsample_stream(fz_context *ctx, fz_stream *src, int w, int h, int n, int l2extra) |
535 | 6.61k | { |
536 | 6.61k | l2sub_state *state = fz_malloc(ctx, sizeof(l2sub_state) + w*(size_t)(n<<l2extra)); |
537 | | |
538 | 6.61k | state->src = src; |
539 | 6.61k | state->w = w; |
540 | 6.61k | state->h = h; |
541 | 6.61k | state->n = n; |
542 | 6.61k | state->f = 0; |
543 | 6.61k | state->r = 0; |
544 | 6.61k | state->l2 = l2extra; |
545 | | |
546 | 6.61k | return fz_new_stream(ctx, state, subsample_next, subsample_drop); |
547 | 6.61k | } |
548 | | |
549 | | /* l2factor is the amount of subsampling that the decoder is going to be |
550 | | * doing for us already. (So for JPEG 0,1,2,3 corresponding to 1, 2, 4, |
551 | | * 8. For other formats, probably 0.). l2extra is the additional amount |
552 | | * of subsampling we should perform here. */ |
553 | | fz_pixmap * |
554 | | fz_decomp_image_from_stream(fz_context *ctx, fz_stream *stm, fz_compressed_image *cimg, fz_irect *subarea, int indexed, int l2factor, int *l2extra) |
555 | 95.5k | { |
556 | 95.5k | fz_image *image = &cimg->super; |
557 | 95.5k | fz_pixmap *tile = NULL; |
558 | 95.5k | size_t stride, len, i; |
559 | 95.5k | unsigned char *samples = NULL; |
560 | 95.5k | int f = 1<<l2factor; |
561 | 95.5k | int w = image->w; |
562 | 95.5k | int h = image->h; |
563 | 95.5k | int matte = image->use_colorkey && image->mask; |
564 | 95.5k | fz_stream *read_stream = stm; |
565 | 95.5k | fz_stream *sstream = NULL; |
566 | 95.5k | fz_stream *l2stream = NULL; |
567 | 95.5k | fz_stream *unpstream = NULL; |
568 | | |
569 | 95.5k | if (matte) |
570 | 10 | { |
571 | | /* Can't do l2factor decoding */ |
572 | 10 | if (image->w != image->mask->w || image->h != image->mask->h) |
573 | 0 | { |
574 | 0 | fz_warn(ctx, "mask must be of same size as image for /Matte"); |
575 | 0 | matte = 0; |
576 | 0 | } |
577 | 10 | assert(l2factor == 0); |
578 | 10 | } |
579 | 95.5k | if (subarea) |
580 | 43.6k | { |
581 | 43.6k | if (subarea->x0 == 0 && subarea->x1 == image->w && |
582 | 43.6k | subarea->y0 == 0 && subarea->y1 == image->h) |
583 | 41.2k | subarea = NULL; |
584 | 2.43k | else |
585 | 2.43k | { |
586 | 2.43k | fz_adjust_image_subarea(ctx, image, subarea, l2factor); |
587 | 2.43k | w = (subarea->x1 - subarea->x0); |
588 | 2.43k | h = (subarea->y1 - subarea->y0); |
589 | 2.43k | } |
590 | 43.6k | } |
591 | 95.5k | w = (w + f - 1) >> l2factor; |
592 | 95.5k | h = (h + f - 1) >> l2factor; |
593 | | |
594 | 95.5k | fz_var(tile); |
595 | 95.5k | fz_var(samples); |
596 | 95.5k | fz_var(sstream); |
597 | 95.5k | fz_var(unpstream); |
598 | 95.5k | fz_var(l2stream); |
599 | | |
600 | 191k | fz_try(ctx) |
601 | 191k | { |
602 | 95.5k | int alpha = (image->colorspace == NULL); |
603 | 95.5k | if (image->use_colorkey) |
604 | 68 | alpha = 1; |
605 | | |
606 | 95.5k | if (subarea) |
607 | 2.43k | read_stream = sstream = subarea_stream(ctx, stm, image, subarea, l2factor); |
608 | 95.5k | if (image->bpc != 8 || image->use_colorkey) |
609 | 84.7k | read_stream = unpstream = fz_unpack_stream(ctx, read_stream, image->bpc, w, h, image->n, indexed, image->use_colorkey, 0); |
610 | 95.5k | if (l2extra && *l2extra && !indexed) |
611 | 6.61k | { |
612 | 6.61k | read_stream = l2stream = subsample_stream(ctx, read_stream, w, h, image->n + image->use_colorkey, *l2extra); |
613 | 6.61k | w = (w + (1<<*l2extra) - 1)>>*l2extra; |
614 | 6.61k | h = (h + (1<<*l2extra) - 1)>>*l2extra; |
615 | 6.61k | *l2extra = 0; |
616 | 6.61k | } |
617 | | |
618 | 95.5k | tile = fz_new_pixmap(ctx, image->colorspace, w, h, NULL, alpha); |
619 | 95.5k | if (image->interpolate & FZ_PIXMAP_FLAG_INTERPOLATE) |
620 | 2.70k | tile->flags |= FZ_PIXMAP_FLAG_INTERPOLATE; |
621 | 92.8k | else |
622 | 92.8k | tile->flags &= ~FZ_PIXMAP_FLAG_INTERPOLATE; |
623 | | |
624 | 95.5k | samples = tile->samples; |
625 | 95.5k | stride = tile->stride; |
626 | | |
627 | 95.5k | len = fz_read(ctx, read_stream, samples, h * stride); |
628 | | |
629 | | /* Pad truncated images */ |
630 | 95.5k | if (len < stride * h) |
631 | 10.0k | { |
632 | 10.0k | fz_warn(ctx, "padding truncated image"); |
633 | 10.0k | memset(samples + len, 0, stride * h - len); |
634 | 10.0k | } |
635 | | |
636 | | /* Invert 1-bit image masks */ |
637 | 95.5k | if (image->imagemask) |
638 | 59.0k | { |
639 | | /* 0=opaque and 1=transparent so we need to invert */ |
640 | 59.0k | unsigned char *p = samples; |
641 | 59.0k | len = h * stride; |
642 | 152M | for (i = 0; i < len; i++) |
643 | 152M | p[i] = ~p[i]; |
644 | 59.0k | } |
645 | | |
646 | | /* color keyed transparency */ |
647 | 95.5k | if (image->use_colorkey && !image->mask) |
648 | 58 | fz_mask_color_key(tile, image->n, image->bpc, image->colorkey); |
649 | | |
650 | 95.5k | if (indexed) |
651 | 684 | { |
652 | 684 | fz_pixmap *conv; |
653 | 684 | fz_decode_indexed_tile(ctx, tile, image->decode, (1 << image->bpc) - 1); |
654 | 684 | conv = fz_convert_indexed_pixmap_to_base(ctx, tile); |
655 | 684 | fz_drop_pixmap(ctx, tile); |
656 | 684 | tile = conv; |
657 | 684 | } |
658 | 94.8k | else if (image->use_decode) |
659 | 35.8k | { |
660 | 35.8k | fz_decode_tile(ctx, tile, image->decode); |
661 | 35.8k | } |
662 | | |
663 | | /* pre-blended matte color */ |
664 | 95.5k | if (matte) |
665 | 10 | fz_unblend_masked_tile(ctx, tile, image, subarea); |
666 | 95.5k | } |
667 | 191k | fz_always(ctx) |
668 | 95.5k | { |
669 | 95.5k | fz_drop_stream(ctx, sstream); |
670 | 95.5k | fz_drop_stream(ctx, unpstream); |
671 | 95.5k | fz_drop_stream(ctx, l2stream); |
672 | 95.5k | } |
673 | 95.5k | fz_catch(ctx) |
674 | 14 | { |
675 | 14 | fz_drop_pixmap(ctx, tile); |
676 | 14 | fz_rethrow(ctx); |
677 | 14 | } |
678 | | |
679 | 95.5k | return tile; |
680 | 95.5k | } |
681 | | |
682 | | void |
683 | | fz_drop_image_base(fz_context *ctx, fz_image *image) |
684 | 58.2k | { |
685 | 58.2k | fz_drop_colorspace(ctx, image->colorspace); |
686 | 58.2k | fz_drop_image(ctx, image->mask); |
687 | 58.2k | fz_free(ctx, image); |
688 | 58.2k | } |
689 | | |
690 | | void |
691 | | fz_drop_image_imp(fz_context *ctx, fz_storable *image_) |
692 | 58.2k | { |
693 | 58.2k | fz_image *image = (fz_image *)image_; |
694 | | |
695 | 58.2k | image->drop_image(ctx, image); |
696 | 58.2k | fz_drop_image_base(ctx, image); |
697 | 58.2k | } |
698 | | |
699 | | static void |
700 | | drop_compressed_image(fz_context *ctx, fz_image *image_) |
701 | 57.9k | { |
702 | 57.9k | fz_compressed_image *image = (fz_compressed_image *)image_; |
703 | | |
704 | 57.9k | fz_drop_compressed_buffer(ctx, image->buffer); |
705 | 57.9k | } |
706 | | |
707 | | static void |
708 | | drop_pixmap_image(fz_context *ctx, fz_image *image_) |
709 | 285 | { |
710 | 285 | fz_pixmap_image *image = (fz_pixmap_image *)image_; |
711 | | |
712 | 285 | fz_drop_pixmap(ctx, image->tile); |
713 | 285 | } |
714 | | |
715 | | static fz_pixmap * |
716 | | compressed_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
717 | 43.6k | { |
718 | 43.6k | fz_compressed_image *image = (fz_compressed_image *)image_; |
719 | 43.6k | int native_l2factor; |
720 | 43.6k | fz_stream *stm; |
721 | 43.6k | int indexed; |
722 | 43.6k | fz_pixmap *tile; |
723 | 43.6k | int can_sub = 0; |
724 | 43.6k | int local_l2factor; |
725 | | |
726 | | /* If we are using matte, then the decode code requires both image and tile sizes |
727 | | * to match. The simplest way to ensure this is to do no native l2factor decoding. |
728 | | */ |
729 | 43.6k | if (image->super.use_colorkey && image->super.mask) |
730 | 10 | { |
731 | 10 | local_l2factor = 0; |
732 | 10 | l2factor = &local_l2factor; |
733 | 10 | } |
734 | | |
735 | | /* We need to make a new one. */ |
736 | | /* First check for ones that we can't decode using streams */ |
737 | 43.6k | switch (image->buffer->params.type) |
738 | 43.6k | { |
739 | 2 | case FZ_IMAGE_PNG: |
740 | 2 | tile = fz_load_png(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
741 | 2 | break; |
742 | 0 | case FZ_IMAGE_GIF: |
743 | 0 | tile = fz_load_gif(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
744 | 0 | break; |
745 | 0 | case FZ_IMAGE_BMP: |
746 | 0 | tile = fz_load_bmp(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
747 | 0 | break; |
748 | 0 | case FZ_IMAGE_TIFF: |
749 | 0 | tile = fz_load_tiff(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
750 | 0 | break; |
751 | 0 | case FZ_IMAGE_PNM: |
752 | 0 | tile = fz_load_pnm(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
753 | 0 | break; |
754 | 0 | case FZ_IMAGE_JXR: |
755 | 0 | tile = fz_load_jxr(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
756 | 0 | break; |
757 | 0 | case FZ_IMAGE_JPX: |
758 | 0 | tile = fz_load_jpx(ctx, image->buffer->buffer->data, image->buffer->buffer->len, image->super.colorspace); |
759 | 0 | break; |
760 | 0 | case FZ_IMAGE_PSD: |
761 | 0 | tile = fz_load_psd(ctx, image->buffer->buffer->data, image->buffer->buffer->len); |
762 | 0 | break; |
763 | 1.21k | case FZ_IMAGE_JPEG: |
764 | | /* Scan JPEG stream and patch missing height values in header */ |
765 | 1.21k | { |
766 | 1.21k | unsigned char *s = image->buffer->buffer->data; |
767 | 1.21k | unsigned char *e = s + image->buffer->buffer->len; |
768 | 1.21k | unsigned char *d; |
769 | 6.88k | for (d = s + 2; s < d && d + 9 < e && d[0] == 0xFF; d += (d[2] << 8 | d[3]) + 2) |
770 | 5.67k | { |
771 | 5.67k | if (d[1] < 0xC0 || (0xC3 < d[1] && d[1] < 0xC9) || 0xCB < d[1]) |
772 | 4.77k | continue; |
773 | 897 | if ((d[5] == 0 && d[6] == 0) || ((d[5] << 8) | d[6]) > image->super.h) |
774 | 278 | { |
775 | 278 | d[5] = (image->super.h >> 8) & 0xFF; |
776 | 278 | d[6] = image->super.h & 0xFF; |
777 | 278 | } |
778 | 897 | } |
779 | 1.21k | } |
780 | | /* fall through */ |
781 | | |
782 | 43.6k | default: |
783 | 43.6k | native_l2factor = l2factor ? *l2factor : 0; |
784 | 43.6k | stm = fz_open_image_decomp_stream_from_buffer(ctx, image->buffer, l2factor); |
785 | 87.3k | fz_try(ctx) |
786 | 87.3k | { |
787 | 43.6k | if (l2factor) |
788 | 43.6k | native_l2factor -= *l2factor; |
789 | 43.6k | indexed = fz_colorspace_is_indexed(ctx, image->super.colorspace); |
790 | 43.6k | can_sub = 1; |
791 | 43.6k | tile = fz_decomp_image_from_stream(ctx, stm, image, subarea, indexed, native_l2factor, l2factor); |
792 | 43.6k | } |
793 | 87.3k | fz_always(ctx) |
794 | 43.6k | fz_drop_stream(ctx, stm); |
795 | 43.6k | fz_catch(ctx) |
796 | 11 | fz_rethrow(ctx); |
797 | | |
798 | 43.6k | break; |
799 | 43.6k | } |
800 | | |
801 | 43.6k | if (can_sub == 0 && subarea != NULL) |
802 | 2 | { |
803 | 2 | subarea->x0 = 0; |
804 | 2 | subarea->y0 = 0; |
805 | 2 | subarea->x1 = image->super.w; |
806 | 2 | subarea->y1 = image->super.h; |
807 | 2 | } |
808 | | |
809 | 43.6k | return tile; |
810 | 43.6k | } |
811 | | |
812 | | static fz_pixmap * |
813 | | pixmap_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
814 | 285 | { |
815 | 285 | fz_pixmap_image *image = (fz_pixmap_image *)image_; |
816 | | |
817 | | /* 'Simple' images created direct from pixmaps will have no buffer |
818 | | * of compressed data. We cannot do any better than just returning |
819 | | * a pointer to the original 'tile'. |
820 | | */ |
821 | 285 | return fz_keep_pixmap(ctx, image->tile); /* That's all we can give you! */ |
822 | 285 | } |
823 | | |
824 | | static void |
825 | | update_ctm_for_subarea(fz_matrix *ctm, const fz_irect *subarea, int w, int h) |
826 | 61.0k | { |
827 | 61.0k | fz_matrix m; |
828 | | |
829 | 61.0k | if (ctm == NULL || (subarea->x0 == 0 && subarea->y0 == 0 && subarea->x1 == w && subarea->y1 == h)) |
830 | 58.2k | return; |
831 | | |
832 | 2.81k | m.a = (float) (subarea->x1 - subarea->x0) / w; |
833 | 2.81k | m.b = 0; |
834 | 2.81k | m.c = 0; |
835 | 2.81k | m.d = (float) (subarea->y1 - subarea->y0) / h; |
836 | 2.81k | m.e = (float) subarea->x0 / w; |
837 | 2.81k | m.f = (float) subarea->y0 / h; |
838 | 2.81k | *ctm = fz_concat(m, *ctm); |
839 | 2.81k | } |
840 | | |
841 | | void fz_default_image_decode(void *arg, int w, int h, int l2factor, fz_irect *subarea) |
842 | 104k | { |
843 | 104k | (void)arg; |
844 | | |
845 | 104k | if ((subarea->x1-subarea->x0)*(subarea->y1-subarea->y0) >= (w*h/10)*9) |
846 | 99.4k | { |
847 | | /* Either no subarea specified, or a subarea 90% or more of the |
848 | | * whole area specified. Use the whole image. */ |
849 | 99.4k | subarea->x0 = 0; |
850 | 99.4k | subarea->y0 = 0; |
851 | 99.4k | subarea->x1 = w; |
852 | 99.4k | subarea->y1 = h; |
853 | 99.4k | } |
854 | 5.38k | else |
855 | 5.38k | { |
856 | | /* Clip to the edges if they are within 1% */ |
857 | 5.38k | if (subarea->x0 <= w/100) |
858 | 5.29k | subarea->x0 = 0; |
859 | 5.38k | if (subarea->y0 <= h/100) |
860 | 1.59k | subarea->y0 = 0; |
861 | 5.38k | if (subarea->x1 >= w*99/100) |
862 | 1.19k | subarea->x1 = w; |
863 | 5.38k | if (subarea->y1 >= h*99/100) |
864 | 5.23k | subarea->y1 = h; |
865 | 5.38k | } |
866 | 104k | } |
867 | | |
868 | | static fz_pixmap * |
869 | | fz_find_image_tile(fz_context *ctx, fz_image *image, fz_image_key *key, fz_matrix *ctm) |
870 | 104k | { |
871 | 104k | fz_pixmap *tile; |
872 | 104k | do |
873 | 128k | { |
874 | 128k | tile = fz_find_item(ctx, fz_drop_pixmap_imp, key, &fz_image_store_type); |
875 | 128k | if (tile) |
876 | 17.4k | { |
877 | 17.4k | update_ctm_for_subarea(ctm, &key->rect, image->w, image->h); |
878 | 17.4k | return tile; |
879 | 17.4k | } |
880 | 111k | key->l2factor--; |
881 | 111k | } |
882 | 111k | while (key->l2factor >= 0); |
883 | 87.5k | return NULL; |
884 | 104k | } |
885 | | |
886 | | fz_pixmap * |
887 | | fz_get_pixmap_from_image(fz_context *ctx, fz_image *image, const fz_irect *subarea, fz_matrix *ctm, int *dw, int *dh) |
888 | 61.3k | { |
889 | 61.3k | fz_pixmap *tile; |
890 | 61.3k | int l2factor, l2factor_remaining; |
891 | 61.3k | fz_image_key key; |
892 | 61.3k | fz_image_key *keyp = NULL; |
893 | 61.3k | int w; |
894 | 61.3k | int h; |
895 | | |
896 | 61.3k | fz_var(keyp); |
897 | | |
898 | 61.3k | if (!image) |
899 | 0 | return NULL; |
900 | | |
901 | | /* Figure out the extent. */ |
902 | 61.3k | if (ctm) |
903 | 61.3k | { |
904 | 61.3k | w = sqrtf(ctm->a * ctm->a + ctm->b * ctm->b); |
905 | 61.3k | h = sqrtf(ctm->c * ctm->c + ctm->d * ctm->d); |
906 | 61.3k | } |
907 | 10 | else |
908 | 10 | { |
909 | 10 | w = image->w; |
910 | 10 | h = image->h; |
911 | 10 | } |
912 | | |
913 | 61.3k | if (image->scalable) |
914 | 0 | { |
915 | | /* If the image is scalable, we always want to re-render and never cache. */ |
916 | 0 | fz_irect subarea_copy; |
917 | 0 | if (subarea) |
918 | 0 | subarea_copy = *subarea; |
919 | 0 | l2factor_remaining = 0; |
920 | 0 | if (dw) *dw = w; |
921 | 0 | if (dh) *dh = h; |
922 | 0 | return image->get_pixmap(ctx, image, subarea ? &subarea_copy : NULL, image->w, image->h, &l2factor_remaining); |
923 | 0 | } |
924 | | |
925 | | /* Clamp requested image size, since we never want to magnify images here. */ |
926 | 61.3k | if (w > image->w) |
927 | 11.2k | w = image->w; |
928 | 61.3k | if (h > image->h) |
929 | 10.7k | h = image->h; |
930 | | |
931 | 61.3k | if (image->decoded) |
932 | 285 | { |
933 | | /* If the image is already decoded, then we can't offer a subarea, |
934 | | * or l2factor, and we don't want to cache. */ |
935 | 285 | l2factor_remaining = 0; |
936 | 285 | if (dw) *dw = w; |
937 | 285 | if (dh) *dh = h; |
938 | 285 | return image->get_pixmap(ctx, image, NULL, image->w, image->h, &l2factor_remaining); |
939 | 285 | } |
940 | | |
941 | | /* What is our ideal factor? We search for the largest factor where |
942 | | * we can subdivide and stay larger than the required size. We add |
943 | | * a fudge factor of +2 here to allow for the possibility of |
944 | | * expansion due to grid fitting. */ |
945 | 61.0k | l2factor = 0; |
946 | 61.0k | if (w > 0 && h > 0) |
947 | 45.0k | { |
948 | 68.2k | while (image->w>>(l2factor+1) >= w+2 && image->h>>(l2factor+1) >= h+2 && l2factor < 6) |
949 | 23.1k | l2factor++; |
950 | 45.0k | } |
951 | | |
952 | | /* First, look through the store for existing tiles */ |
953 | 61.0k | if (subarea) |
954 | 61.0k | { |
955 | 61.0k | fz_compute_image_key(ctx, image, ctm, &key, subarea, l2factor, &w, &h, dw, dh); |
956 | 61.0k | tile = fz_find_image_tile(ctx, image, &key, ctm); |
957 | 61.0k | if (tile) |
958 | 17.2k | return tile; |
959 | 61.0k | } |
960 | | |
961 | | /* No subarea given, or no tile for subarea found; try entire image */ |
962 | 43.8k | fz_compute_image_key(ctx, image, ctm, &key, NULL, l2factor, &w, &h, dw, dh); |
963 | 43.8k | tile = fz_find_image_tile(ctx, image, &key, ctm); |
964 | 43.8k | if (tile) |
965 | 140 | return tile; |
966 | | |
967 | | /* Neither subarea nor full image tile found; prepare the subarea key again */ |
968 | 43.6k | if (subarea) |
969 | 43.6k | fz_compute_image_key(ctx, image, ctm, &key, subarea, l2factor, &w, &h, dw, dh); |
970 | | |
971 | | /* We'll have to decode the image; request the correct amount of downscaling. */ |
972 | 43.6k | l2factor_remaining = l2factor; |
973 | 43.6k | tile = image->get_pixmap(ctx, image, &key.rect, w, h, &l2factor_remaining); |
974 | | |
975 | | /* Update the ctm to allow for subareas. */ |
976 | 43.6k | update_ctm_for_subarea(ctm, &key.rect, image->w, image->h); |
977 | | |
978 | | /* l2factor_remaining is updated to the amount of subscaling left to do */ |
979 | 43.6k | assert(l2factor_remaining >= 0 && l2factor_remaining <= 6); |
980 | 43.6k | if (l2factor_remaining) |
981 | 141 | { |
982 | 282 | fz_try(ctx) |
983 | 282 | fz_subsample_pixmap(ctx, tile, l2factor_remaining); |
984 | 282 | fz_catch(ctx) |
985 | 0 | { |
986 | 0 | fz_drop_pixmap(ctx, tile); |
987 | 0 | fz_rethrow(ctx); |
988 | 0 | } |
989 | 141 | } |
990 | | |
991 | 87.3k | fz_try(ctx) |
992 | 87.3k | { |
993 | 43.6k | fz_pixmap *existing_tile; |
994 | | |
995 | | /* Now we try to cache the pixmap. Any failure here will just result |
996 | | * in us not caching. */ |
997 | 43.6k | keyp = fz_malloc_struct(ctx, fz_image_key); |
998 | 43.6k | keyp->refs = 1; |
999 | 43.6k | keyp->image = fz_keep_image_store_key(ctx, image); |
1000 | 43.6k | keyp->l2factor = l2factor; |
1001 | 43.6k | keyp->rect = key.rect; |
1002 | | |
1003 | 43.6k | existing_tile = fz_store_item(ctx, keyp, tile, fz_pixmap_size(ctx, tile), &fz_image_store_type); |
1004 | 43.6k | if (existing_tile) |
1005 | 0 | { |
1006 | | /* We already have a tile. This must have been produced by a |
1007 | | * racing thread. We'll throw away ours and use that one. */ |
1008 | 0 | fz_drop_pixmap(ctx, tile); |
1009 | 0 | tile = existing_tile; |
1010 | 0 | } |
1011 | 43.6k | } |
1012 | 87.3k | fz_always(ctx) |
1013 | 43.6k | { |
1014 | 43.6k | fz_drop_image_key(ctx, keyp); |
1015 | 43.6k | } |
1016 | 43.6k | fz_catch(ctx) |
1017 | 0 | { |
1018 | | /* Do nothing */ |
1019 | 0 | } |
1020 | | |
1021 | 43.6k | return tile; |
1022 | 43.6k | } |
1023 | | |
1024 | | fz_pixmap * |
1025 | | fz_get_unscaled_pixmap_from_image(fz_context *ctx, fz_image *image) |
1026 | 0 | { |
1027 | 0 | return fz_get_pixmap_from_image(ctx, image, NULL /*subarea*/, NULL /*ctm*/, NULL /*dw*/, NULL /*dh*/); |
1028 | 0 | } |
1029 | | |
1030 | | static size_t |
1031 | | pixmap_image_get_size(fz_context *ctx, fz_image *image) |
1032 | 173 | { |
1033 | 173 | fz_pixmap_image *im = (fz_pixmap_image *)image; |
1034 | | |
1035 | 173 | if (image == NULL) |
1036 | 0 | return 0; |
1037 | | |
1038 | 173 | return sizeof(fz_pixmap_image) + fz_pixmap_size(ctx, im->tile); |
1039 | 173 | } |
1040 | | |
1041 | | size_t fz_image_size(fz_context *ctx, fz_image *im) |
1042 | 4.47k | { |
1043 | 4.47k | if (im == NULL) |
1044 | 0 | return 0; |
1045 | | |
1046 | 4.47k | return im->get_size(ctx, im); |
1047 | 4.47k | } |
1048 | | |
1049 | | fz_image * |
1050 | | fz_new_image_from_pixmap(fz_context *ctx, fz_pixmap *pixmap, fz_image *mask) |
1051 | 285 | { |
1052 | 285 | fz_pixmap_image *image; |
1053 | | |
1054 | 285 | image = fz_new_derived_image(ctx, pixmap->w, pixmap->h, 8, pixmap->colorspace, |
1055 | 285 | pixmap->xres, pixmap->yres, 0, 0, |
1056 | 285 | NULL, NULL, mask, fz_pixmap_image, |
1057 | 285 | pixmap_image_get_pixmap, |
1058 | 285 | pixmap_image_get_size, |
1059 | 285 | drop_pixmap_image); |
1060 | 285 | image->tile = fz_keep_pixmap(ctx, pixmap); |
1061 | 285 | image->super.decoded = 1; |
1062 | | |
1063 | 285 | return &image->super; |
1064 | 285 | } |
1065 | | |
1066 | | fz_image * |
1067 | | fz_new_image_of_size(fz_context *ctx, int w, int h, int bpc, fz_colorspace *colorspace, |
1068 | | int xres, int yres, int interpolate, int imagemask, float *decode, |
1069 | | int *colorkey, fz_image *mask, size_t size, |
1070 | | fz_image_get_pixmap_fn *get_pixmap, |
1071 | | fz_image_get_size_fn *get_size, |
1072 | | fz_drop_image_fn *drop) |
1073 | 58.2k | { |
1074 | 58.2k | fz_image *image; |
1075 | 58.2k | int i; |
1076 | | |
1077 | 58.2k | assert(mask == NULL || mask->mask == NULL); |
1078 | 58.2k | assert(size >= sizeof(fz_image)); |
1079 | | |
1080 | 58.2k | image = Memento_label(fz_calloc(ctx, 1, size), "fz_image"); |
1081 | 58.2k | FZ_INIT_KEY_STORABLE(image, 1, fz_drop_image_imp); |
1082 | 58.2k | image->drop_image = drop; |
1083 | 58.2k | image->get_pixmap = get_pixmap; |
1084 | 58.2k | image->get_size = get_size; |
1085 | 58.2k | image->w = w; |
1086 | 58.2k | image->h = h; |
1087 | 58.2k | image->xres = xres; |
1088 | 58.2k | image->yres = yres; |
1089 | 58.2k | image->bpc = bpc; |
1090 | 58.2k | image->n = (colorspace ? fz_colorspace_n(ctx, colorspace) : 1); |
1091 | 58.2k | image->colorspace = fz_keep_colorspace(ctx, colorspace); |
1092 | 58.2k | image->interpolate = interpolate; |
1093 | 58.2k | image->imagemask = imagemask; |
1094 | 58.2k | image->use_colorkey = (colorkey != NULL); |
1095 | 58.2k | if (colorkey) |
1096 | 68 | memcpy(image->colorkey, colorkey, sizeof(int)*image->n*2); |
1097 | 58.2k | image->use_decode = 0; |
1098 | 58.2k | if (decode) |
1099 | 57.9k | { |
1100 | 57.9k | memcpy(image->decode, decode, sizeof(float)*image->n*2); |
1101 | 57.9k | } |
1102 | 287 | else |
1103 | 287 | { |
1104 | 287 | float maxval = fz_colorspace_is_indexed(ctx, colorspace) ? (1 << bpc) - 1 : 1; |
1105 | 910 | for (i = 0; i < image->n; i++) |
1106 | 623 | { |
1107 | 623 | image->decode[2*i] = 0; |
1108 | 623 | image->decode[2*i+1] = maxval; |
1109 | 623 | } |
1110 | 287 | } |
1111 | | /* ICC spaces have the default decode arrays pickled into them. |
1112 | | * For most spaces this is fine, because [ 0 1 0 1 0 1 ] is |
1113 | | * idempotent. For Lab, however, we need to adjust it. */ |
1114 | 58.2k | if (fz_colorspace_is_lab_icc(ctx, colorspace)) |
1115 | 0 | { |
1116 | | /* Undo the default decode array of [0 100 -128 127 -128 127] */ |
1117 | 0 | image->decode[0] = image->decode[0]/100.0f; |
1118 | 0 | image->decode[1] = image->decode[1]/100.0f; |
1119 | 0 | image->decode[2] = (image->decode[2]+128)/255.0f; |
1120 | 0 | image->decode[3] = (image->decode[3]+128)/255.0f; |
1121 | 0 | image->decode[4] = (image->decode[4]+128)/255.0f; |
1122 | 0 | image->decode[5] = (image->decode[5]+128)/255.0f; |
1123 | 0 | } |
1124 | 109k | for (i = 0; i < image->n; i++) |
1125 | 71.0k | { |
1126 | 71.0k | if (image->decode[i * 2] != 0 || image->decode[i * 2 + 1] != 1) |
1127 | 19.4k | break; |
1128 | 71.0k | } |
1129 | 58.2k | if (i != image->n) |
1130 | 19.4k | image->use_decode = 1; |
1131 | 58.2k | image->mask = fz_keep_image(ctx, mask); |
1132 | | |
1133 | 58.2k | return image; |
1134 | 58.2k | } |
1135 | | |
1136 | | static size_t |
1137 | | compressed_image_get_size(fz_context *ctx, fz_image *image) |
1138 | 4.30k | { |
1139 | 4.30k | fz_compressed_image *im = (fz_compressed_image *)image; |
1140 | | |
1141 | 4.30k | if (image == NULL) |
1142 | 0 | return 0; |
1143 | | |
1144 | 4.30k | return sizeof(fz_pixmap_image) + (im->buffer && im->buffer->buffer ? im->buffer->buffer->cap : 0); |
1145 | 4.30k | } |
1146 | | |
1147 | | fz_image * |
1148 | | fz_new_image_from_compressed_buffer(fz_context *ctx, int w, int h, |
1149 | | int bpc, fz_colorspace *colorspace, |
1150 | | int xres, int yres, int interpolate, int imagemask, float *decode, |
1151 | | int *colorkey, fz_compressed_buffer *buffer, fz_image *mask) |
1152 | 57.9k | { |
1153 | 57.9k | fz_compressed_image *image; |
1154 | | |
1155 | 115k | fz_try(ctx) |
1156 | 115k | { |
1157 | 57.9k | image = fz_new_derived_image(ctx, w, h, bpc, |
1158 | 57.9k | colorspace, xres, yres, |
1159 | 57.9k | interpolate, imagemask, decode, |
1160 | 57.9k | colorkey, mask, fz_compressed_image, |
1161 | 57.9k | compressed_image_get_pixmap, |
1162 | 57.9k | compressed_image_get_size, |
1163 | 57.9k | drop_compressed_image); |
1164 | 57.9k | image->buffer = buffer; |
1165 | 57.9k | } |
1166 | 115k | fz_catch(ctx) |
1167 | 5 | { |
1168 | 5 | fz_drop_compressed_buffer(ctx, buffer); |
1169 | 5 | fz_rethrow(ctx); |
1170 | 5 | } |
1171 | | |
1172 | 57.9k | return &image->super; |
1173 | 57.9k | } |
1174 | | |
1175 | | fz_compressed_buffer *fz_compressed_image_buffer(fz_context *ctx, fz_image *image) |
1176 | 0 | { |
1177 | 0 | if (image == NULL || image->get_pixmap != compressed_image_get_pixmap) |
1178 | 0 | return NULL; |
1179 | 0 | return ((fz_compressed_image *)image)->buffer; |
1180 | 0 | } |
1181 | | |
1182 | | void fz_set_compressed_image_buffer(fz_context *ctx, fz_compressed_image *image, fz_compressed_buffer *buf) |
1183 | 51.8k | { |
1184 | 51.8k | assert(image != NULL && image->super.get_pixmap == compressed_image_get_pixmap); |
1185 | 51.8k | ((fz_compressed_image *)image)->buffer = buf; /* Note: compressed buffers are not reference counted */ |
1186 | 51.8k | } |
1187 | | |
1188 | | fz_pixmap *fz_pixmap_image_tile(fz_context *ctx, fz_pixmap_image *image) |
1189 | 92 | { |
1190 | 92 | if (image == NULL || image->super.get_pixmap != pixmap_image_get_pixmap) |
1191 | 0 | return NULL; |
1192 | 92 | return ((fz_pixmap_image *)image)->tile; |
1193 | 92 | } |
1194 | | |
1195 | | void fz_set_pixmap_image_tile(fz_context *ctx, fz_pixmap_image *image, fz_pixmap *pix) |
1196 | 92 | { |
1197 | 92 | assert(image != NULL && image->super.get_pixmap == pixmap_image_get_pixmap); |
1198 | 92 | ((fz_pixmap_image *)image)->tile = pix; |
1199 | 92 | } |
1200 | | |
1201 | | const char * |
1202 | | fz_image_type_name(int type) |
1203 | 0 | { |
1204 | 0 | switch (type) |
1205 | 0 | { |
1206 | 0 | default: |
1207 | 0 | case FZ_IMAGE_UNKNOWN: return "unknown"; |
1208 | 0 | case FZ_IMAGE_RAW: return "raw"; |
1209 | 0 | case FZ_IMAGE_FAX: return "fax"; |
1210 | 0 | case FZ_IMAGE_FLATE: return "flate"; |
1211 | 0 | case FZ_IMAGE_LZW: return "lzw"; |
1212 | 0 | case FZ_IMAGE_RLD: return "rld"; |
1213 | 0 | case FZ_IMAGE_BMP: return "bmp"; |
1214 | 0 | case FZ_IMAGE_GIF: return "gif"; |
1215 | 0 | case FZ_IMAGE_JBIG2: return "jbig2"; |
1216 | 0 | case FZ_IMAGE_JPEG: return "jpeg"; |
1217 | 0 | case FZ_IMAGE_JPX: return "jpx"; |
1218 | 0 | case FZ_IMAGE_JXR: return "jxr"; |
1219 | 0 | case FZ_IMAGE_PNG: return "png"; |
1220 | 0 | case FZ_IMAGE_PNM: return "pnm"; |
1221 | 0 | case FZ_IMAGE_TIFF: return "tiff"; |
1222 | 0 | } |
1223 | 0 | } |
1224 | | |
1225 | | int |
1226 | | fz_lookup_image_type(const char *type) |
1227 | 0 | { |
1228 | 0 | if (type == NULL) return FZ_IMAGE_UNKNOWN; |
1229 | 0 | if (!strcmp(type, "raw")) return FZ_IMAGE_RAW; |
1230 | 0 | if (!strcmp(type, "fax")) return FZ_IMAGE_FAX; |
1231 | 0 | if (!strcmp(type, "flate")) return FZ_IMAGE_FLATE; |
1232 | 0 | if (!strcmp(type, "lzw")) return FZ_IMAGE_LZW; |
1233 | 0 | if (!strcmp(type, "rld")) return FZ_IMAGE_RLD; |
1234 | 0 | if (!strcmp(type, "bmp")) return FZ_IMAGE_BMP; |
1235 | 0 | if (!strcmp(type, "gif")) return FZ_IMAGE_GIF; |
1236 | 0 | if (!strcmp(type, "jbig2")) return FZ_IMAGE_JBIG2; |
1237 | 0 | if (!strcmp(type, "jpeg")) return FZ_IMAGE_JPEG; |
1238 | 0 | if (!strcmp(type, "jpx")) return FZ_IMAGE_JPX; |
1239 | 0 | if (!strcmp(type, "jxr")) return FZ_IMAGE_JXR; |
1240 | 0 | if (!strcmp(type, "png")) return FZ_IMAGE_PNG; |
1241 | 0 | if (!strcmp(type, "pnm")) return FZ_IMAGE_PNM; |
1242 | 0 | if (!strcmp(type, "tiff")) return FZ_IMAGE_TIFF; |
1243 | 0 | return FZ_IMAGE_UNKNOWN; |
1244 | 0 | } |
1245 | | |
1246 | | int |
1247 | | fz_recognize_image_format(fz_context *ctx, unsigned char p[8]) |
1248 | 15.0k | { |
1249 | 15.0k | if (p[0] == 'P' && p[1] >= '1' && p[1] <= '7') |
1250 | 0 | return FZ_IMAGE_PNM; |
1251 | 15.0k | if (p[0] == 'P' && (p[1] == 'F' || p[1] == 'f')) |
1252 | 0 | return FZ_IMAGE_PNM; |
1253 | 15.0k | if (p[0] == 0xff && p[1] == 0x4f) |
1254 | 3 | return FZ_IMAGE_JPX; |
1255 | 15.0k | if (p[0] == 0x00 && p[1] == 0x00 && p[2] == 0x00 && p[3] == 0x0c && |
1256 | 15.0k | p[4] == 0x6a && p[5] == 0x50 && p[6] == 0x20 && p[7] == 0x20) |
1257 | 0 | return FZ_IMAGE_JPX; |
1258 | 15.0k | if (p[0] == 0xff && p[1] == 0xd8) |
1259 | 0 | return FZ_IMAGE_JPEG; |
1260 | 15.0k | if (p[0] == 137 && p[1] == 80 && p[2] == 78 && p[3] == 71 && |
1261 | 15.0k | p[4] == 13 && p[5] == 10 && p[6] == 26 && p[7] == 10) |
1262 | 12 | return FZ_IMAGE_PNG; |
1263 | 15.0k | if (p[0] == 'I' && p[1] == 'I' && p[2] == 0xBC) |
1264 | 0 | return FZ_IMAGE_JXR; |
1265 | 15.0k | if (p[0] == 'I' && p[1] == 'I' && p[2] == 42 && p[3] == 0) |
1266 | 273 | return FZ_IMAGE_TIFF; |
1267 | 14.7k | if (p[0] == 'M' && p[1] == 'M' && p[2] == 0 && p[3] == 42) |
1268 | 16 | return FZ_IMAGE_TIFF; |
1269 | 14.7k | if (p[0] == 'G' && p[1] == 'I' && p[2] == 'F') |
1270 | 0 | return FZ_IMAGE_GIF; |
1271 | 14.7k | if (p[0] == 'B' && p[1] == 'M') |
1272 | 0 | return FZ_IMAGE_BMP; |
1273 | 14.7k | if (p[0] == 'B' && p[1] == 'A') |
1274 | 0 | return FZ_IMAGE_BMP; |
1275 | 14.7k | if (p[0] == 0x97 && p[1] == 'J' && p[2] == 'B' && p[3] == '2' && |
1276 | 14.7k | p[4] == '\r' && p[5] == '\n' && p[6] == 0x1a && p[7] == '\n') |
1277 | 0 | return FZ_IMAGE_JBIG2; |
1278 | 14.7k | if (p[0] == '8' && p[1] == 'B' && p[2] == 'P' && p[3] == 'S') |
1279 | 0 | return FZ_IMAGE_PSD; |
1280 | 14.7k | return FZ_IMAGE_UNKNOWN; |
1281 | 14.7k | } |
1282 | | |
1283 | | fz_image * |
1284 | | fz_new_image_from_buffer(fz_context *ctx, fz_buffer *buffer) |
1285 | 5 | { |
1286 | 5 | fz_compressed_buffer *bc; |
1287 | 5 | int w, h, xres, yres; |
1288 | 5 | fz_colorspace *cspace; |
1289 | 5 | size_t len = buffer->len; |
1290 | 5 | unsigned char *buf = buffer->data; |
1291 | 5 | fz_image *image = NULL; |
1292 | 5 | int type; |
1293 | 5 | int bpc; |
1294 | 5 | uint8_t orientation = 0; |
1295 | | |
1296 | 5 | if (len < 8) |
1297 | 0 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown image file format"); |
1298 | | |
1299 | 5 | type = fz_recognize_image_format(ctx, buf); |
1300 | 5 | bpc = 8; |
1301 | 5 | switch (type) |
1302 | 5 | { |
1303 | 0 | case FZ_IMAGE_PNM: |
1304 | 0 | fz_load_pnm_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1305 | 0 | break; |
1306 | 1 | case FZ_IMAGE_JPX: |
1307 | 1 | fz_load_jpx_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1308 | 1 | break; |
1309 | 0 | case FZ_IMAGE_JPEG: |
1310 | 0 | fz_load_jpeg_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace, &orientation); |
1311 | 0 | break; |
1312 | 4 | case FZ_IMAGE_PNG: |
1313 | 4 | fz_load_png_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1314 | 4 | break; |
1315 | 0 | case FZ_IMAGE_PSD: |
1316 | 0 | fz_load_psd_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1317 | 0 | break; |
1318 | 0 | case FZ_IMAGE_JXR: |
1319 | 0 | fz_load_jxr_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1320 | 0 | break; |
1321 | 0 | case FZ_IMAGE_TIFF: |
1322 | 0 | fz_load_tiff_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1323 | 0 | break; |
1324 | 0 | case FZ_IMAGE_GIF: |
1325 | 0 | fz_load_gif_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1326 | 0 | break; |
1327 | 0 | case FZ_IMAGE_BMP: |
1328 | 0 | fz_load_bmp_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1329 | 0 | break; |
1330 | 0 | case FZ_IMAGE_JBIG2: |
1331 | 0 | fz_load_jbig2_info(ctx, buf, len, &w, &h, &xres, &yres, &cspace); |
1332 | 0 | bpc = 1; |
1333 | 0 | break; |
1334 | 0 | default: |
1335 | 0 | fz_throw(ctx, FZ_ERROR_GENERIC, "unknown image file format"); |
1336 | 5 | } |
1337 | | |
1338 | 4 | fz_try(ctx) |
1339 | 4 | { |
1340 | 2 | bc = fz_malloc_struct(ctx, fz_compressed_buffer); |
1341 | 2 | bc->buffer = fz_keep_buffer(ctx, buffer); |
1342 | 2 | bc->params.type = type; |
1343 | 2 | if (type == FZ_IMAGE_JPEG) |
1344 | 0 | bc->params.u.jpeg.color_transform = -1; |
1345 | 2 | image = fz_new_image_from_compressed_buffer(ctx, w, h, bpc, cspace, xres, yres, 0, 0, NULL, NULL, bc, NULL); |
1346 | 2 | image->orientation = orientation; |
1347 | 2 | } |
1348 | 4 | fz_always(ctx) |
1349 | 2 | fz_drop_colorspace(ctx, cspace); |
1350 | 2 | fz_catch(ctx) |
1351 | 0 | fz_rethrow(ctx); |
1352 | | |
1353 | 2 | return image; |
1354 | 2 | } |
1355 | | |
1356 | | fz_image * |
1357 | | fz_new_image_from_file(fz_context *ctx, const char *path) |
1358 | 0 | { |
1359 | 0 | fz_buffer *buffer; |
1360 | 0 | fz_image *image = NULL; |
1361 | |
|
1362 | 0 | buffer = fz_read_file(ctx, path); |
1363 | 0 | fz_try(ctx) |
1364 | 0 | image = fz_new_image_from_buffer(ctx, buffer); |
1365 | 0 | fz_always(ctx) |
1366 | 0 | fz_drop_buffer(ctx, buffer); |
1367 | 0 | fz_catch(ctx) |
1368 | 0 | fz_rethrow(ctx); |
1369 | | |
1370 | 0 | return image; |
1371 | 0 | } |
1372 | | |
1373 | | void |
1374 | | fz_image_resolution(fz_image *image, int *xres, int *yres) |
1375 | 44 | { |
1376 | 44 | *xres = image->xres; |
1377 | 44 | *yres = image->yres; |
1378 | 44 | if (*xres < 0 || *yres < 0 || (*xres == 0 && *yres == 0)) |
1379 | 0 | { |
1380 | | /* If neither xres or yres is sane, pick a sane value */ |
1381 | 0 | *xres = SANE_DPI; *yres = SANE_DPI; |
1382 | 0 | } |
1383 | 44 | else if (*xres == 0) |
1384 | 0 | { |
1385 | 0 | *xres = *yres; |
1386 | 0 | } |
1387 | 44 | else if (*yres == 0) |
1388 | 0 | { |
1389 | 0 | *yres = *xres; |
1390 | 0 | } |
1391 | | |
1392 | | /* Scale xres and yres up until we get believable values */ |
1393 | 44 | if (*xres < SANE_DPI || *yres < SANE_DPI || *xres > INSANE_DPI || *yres > INSANE_DPI) |
1394 | 0 | { |
1395 | 0 | if (*xres < *yres) |
1396 | 0 | { |
1397 | 0 | *yres = *yres * SANE_DPI / *xres; |
1398 | 0 | *xres = SANE_DPI; |
1399 | 0 | } |
1400 | 0 | else |
1401 | 0 | { |
1402 | 0 | *xres = *xres * SANE_DPI / *yres; |
1403 | 0 | *yres = SANE_DPI; |
1404 | 0 | } |
1405 | |
|
1406 | 0 | if (*xres == *yres || *xres < SANE_DPI || *yres < SANE_DPI || *xres > INSANE_DPI || *yres > INSANE_DPI) |
1407 | 0 | { |
1408 | 0 | *xres = SANE_DPI; |
1409 | 0 | *yres = SANE_DPI; |
1410 | 0 | } |
1411 | 0 | } |
1412 | 44 | } |
1413 | | |
1414 | | uint8_t fz_image_orientation(fz_context *ctx, fz_image *image) |
1415 | 44 | { |
1416 | 44 | return image ? image->orientation : 0; |
1417 | 44 | } |
1418 | | |
1419 | | fz_matrix fz_image_orientation_matrix(fz_context *ctx, fz_image *image) |
1420 | 22 | { |
1421 | 22 | fz_matrix m; |
1422 | | |
1423 | 22 | switch (image ? image->orientation : 0) |
1424 | 22 | { |
1425 | 22 | case 0: |
1426 | 22 | case 1: /* 0 degree rotation */ |
1427 | 22 | m.a = 1; m.b = 0; |
1428 | 22 | m.c = 0; m.d = 1; |
1429 | 22 | m.e = 0; m.f = 0; |
1430 | 22 | break; |
1431 | 0 | case 2: /* 90 degree ccw */ |
1432 | 0 | m.a = 0; m.b = -1; |
1433 | 0 | m.c = 1; m.d = 0; |
1434 | 0 | m.e = 0; m.f = 1; |
1435 | 0 | break; |
1436 | 0 | case 3: /* 180 degree ccw */ |
1437 | 0 | m.a = -1; m.b = 0; |
1438 | 0 | m.c = 0; m.d = -1; |
1439 | 0 | m.e = 1; m.f = 1; |
1440 | 0 | break; |
1441 | 0 | case 4: /* 270 degree ccw */ |
1442 | 0 | m.a = 0; m.b = 1; |
1443 | 0 | m.c = -1; m.d = 0; |
1444 | 0 | m.e = 1; m.f = 0; |
1445 | 0 | break; |
1446 | 0 | case 5: /* flip on X */ |
1447 | 0 | m.a = -1; m.b = 0; |
1448 | 0 | m.c = 0; m.d = 1; |
1449 | 0 | m.e = 1; m.f = 0; |
1450 | 0 | break; |
1451 | 0 | case 6: /* flip on X, then rotate ccw by 90 degrees */ |
1452 | 0 | m.a = 0; m.b = 1; |
1453 | 0 | m.c = 1; m.d = 0; |
1454 | 0 | m.e = 0; m.f = 0; |
1455 | 0 | break; |
1456 | 0 | case 7: /* flip on X, then rotate ccw by 180 degrees */ |
1457 | 0 | m.a = 1; m.b = 0; |
1458 | 0 | m.c = 0; m.d = -1; |
1459 | 0 | m.e = 0; m.f = 1; |
1460 | 0 | break; |
1461 | 0 | case 8: /* flip on X, then rotate ccw by 270 degrees */ |
1462 | 0 | m.a = 0; m.b = -1; |
1463 | 0 | m.c = -1; m.d = 0; |
1464 | 0 | m.e = 1; m.f = 1; |
1465 | 0 | break; |
1466 | 22 | } |
1467 | | |
1468 | 22 | return m; |
1469 | 22 | } |
1470 | | |
1471 | | typedef struct fz_display_list_image_s |
1472 | | { |
1473 | | fz_image super; |
1474 | | fz_matrix transform; |
1475 | | fz_display_list *list; |
1476 | | } fz_display_list_image; |
1477 | | |
1478 | | static fz_pixmap * |
1479 | | display_list_image_get_pixmap(fz_context *ctx, fz_image *image_, fz_irect *subarea, int w, int h, int *l2factor) |
1480 | 0 | { |
1481 | 0 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1482 | 0 | fz_matrix ctm; |
1483 | 0 | fz_device *dev; |
1484 | 0 | fz_pixmap *pix; |
1485 | |
|
1486 | 0 | fz_var(dev); |
1487 | |
|
1488 | 0 | if (subarea) |
1489 | 0 | { |
1490 | | /* So, the whole image should be scaled to w * h, but we only want the |
1491 | | * given subarea of it. */ |
1492 | 0 | int l = (subarea->x0 * w) / image->super.w; |
1493 | 0 | int t = (subarea->y0 * h) / image->super.h; |
1494 | 0 | int r = (subarea->x1 * w + image->super.w - 1) / image->super.w; |
1495 | 0 | int b = (subarea->y1 * h + image->super.h - 1) / image->super.h; |
1496 | |
|
1497 | 0 | pix = fz_new_pixmap(ctx, image->super.colorspace, r-l, b-t, NULL, 0); |
1498 | 0 | pix->x = l; |
1499 | 0 | pix->y = t; |
1500 | 0 | } |
1501 | 0 | else |
1502 | 0 | { |
1503 | 0 | pix = fz_new_pixmap(ctx, image->super.colorspace, w, h, NULL, 0); |
1504 | 0 | } |
1505 | | |
1506 | | /* If we render the display list into pix with the image matrix, we'll get a unit |
1507 | | * square result. Therefore scale by w, h. */ |
1508 | 0 | ctm = fz_pre_scale(image->transform, w, h); |
1509 | |
|
1510 | 0 | fz_clear_pixmap(ctx, pix); /* clear to transparent */ |
1511 | 0 | fz_try(ctx) |
1512 | 0 | { |
1513 | 0 | dev = fz_new_draw_device(ctx, ctm, pix); |
1514 | 0 | fz_run_display_list(ctx, image->list, dev, fz_identity, fz_infinite_rect, NULL); |
1515 | 0 | fz_close_device(ctx, dev); |
1516 | 0 | } |
1517 | 0 | fz_always(ctx) |
1518 | 0 | fz_drop_device(ctx, dev); |
1519 | 0 | fz_catch(ctx) |
1520 | 0 | { |
1521 | 0 | fz_drop_pixmap(ctx, pix); |
1522 | 0 | fz_rethrow(ctx); |
1523 | 0 | } |
1524 | | |
1525 | | /* Never do more subsampling, cos we've already given them the right size */ |
1526 | 0 | if (l2factor) |
1527 | 0 | *l2factor = 0; |
1528 | |
|
1529 | 0 | return pix; |
1530 | 0 | } |
1531 | | |
1532 | | static void drop_display_list_image(fz_context *ctx, fz_image *image_) |
1533 | 0 | { |
1534 | 0 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1535 | |
|
1536 | 0 | if (image == NULL) |
1537 | 0 | return; |
1538 | 0 | fz_drop_display_list(ctx, image->list); |
1539 | 0 | } |
1540 | | |
1541 | | static size_t |
1542 | | display_list_image_get_size(fz_context *ctx, fz_image *image_) |
1543 | 0 | { |
1544 | 0 | fz_display_list_image *image = (fz_display_list_image *)image_; |
1545 | |
|
1546 | 0 | if (image == NULL) |
1547 | 0 | return 0; |
1548 | | |
1549 | 0 | return sizeof(fz_display_list_image) + 4096; /* FIXME */ |
1550 | 0 | } |
1551 | | |
1552 | | fz_image *fz_new_image_from_display_list(fz_context *ctx, float w, float h, fz_display_list *list) |
1553 | 0 | { |
1554 | 0 | fz_display_list_image *image; |
1555 | 0 | int iw, ih; |
1556 | |
|
1557 | 0 | iw = w * SCALABLE_IMAGE_DPI / 72; |
1558 | 0 | ih = h * SCALABLE_IMAGE_DPI / 72; |
1559 | |
|
1560 | 0 | image = fz_new_derived_image(ctx, iw, ih, 8, fz_device_rgb(ctx), |
1561 | 0 | SCALABLE_IMAGE_DPI, SCALABLE_IMAGE_DPI, 0, 0, |
1562 | 0 | NULL, NULL, NULL, fz_display_list_image, |
1563 | 0 | display_list_image_get_pixmap, |
1564 | 0 | display_list_image_get_size, |
1565 | 0 | drop_display_list_image); |
1566 | 0 | image->super.scalable = 1; |
1567 | 0 | image->transform = fz_scale(1 / w, 1 / h); |
1568 | 0 | image->list = fz_keep_display_list(ctx, list); |
1569 | |
|
1570 | 0 | return &image->super; |
1571 | 0 | } |