Coverage Report

Created: 2024-05-20 06:23

/src/mupdf/thirdparty/libjpeg/jfdctflt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jfdctflt.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * Modified 2003-2017 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains a floating-point implementation of the
10
 * forward DCT (Discrete Cosine Transform).
11
 *
12
 * This implementation should be more accurate than either of the integer
13
 * DCT implementations.  However, it may not give the same results on all
14
 * machines because of differences in roundoff behavior.  Speed will depend
15
 * on the hardware's floating point capacity.
16
 *
17
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18
 * on each column.  Direct algorithms are also available, but they are
19
 * much more complex and seem not to be any faster when reduced to code.
20
 *
21
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
23
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
24
 * JPEG textbook (see REFERENCES section in file README).  The following code
25
 * is based directly on figure 4-8 in P&M.
26
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27
 * possible to arrange the computation so that many of the multiplies are
28
 * simple scalings of the final outputs.  These multiplies can then be
29
 * folded into the multiplications or divisions by the JPEG quantization
30
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
31
 * to be done in the DCT itself.
32
 * The primary disadvantage of this method is that with a fixed-point
33
 * implementation, accuracy is lost due to imprecise representation of the
34
 * scaled quantization values.  However, that problem does not arise if
35
 * we use floating point arithmetic.
36
 */
37
38
#define JPEG_INTERNALS
39
#include "jinclude.h"
40
#include "jpeglib.h"
41
#include "jdct.h"   /* Private declarations for DCT subsystem */
42
43
#ifdef DCT_FLOAT_SUPPORTED
44
45
46
/*
47
 * This module is specialized to the case DCTSIZE = 8.
48
 */
49
50
#if DCTSIZE != 8
51
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
52
#endif
53
54
55
/*
56
 * Perform the forward DCT on one block of samples.
57
 *
58
 * cK represents cos(K*pi/16).
59
 */
60
61
GLOBAL(void)
62
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
63
0
{
64
0
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
65
0
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
66
0
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
67
0
  FAST_FLOAT *dataptr;
68
0
  JSAMPROW elemptr;
69
0
  int ctr;
70
71
  /* Pass 1: process rows. */
72
73
0
  dataptr = data;
74
0
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
75
0
    elemptr = sample_data[ctr] + start_col;
76
77
    /* Load data into workspace */
78
0
    tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
79
0
    tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
80
0
    tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
81
0
    tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
82
0
    tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
83
0
    tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
84
0
    tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
85
0
    tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
86
87
    /* Even part */
88
89
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
90
0
    tmp13 = tmp0 - tmp3;
91
0
    tmp11 = tmp1 + tmp2;
92
0
    tmp12 = tmp1 - tmp2;
93
94
    /* Apply unsigned->signed conversion. */
95
0
    dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
96
0
    dataptr[4] = tmp10 - tmp11;
97
98
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
99
0
    dataptr[2] = tmp13 + z1;  /* phase 5 */
100
0
    dataptr[6] = tmp13 - z1;
101
102
    /* Odd part */
103
104
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
105
0
    tmp11 = tmp5 + tmp6;
106
0
    tmp12 = tmp6 + tmp7;
107
108
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
109
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
110
0
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
111
0
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
112
0
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
113
114
0
    z11 = tmp7 + z3;    /* phase 5 */
115
0
    z13 = tmp7 - z3;
116
117
0
    dataptr[5] = z13 + z2;  /* phase 6 */
118
0
    dataptr[3] = z13 - z2;
119
0
    dataptr[1] = z11 + z4;
120
0
    dataptr[7] = z11 - z4;
121
122
0
    dataptr += DCTSIZE;   /* advance pointer to next row */
123
0
  }
124
125
  /* Pass 2: process columns. */
126
127
0
  dataptr = data;
128
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
129
0
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
130
0
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
131
0
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
132
0
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
133
0
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
134
0
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
135
0
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
136
0
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
137
138
    /* Even part */
139
140
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
141
0
    tmp13 = tmp0 - tmp3;
142
0
    tmp11 = tmp1 + tmp2;
143
0
    tmp12 = tmp1 - tmp2;
144
145
0
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
146
0
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
147
148
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
149
0
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
150
0
    dataptr[DCTSIZE*6] = tmp13 - z1;
151
152
    /* Odd part */
153
154
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
155
0
    tmp11 = tmp5 + tmp6;
156
0
    tmp12 = tmp6 + tmp7;
157
158
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
159
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
160
0
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
161
0
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
162
0
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
163
164
0
    z11 = tmp7 + z3;    /* phase 5 */
165
0
    z13 = tmp7 - z3;
166
167
0
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
168
0
    dataptr[DCTSIZE*3] = z13 - z2;
169
0
    dataptr[DCTSIZE*1] = z11 + z4;
170
0
    dataptr[DCTSIZE*7] = z11 - z4;
171
172
0
    dataptr++;      /* advance pointer to next column */
173
0
  }
174
0
}
175
176
#endif /* DCT_FLOAT_SUPPORTED */