/src/mupdf/source/fitz/ftoa.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | #include "mupdf/fitz.h"  | 
2  |  |  | 
3  |  | #include <assert.h>  | 
4  |  |  | 
5  |  | /*  | 
6  |  |   Convert IEEE single precision numbers into decimal ASCII strings, while  | 
7  |  |   satisfying the following two properties:  | 
8  |  |   1) Calling strtof or '(float) strtod' on the result must produce the  | 
9  |  |   original float, independent of the rounding mode used by strtof/strtod.  | 
10  |  |   2) Minimize the number of produced decimal digits. E.g. the float 0.7f  | 
11  |  |   should convert to "0.7", not "0.69999999".  | 
12  |  |  | 
13  |  |   To solve this we use a dedicated single precision version of  | 
14  |  |   Florian Loitsch's Grisu2 algorithm. See  | 
15  |  |   http://florian.loitsch.com/publications/dtoa-pldi2010.pdf?attredirects=0  | 
16  |  |  | 
17  |  |   The code below is derived from Loitsch's C code, which  | 
18  |  |   implements the same algorithm for IEEE double precision. See  | 
19  |  |   http://florian.loitsch.com/publications/bench.tar.gz?attredirects=0  | 
20  |  | */  | 
21  |  |  | 
22  |  | /*  | 
23  |  |   Copyright (c) 2009 Florian Loitsch  | 
24  |  |  | 
25  |  |   Permission is hereby granted, free of charge, to any person  | 
26  |  |   obtaining a copy of this software and associated documentation  | 
27  |  |   files (the "Software"), to deal in the Software without  | 
28  |  |   restriction, including without limitation the rights to use,  | 
29  |  |   copy, modify, merge, publish, distribute, sublicense, and/or sell  | 
30  |  |   copies of the Software, and to permit persons to whom the  | 
31  |  |   Software is furnished to do so, subject to the following  | 
32  |  |   conditions:  | 
33  |  |  | 
34  |  |   The above copyright notice and this permission notice shall be  | 
35  |  |   included in all copies or substantial portions of the Software.  | 
36  |  |  | 
37  |  |   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,  | 
38  |  |   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES  | 
39  |  |   OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND  | 
40  |  |   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT  | 
41  |  |   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,  | 
42  |  |   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING  | 
43  |  |   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR  | 
44  |  |   OTHER DEALINGS IN THE SOFTWARE.  | 
45  |  | */  | 
46  |  |  | 
47  |  | static uint32_t  | 
48  |  | float_to_uint32(float d)  | 
49  | 267k  | { | 
50  | 267k  |   union  | 
51  | 267k  |   { | 
52  | 267k  |     float d;  | 
53  | 267k  |     uint32_t n;  | 
54  | 267k  |   } tmp;  | 
55  | 267k  |   tmp.d = d;  | 
56  | 267k  |   return tmp.n;  | 
57  | 267k  | }  | 
58  |  |  | 
59  |  | typedef struct  | 
60  |  | { | 
61  |  |   uint64_t f;  | 
62  |  |   int e;  | 
63  |  | } diy_fp_t;  | 
64  |  |  | 
65  | 1.87M  | #define DIY_SIGNIFICAND_SIZE 64  | 
66  |  | #define DIY_LEADING_BIT ((uint64_t) 1 << (DIY_SIGNIFICAND_SIZE - 1))  | 
67  |  |  | 
68  |  | static diy_fp_t  | 
69  |  | minus(diy_fp_t x, diy_fp_t y)  | 
70  | 267k  | { | 
71  | 267k  |   diy_fp_t result = {x.f - y.f, x.e}; | 
72  | 267k  |   assert(x.e == y.e && x.f >= y.f);  | 
73  | 267k  |   return result;  | 
74  | 267k  | }  | 
75  |  |  | 
76  |  | static diy_fp_t  | 
77  |  | multiply(diy_fp_t x, diy_fp_t y)  | 
78  | 535k  | { | 
79  | 535k  |   uint64_t a, b, c, d, ac, bc, ad, bd, tmp;  | 
80  | 535k  |   int half = DIY_SIGNIFICAND_SIZE / 2;  | 
81  | 535k  |   diy_fp_t r; uint64_t mask = ((uint64_t) 1 << half) - 1;  | 
82  | 535k  |   a = x.f >> half; b = x.f & mask;  | 
83  | 535k  |   c = y.f >> half; d = y.f & mask;  | 
84  | 535k  |   ac = a * c; bc = b * c; ad = a * d; bd = b * d;  | 
85  | 535k  |   tmp = (bd >> half) + (ad & mask) + (bc & mask);  | 
86  | 535k  |   tmp += ((uint64_t)1U) << (half - 1); /* Round. */  | 
87  | 535k  |   r.f = ac + (ad >> half) + (bc >> half) + (tmp >> half);  | 
88  | 535k  |   r.e = x.e + y.e + half * 2;  | 
89  | 535k  |   return r;  | 
90  | 535k  | }  | 
91  |  |  | 
92  | 1.07M  | #define SP_SIGNIFICAND_SIZE 23  | 
93  | 267k  | #define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)  | 
94  | 0  | #define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)  | 
95  | 267k  | #define SP_EXPONENT_MASK 0x7f800000  | 
96  | 267k  | #define SP_SIGNIFICAND_MASK 0x7fffff  | 
97  | 802k  | #define SP_HIDDEN_BIT 0x800000 /* 2^23 */  | 
98  |  |  | 
99  |  | /* Does not normalize the result. */  | 
100  |  | static diy_fp_t  | 
101  |  | float2diy_fp(float d)  | 
102  | 267k  | { | 
103  | 267k  |   uint32_t d32 = float_to_uint32(d);  | 
104  | 267k  |   int biased_e = (d32 & SP_EXPONENT_MASK) >> SP_SIGNIFICAND_SIZE;  | 
105  | 267k  |   uint32_t significand = d32 & SP_SIGNIFICAND_MASK;  | 
106  | 267k  |   diy_fp_t res;  | 
107  |  |  | 
108  | 267k  |   if (biased_e != 0)  | 
109  | 267k  |   { | 
110  | 267k  |     res.f = significand + SP_HIDDEN_BIT;  | 
111  | 267k  |     res.e = biased_e - SP_EXPONENT_BIAS;  | 
112  | 267k  |   }  | 
113  | 0  |   else  | 
114  | 0  |   { | 
115  | 0  |     res.f = significand;  | 
116  | 0  |     res.e = SP_MIN_EXPONENT + 1;  | 
117  | 0  |   }  | 
118  | 267k  |   return res;  | 
119  | 267k  | }  | 
120  |  |  | 
121  |  | static diy_fp_t  | 
122  |  | normalize_boundary(diy_fp_t in)  | 
123  | 267k  | { | 
124  | 267k  |   diy_fp_t res = in;  | 
125  |  |   /* The original number could have been a denormal. */  | 
126  | 267k  |   while (! (res.f & (SP_HIDDEN_BIT << 1)))  | 
127  | 0  |   { | 
128  | 0  |     res.f <<= 1;  | 
129  | 0  |     res.e--;  | 
130  | 0  |   }  | 
131  |  |   /* Do the final shifts in one go. */  | 
132  | 267k  |   res.f <<= (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);  | 
133  | 267k  |   res.e = res.e - (DIY_SIGNIFICAND_SIZE - SP_SIGNIFICAND_SIZE - 2);  | 
134  | 267k  |   return res;  | 
135  | 267k  | }  | 
136  |  |  | 
137  |  | static void  | 
138  |  | normalized_boundaries(float f, diy_fp_t* lower_ptr, diy_fp_t* upper_ptr)  | 
139  | 267k  | { | 
140  | 267k  |   diy_fp_t v = float2diy_fp(f);  | 
141  | 267k  |   diy_fp_t upper, lower;  | 
142  | 267k  |   int significand_is_zero = v.f == SP_HIDDEN_BIT;  | 
143  |  |  | 
144  | 267k  |   upper.f = (v.f << 1) + 1; upper.e = v.e - 1;  | 
145  | 267k  |   upper = normalize_boundary(upper);  | 
146  | 267k  |   if (significand_is_zero)  | 
147  | 86.8k  |   { | 
148  | 86.8k  |     lower.f = (v.f << 2) - 1;  | 
149  | 86.8k  |     lower.e = v.e - 2;  | 
150  | 86.8k  |   }  | 
151  | 180k  |   else  | 
152  | 180k  |   { | 
153  | 180k  |     lower.f = (v.f << 1) - 1;  | 
154  | 180k  |     lower.e = v.e - 1;  | 
155  | 180k  |   }  | 
156  | 267k  |   lower.f <<= lower.e - upper.e;  | 
157  | 267k  |   lower.e = upper.e;  | 
158  |  |  | 
159  |  |   /* Adjust to double boundaries, so that we can also read the numbers with '(float) strtod'. */  | 
160  | 267k  |   upper.f -= 1 << 10;  | 
161  | 267k  |   lower.f += 1 << 10;  | 
162  |  |  | 
163  | 267k  |   *upper_ptr = upper;  | 
164  | 267k  |   *lower_ptr = lower;  | 
165  | 267k  | }  | 
166  |  |  | 
167  |  | static int  | 
168  |  | k_comp(int n)  | 
169  | 267k  | { | 
170  |  |   /* Avoid ceil and floating point multiplication for better  | 
171  |  |    * performance and portability. Instead use the approximation  | 
172  |  |    * log10(2) ~ 1233/(2^12). Tests show that this gives the correct  | 
173  |  |    * result for all values of n in the range -500..500. */  | 
174  | 267k  |   int tmp = n + DIY_SIGNIFICAND_SIZE - 1;  | 
175  | 267k  |   int k = (tmp * 1233) / (1 << 12);  | 
176  | 267k  |   return tmp > 0 ? k + 1 : k;  | 
177  | 267k  | }  | 
178  |  |  | 
179  |  | /* Cached powers of ten from 10**-37..10**46. Produced using GNU MPFR's mpfr_pow_si. */  | 
180  |  |  | 
181  |  | /* Significands. */  | 
182  |  | static uint64_t powers_ten[84] = { | 
183  |  |   0x881cea14545c7575ull, 0xaa242499697392d3ull, 0xd4ad2dbfc3d07788ull,  | 
184  |  |   0x84ec3c97da624ab5ull, 0xa6274bbdd0fadd62ull, 0xcfb11ead453994baull,  | 
185  |  |   0x81ceb32c4b43fcf5ull, 0xa2425ff75e14fc32ull, 0xcad2f7f5359a3b3eull,  | 
186  |  |   0xfd87b5f28300ca0eull, 0x9e74d1b791e07e48ull, 0xc612062576589ddbull,  | 
187  |  |   0xf79687aed3eec551ull, 0x9abe14cd44753b53ull, 0xc16d9a0095928a27ull,  | 
188  |  |   0xf1c90080baf72cb1ull, 0x971da05074da7befull, 0xbce5086492111aebull,  | 
189  |  |   0xec1e4a7db69561a5ull, 0x9392ee8e921d5d07ull, 0xb877aa3236a4b449ull,  | 
190  |  |   0xe69594bec44de15bull, 0x901d7cf73ab0acd9ull, 0xb424dc35095cd80full,  | 
191  |  |   0xe12e13424bb40e13ull, 0x8cbccc096f5088ccull, 0xafebff0bcb24aaffull,  | 
192  |  |   0xdbe6fecebdedd5bfull, 0x89705f4136b4a597ull, 0xabcc77118461cefdull,  | 
193  |  |   0xd6bf94d5e57a42bcull, 0x8637bd05af6c69b6ull, 0xa7c5ac471b478423ull,  | 
194  |  |   0xd1b71758e219652cull, 0x83126e978d4fdf3bull, 0xa3d70a3d70a3d70aull,  | 
195  |  |   0xcccccccccccccccdull, 0x8000000000000000ull, 0xa000000000000000ull,  | 
196  |  |   0xc800000000000000ull, 0xfa00000000000000ull, 0x9c40000000000000ull,  | 
197  |  |   0xc350000000000000ull, 0xf424000000000000ull, 0x9896800000000000ull,  | 
198  |  |   0xbebc200000000000ull, 0xee6b280000000000ull, 0x9502f90000000000ull,  | 
199  |  |   0xba43b74000000000ull, 0xe8d4a51000000000ull, 0x9184e72a00000000ull,  | 
200  |  |   0xb5e620f480000000ull, 0xe35fa931a0000000ull, 0x8e1bc9bf04000000ull,  | 
201  |  |   0xb1a2bc2ec5000000ull, 0xde0b6b3a76400000ull, 0x8ac7230489e80000ull,  | 
202  |  |   0xad78ebc5ac620000ull, 0xd8d726b7177a8000ull, 0x878678326eac9000ull,  | 
203  |  |   0xa968163f0a57b400ull, 0xd3c21bcecceda100ull, 0x84595161401484a0ull,  | 
204  |  |   0xa56fa5b99019a5c8ull, 0xcecb8f27f4200f3aull, 0x813f3978f8940984ull,  | 
205  |  |   0xa18f07d736b90be5ull, 0xc9f2c9cd04674edfull, 0xfc6f7c4045812296ull,  | 
206  |  |   0x9dc5ada82b70b59eull, 0xc5371912364ce305ull, 0xf684df56c3e01bc7ull,  | 
207  |  |   0x9a130b963a6c115cull, 0xc097ce7bc90715b3ull, 0xf0bdc21abb48db20ull,  | 
208  |  |   0x96769950b50d88f4ull, 0xbc143fa4e250eb31ull, 0xeb194f8e1ae525fdull,  | 
209  |  |   0x92efd1b8d0cf37beull, 0xb7abc627050305aeull, 0xe596b7b0c643c719ull,  | 
210  |  |   0x8f7e32ce7bea5c70ull, 0xb35dbf821ae4f38cull, 0xe0352f62a19e306full,  | 
211  |  | };  | 
212  |  |  | 
213  |  | /* Exponents. */  | 
214  |  | static int powers_ten_e[84] = { | 
215  |  |   -186, -183, -180, -176, -173, -170, -166, -163, -160, -157, -153,  | 
216  |  |   -150, -147, -143, -140, -137, -133, -130, -127, -123, -120, -117,  | 
217  |  |   -113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80,  | 
218  |  |   -77, -73, -70, -67, -63, -60, -57, -54, -50, -47, -44,  | 
219  |  |   -40, -37, -34, -30, -27, -24, -20, -17, -14, -10, -7,  | 
220  |  |   -4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30,  | 
221  |  |   33, 36, 39, 43, 46, 49, 53, 56, 59, 63, 66,  | 
222  |  |   69, 73, 76, 79, 83, 86, 89  | 
223  |  | };  | 
224  |  |  | 
225  |  | static diy_fp_t  | 
226  |  | cached_power(int i)  | 
227  | 267k  | { | 
228  | 267k  |   diy_fp_t result;  | 
229  |  |  | 
230  | 267k  |   assert (i >= -37 && i <= 46);  | 
231  | 267k  |   result.f = powers_ten[i + 37];  | 
232  | 267k  |   result.e = powers_ten_e[i + 37];  | 
233  | 267k  |   return result;  | 
234  | 267k  | }  | 
235  |  |  | 
236  |  | /* Returns buffer length. */  | 
237  |  | static int  | 
238  |  | digit_gen_mix_grisu2(diy_fp_t D_upper, diy_fp_t delta, char* buffer, int* K)  | 
239  | 267k  | { | 
240  | 267k  |   int kappa;  | 
241  | 267k  |   diy_fp_t one = {(uint64_t) 1 << -D_upper.e, D_upper.e}; | 
242  | 267k  |   unsigned char p1 = D_upper.f >> -one.e;  | 
243  | 267k  |   uint64_t p2 = D_upper.f & (one.f - 1);  | 
244  | 267k  |   unsigned char div = 10;  | 
245  | 267k  |   uint64_t mask = one.f - 1;  | 
246  | 267k  |   int len = 0;  | 
247  | 580k  |   for (kappa = 2; kappa > 0; --kappa)  | 
248  | 444k  |   { | 
249  | 444k  |     unsigned char digit = p1 / div;  | 
250  | 444k  |     if (digit || len)  | 
251  | 413k  |       buffer[len++] = '0' + digit;  | 
252  | 444k  |     p1 %= div; div /= 10;  | 
253  | 444k  |     if ((((uint64_t) p1) << -one.e) + p2 <= delta.f)  | 
254  | 131k  |     { | 
255  | 131k  |       *K += kappa - 1;  | 
256  | 131k  |       return len;  | 
257  | 131k  |     }  | 
258  | 444k  |   }  | 
259  | 136k  |   do  | 
260  | 620k  |   { | 
261  | 620k  |     p2 *= 10;  | 
262  | 620k  |     buffer[len++] = '0' + (p2 >> -one.e);  | 
263  | 620k  |     p2 &= mask;  | 
264  | 620k  |     kappa--;  | 
265  | 620k  |     delta.f *= 10;  | 
266  | 620k  |   }  | 
267  | 620k  |   while (p2 > delta.f);  | 
268  | 136k  |   *K += kappa;  | 
269  | 136k  |   return len;  | 
270  | 267k  | }  | 
271  |  |  | 
272  |  | /*  | 
273  |  |   Compute decimal integer m, exp such that:  | 
274  |  |     f = m * 10^exp  | 
275  |  |     m is as short as possible without losing exactness  | 
276  |  |   Assumes special cases (0, NaN, +Inf, -Inf) have been handled.  | 
277  |  | */  | 
278  |  | int  | 
279  |  | fz_grisu(float v, char* buffer, int* K)  | 
280  | 267k  | { | 
281  | 267k  |   diy_fp_t w_lower, w_upper, D_upper, D_lower, c_mk, delta;  | 
282  | 267k  |   int length, mk, alpha = -DIY_SIGNIFICAND_SIZE + 4;  | 
283  |  |  | 
284  | 267k  |   normalized_boundaries(v, &w_lower, &w_upper);  | 
285  | 267k  |   mk = k_comp(alpha - w_upper.e - DIY_SIGNIFICAND_SIZE);  | 
286  | 267k  |   c_mk = cached_power(mk);  | 
287  |  |  | 
288  | 267k  |   D_upper = multiply(w_upper, c_mk);  | 
289  | 267k  |   D_lower = multiply(w_lower, c_mk);  | 
290  |  |  | 
291  | 267k  |   D_upper.f--;  | 
292  | 267k  |   D_lower.f++;  | 
293  |  |  | 
294  | 267k  |   delta = minus(D_upper, D_lower);  | 
295  |  |  | 
296  | 267k  |   *K = -mk;  | 
297  | 267k  |   length = digit_gen_mix_grisu2(D_upper, delta, buffer, K);  | 
298  |  |  | 
299  | 267k  |   buffer[length] = 0;  | 
300  | 267k  |   return length;  | 
301  | 267k  | }  |