/src/mupdf/source/fitz/crypt-aes.c
Line | Count | Source |
1 | | /* |
2 | | * FIPS-197 compliant AES implementation |
3 | | * |
4 | | * Copyright (C) 2006-2007 Christophe Devine |
5 | | * |
6 | | * Redistribution and use in source and binary forms, with or without |
7 | | * modification, are permitted provided that the following conditions |
8 | | * are met: |
9 | | * |
10 | | * * Redistributions of source code _must_ retain the above copyright |
11 | | * notice, this list of conditions and the following disclaimer. |
12 | | * * Redistributions in binary form may or may not reproduce the above |
13 | | * copyright notice, this list of conditions and the following |
14 | | * disclaimer in the documentation and/or other materials provided |
15 | | * with the distribution. |
16 | | * * Neither the name of XySSL nor the names of its contributors may be |
17 | | * used to endorse or promote products derived from this software |
18 | | * without specific prior written permission. |
19 | | * |
20 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
21 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
22 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
23 | | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
24 | | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
25 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
26 | | * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
27 | | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
28 | | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
29 | | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
30 | | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
31 | | */ |
32 | | /* |
33 | | * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. |
34 | | * |
35 | | * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf |
36 | | * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf |
37 | | */ |
38 | | |
39 | | #include "mupdf/fitz.h" |
40 | | |
41 | | #include <string.h> |
42 | | |
43 | 0 | #define aes_context fz_aes |
44 | | |
45 | | /* AES block cipher implementation from XYSSL */ |
46 | | |
47 | | /* To prevent coverity being confused by sign extensions from shifts, we |
48 | | * have replaced "unsigned long" by "uint32_t". To match styles, we have |
49 | | * similarly replaced "unsigned char" by uint8_t. */ |
50 | | |
51 | | |
52 | | /* |
53 | | * 32-bit integer manipulation macros (little endian) |
54 | | */ |
55 | | #ifndef GET_ULONG_LE |
56 | 0 | #define GET_ULONG_LE(n,b,i) \ |
57 | 0 | { \ |
58 | 0 | (n) = ( (uint32_t) (b)[(i)] ) \ |
59 | 0 | | ( (uint32_t) (b)[(i) + 1] << 8 ) \ |
60 | 0 | | ( (uint32_t) (b)[(i) + 2] << 16 ) \ |
61 | 0 | | ( (uint32_t) (b)[(i) + 3] << 24 ); \ |
62 | 0 | } |
63 | | #endif |
64 | | |
65 | | #ifndef PUT_ULONG_LE |
66 | 0 | #define PUT_ULONG_LE(n,b,i) \ |
67 | 0 | { \ |
68 | 0 | (b)[(i) ] = (uint8_t) ( (n) ); \ |
69 | 0 | (b)[(i) + 1] = (uint8_t) ( (n) >> 8 ); \ |
70 | 0 | (b)[(i) + 2] = (uint8_t) ( (n) >> 16 ); \ |
71 | 0 | (b)[(i) + 3] = (uint8_t) ( (n) >> 24 ); \ |
72 | 0 | } |
73 | | #endif |
74 | | |
75 | | /* |
76 | | * Forward S-box & tables |
77 | | */ |
78 | | static uint8_t FSb[256]; |
79 | | static uint32_t FT0[256]; |
80 | | static uint32_t FT1[256]; |
81 | | static uint32_t FT2[256]; |
82 | | static uint32_t FT3[256]; |
83 | | |
84 | | /* |
85 | | * Reverse S-box & tables |
86 | | */ |
87 | | static uint8_t RSb[256]; |
88 | | static uint32_t RT0[256]; |
89 | | static uint32_t RT1[256]; |
90 | | static uint32_t RT2[256]; |
91 | | static uint32_t RT3[256]; |
92 | | |
93 | | /* |
94 | | * Round constants |
95 | | */ |
96 | | static uint32_t RCON[10]; |
97 | | |
98 | | /* |
99 | | * Tables generation code |
100 | | */ |
101 | 0 | #define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 ) |
102 | 0 | #define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) ) |
103 | 0 | #define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 ) |
104 | | |
105 | | static int aes_init_done = 0; |
106 | | |
107 | | static void aes_gen_tables( void ) |
108 | 0 | { |
109 | 0 | int i, x, y, z; |
110 | 0 | int pow[256]; |
111 | 0 | int log[256]; |
112 | | |
113 | | /* |
114 | | * compute pow and log tables over GF(2^8) |
115 | | */ |
116 | 0 | for( i = 0, x = 1; i < 256; i++ ) |
117 | 0 | { |
118 | 0 | pow[i] = x; |
119 | 0 | log[x] = i; |
120 | 0 | x = ( x ^ XTIME( x ) ) & 0xFF; |
121 | 0 | } |
122 | | |
123 | | /* |
124 | | * calculate the round constants |
125 | | */ |
126 | 0 | for( i = 0, x = 1; i < 10; i++ ) |
127 | 0 | { |
128 | 0 | RCON[i] = (uint32_t) x; |
129 | 0 | x = XTIME( x ) & 0xFF; |
130 | 0 | } |
131 | | |
132 | | /* |
133 | | * generate the forward and reverse S-boxes |
134 | | */ |
135 | 0 | FSb[0x00] = 0x63; |
136 | 0 | RSb[0x63] = 0x00; |
137 | |
|
138 | 0 | for( i = 1; i < 256; i++ ) |
139 | 0 | { |
140 | 0 | x = pow[255 - log[i]]; |
141 | |
|
142 | 0 | y = x; y = ( (y << 1) | (y >> 7) ) & 0xFF; |
143 | 0 | x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; |
144 | 0 | x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; |
145 | 0 | x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; |
146 | 0 | x ^= y ^ 0x63; |
147 | |
|
148 | 0 | FSb[i] = (uint8_t) x; |
149 | 0 | RSb[x] = (uint8_t) i; |
150 | 0 | } |
151 | | |
152 | | /* |
153 | | * generate the forward and reverse tables |
154 | | */ |
155 | 0 | for( i = 0; i < 256; i++ ) |
156 | 0 | { |
157 | 0 | x = FSb[i]; |
158 | 0 | y = XTIME( x ) & 0xFF; |
159 | 0 | z = ( y ^ x ) & 0xFF; |
160 | |
|
161 | 0 | FT0[i] = ( (uint32_t) y ) ^ |
162 | 0 | ( (uint32_t) x << 8 ) ^ |
163 | 0 | ( (uint32_t) x << 16 ) ^ |
164 | 0 | ( (uint32_t) z << 24 ); |
165 | |
|
166 | 0 | FT1[i] = ROTL8( FT0[i] ); |
167 | 0 | FT2[i] = ROTL8( FT1[i] ); |
168 | 0 | FT3[i] = ROTL8( FT2[i] ); |
169 | |
|
170 | 0 | x = RSb[i]; |
171 | |
|
172 | 0 | RT0[i] = ( (uint32_t) MUL( 0x0E, x ) ) ^ |
173 | 0 | ( (uint32_t) MUL( 0x09, x ) << 8 ) ^ |
174 | 0 | ( (uint32_t) MUL( 0x0D, x ) << 16 ) ^ |
175 | 0 | ( (uint32_t) MUL( 0x0B, x ) << 24 ); |
176 | |
|
177 | 0 | RT1[i] = ROTL8( RT0[i] ); |
178 | 0 | RT2[i] = ROTL8( RT1[i] ); |
179 | 0 | RT3[i] = ROTL8( RT2[i] ); |
180 | 0 | } |
181 | 0 | } |
182 | | |
183 | | /* |
184 | | * AES key schedule (encryption) |
185 | | */ |
186 | | int fz_aes_setkey_enc( aes_context *ctx, const uint8_t *key, int keysize ) |
187 | 0 | { |
188 | 0 | int i; |
189 | 0 | uint32_t *RK; |
190 | |
|
191 | 0 | #if !defined(XYSSL_AES_ROM_TABLES) |
192 | 0 | if( aes_init_done == 0 ) |
193 | 0 | { |
194 | 0 | aes_gen_tables(); |
195 | 0 | aes_init_done = 1; |
196 | 0 | } |
197 | 0 | #endif |
198 | |
|
199 | 0 | switch( keysize ) |
200 | 0 | { |
201 | 0 | case 128: ctx->nr = 10; break; |
202 | 0 | case 192: ctx->nr = 12; break; |
203 | 0 | case 256: ctx->nr = 14; break; |
204 | 0 | default : return 1; |
205 | 0 | } |
206 | | |
207 | | #if defined(PADLOCK_ALIGN16) |
208 | | ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf ); |
209 | | #else |
210 | 0 | ctx->rk = RK = ctx->buf; |
211 | 0 | #endif |
212 | |
|
213 | 0 | for( i = 0; i < (keysize >> 5); i++ ) |
214 | 0 | { |
215 | 0 | GET_ULONG_LE( RK[i], key, i << 2 ); |
216 | 0 | } |
217 | |
|
218 | 0 | switch( ctx->nr ) |
219 | 0 | { |
220 | 0 | case 10: |
221 | |
|
222 | 0 | for( i = 0; i < 10; i++, RK += 4 ) |
223 | 0 | { |
224 | 0 | RK[4] = RK[0] ^ RCON[i] ^ |
225 | 0 | ( FSb[ ( RK[3] >> 8 ) & 0xFF ] ) ^ |
226 | 0 | ( FSb[ ( RK[3] >> 16 ) & 0xFF ] << 8 ) ^ |
227 | 0 | ( FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ^ |
228 | 0 | ( FSb[ ( RK[3] ) & 0xFF ] << 24 ); |
229 | |
|
230 | 0 | RK[5] = RK[1] ^ RK[4]; |
231 | 0 | RK[6] = RK[2] ^ RK[5]; |
232 | 0 | RK[7] = RK[3] ^ RK[6]; |
233 | 0 | } |
234 | 0 | break; |
235 | | |
236 | 0 | case 12: |
237 | |
|
238 | 0 | for( i = 0; i < 8; i++, RK += 6 ) |
239 | 0 | { |
240 | 0 | RK[6] = RK[0] ^ RCON[i] ^ |
241 | 0 | ( FSb[ ( RK[5] >> 8 ) & 0xFF ] ) ^ |
242 | 0 | ( FSb[ ( RK[5] >> 16 ) & 0xFF ] << 8 ) ^ |
243 | 0 | ( FSb[ ( RK[5] >> 24 ) & 0xFF ] << 16 ) ^ |
244 | 0 | ( FSb[ ( RK[5] ) & 0xFF ] << 24 ); |
245 | |
|
246 | 0 | RK[7] = RK[1] ^ RK[6]; |
247 | 0 | RK[8] = RK[2] ^ RK[7]; |
248 | 0 | RK[9] = RK[3] ^ RK[8]; |
249 | 0 | RK[10] = RK[4] ^ RK[9]; |
250 | 0 | RK[11] = RK[5] ^ RK[10]; |
251 | 0 | } |
252 | 0 | break; |
253 | | |
254 | 0 | case 14: |
255 | |
|
256 | 0 | for( i = 0; i < 7; i++, RK += 8 ) |
257 | 0 | { |
258 | 0 | RK[8] = RK[0] ^ RCON[i] ^ |
259 | 0 | ( FSb[ ( RK[7] >> 8 ) & 0xFF ] ) ^ |
260 | 0 | ( FSb[ ( RK[7] >> 16 ) & 0xFF ] << 8 ) ^ |
261 | 0 | ( FSb[ ( RK[7] >> 24 ) & 0xFF ] << 16 ) ^ |
262 | 0 | ( FSb[ ( RK[7] ) & 0xFF ] << 24 ); |
263 | |
|
264 | 0 | RK[9] = RK[1] ^ RK[8]; |
265 | 0 | RK[10] = RK[2] ^ RK[9]; |
266 | 0 | RK[11] = RK[3] ^ RK[10]; |
267 | |
|
268 | 0 | RK[12] = RK[4] ^ |
269 | 0 | ( FSb[ ( RK[11] ) & 0xFF ] ) ^ |
270 | 0 | ( FSb[ ( RK[11] >> 8 ) & 0xFF ] << 8 ) ^ |
271 | 0 | ( FSb[ ( RK[11] >> 16 ) & 0xFF ] << 16 ) ^ |
272 | 0 | ( FSb[ ( RK[11] >> 24 ) & 0xFF ] << 24 ); |
273 | |
|
274 | 0 | RK[13] = RK[5] ^ RK[12]; |
275 | 0 | RK[14] = RK[6] ^ RK[13]; |
276 | 0 | RK[15] = RK[7] ^ RK[14]; |
277 | 0 | } |
278 | 0 | break; |
279 | | |
280 | 0 | default: |
281 | |
|
282 | 0 | break; |
283 | 0 | } |
284 | 0 | return 0; |
285 | 0 | } |
286 | | |
287 | | /* |
288 | | * AES key schedule (decryption) |
289 | | */ |
290 | | int fz_aes_setkey_dec(aes_context *ctx, const uint8_t *key, int keysize) |
291 | 0 | { |
292 | 0 | int i, j; |
293 | 0 | aes_context cty; |
294 | 0 | uint32_t *RK; |
295 | 0 | uint32_t *SK; |
296 | |
|
297 | 0 | switch( keysize ) |
298 | 0 | { |
299 | 0 | case 128: ctx->nr = 10; break; |
300 | 0 | case 192: ctx->nr = 12; break; |
301 | 0 | case 256: ctx->nr = 14; break; |
302 | 0 | default: return 1; |
303 | 0 | } |
304 | | |
305 | | #if defined(PADLOCK_ALIGN16) |
306 | | ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf ); |
307 | | #else |
308 | 0 | ctx->rk = RK = ctx->buf; |
309 | 0 | #endif |
310 | |
|
311 | 0 | i = fz_aes_setkey_enc( &cty, key, keysize ); |
312 | 0 | if (i) |
313 | 0 | return i; |
314 | 0 | SK = cty.rk + cty.nr * 4; |
315 | |
|
316 | 0 | *RK++ = *SK++; |
317 | 0 | *RK++ = *SK++; |
318 | 0 | *RK++ = *SK++; |
319 | 0 | *RK++ = *SK++; |
320 | |
|
321 | 0 | for( i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8 ) |
322 | 0 | { |
323 | 0 | for( j = 0; j < 4; j++, SK++ ) |
324 | 0 | { |
325 | 0 | *RK++ = RT0[ FSb[ ( *SK ) & 0xFF ] ] ^ |
326 | 0 | RT1[ FSb[ ( *SK >> 8 ) & 0xFF ] ] ^ |
327 | 0 | RT2[ FSb[ ( *SK >> 16 ) & 0xFF ] ] ^ |
328 | 0 | RT3[ FSb[ ( *SK >> 24 ) & 0xFF ] ]; |
329 | 0 | } |
330 | 0 | } |
331 | |
|
332 | 0 | *RK++ = *SK++; |
333 | 0 | *RK++ = *SK++; |
334 | 0 | *RK++ = *SK++; |
335 | 0 | *RK = *SK; |
336 | |
|
337 | 0 | memset( &cty, 0, sizeof( aes_context ) ); |
338 | 0 | return 0; |
339 | 0 | } |
340 | | |
341 | 0 | #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ |
342 | 0 | { \ |
343 | 0 | X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \ |
344 | 0 | FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \ |
345 | 0 | FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \ |
346 | 0 | FT3[ ( Y3 >> 24 ) & 0xFF ]; \ |
347 | 0 | \ |
348 | 0 | X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \ |
349 | 0 | FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \ |
350 | 0 | FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \ |
351 | 0 | FT3[ ( Y0 >> 24 ) & 0xFF ]; \ |
352 | 0 | \ |
353 | 0 | X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \ |
354 | 0 | FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \ |
355 | 0 | FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \ |
356 | 0 | FT3[ ( Y1 >> 24 ) & 0xFF ]; \ |
357 | 0 | \ |
358 | 0 | X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \ |
359 | 0 | FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \ |
360 | 0 | FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \ |
361 | 0 | FT3[ ( Y2 >> 24 ) & 0xFF ]; \ |
362 | 0 | } |
363 | | |
364 | 0 | #define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ |
365 | 0 | { \ |
366 | 0 | X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \ |
367 | 0 | RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \ |
368 | 0 | RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \ |
369 | 0 | RT3[ ( Y1 >> 24 ) & 0xFF ]; \ |
370 | 0 | \ |
371 | 0 | X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \ |
372 | 0 | RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \ |
373 | 0 | RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \ |
374 | 0 | RT3[ ( Y2 >> 24 ) & 0xFF ]; \ |
375 | 0 | \ |
376 | 0 | X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \ |
377 | 0 | RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \ |
378 | 0 | RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \ |
379 | 0 | RT3[ ( Y3 >> 24 ) & 0xFF ]; \ |
380 | 0 | \ |
381 | 0 | X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \ |
382 | 0 | RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \ |
383 | 0 | RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \ |
384 | 0 | RT3[ ( Y0 >> 24 ) & 0xFF ]; \ |
385 | 0 | } |
386 | | |
387 | | /* |
388 | | * AES-ECB block encryption/decryption |
389 | | */ |
390 | | void fz_aes_crypt_ecb( aes_context *ctx, |
391 | | int mode, |
392 | | const uint8_t input[16], |
393 | | uint8_t output[16] ) |
394 | 0 | { |
395 | 0 | int i; |
396 | 0 | uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; |
397 | |
|
398 | | #if defined(XYSSL_PADLOCK_C) && defined(XYSSL_HAVE_X86) |
399 | | if( padlock_supports( PADLOCK_ACE ) ) |
400 | | { |
401 | | if( padlock_xcryptecb( ctx, mode, input, output ) == 0 ) |
402 | | return; |
403 | | } |
404 | | #endif |
405 | |
|
406 | 0 | RK = ctx->rk; |
407 | |
|
408 | 0 | GET_ULONG_LE( X0, input, 0 ); X0 ^= *RK++; |
409 | 0 | GET_ULONG_LE( X1, input, 4 ); X1 ^= *RK++; |
410 | 0 | GET_ULONG_LE( X2, input, 8 ); X2 ^= *RK++; |
411 | 0 | GET_ULONG_LE( X3, input, 12 ); X3 ^= *RK++; |
412 | |
|
413 | 0 | if( mode == FZ_AES_DECRYPT ) |
414 | 0 | { |
415 | 0 | for( i = (ctx->nr >> 1) - 1; i > 0; i-- ) |
416 | 0 | { |
417 | 0 | AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); |
418 | 0 | AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); |
419 | 0 | } |
420 | |
|
421 | 0 | AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); |
422 | |
|
423 | 0 | X0 = *RK++ ^ ( RSb[ ( Y0 ) & 0xFF ] ) ^ |
424 | 0 | ( RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ |
425 | 0 | ( RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ |
426 | 0 | ( RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); |
427 | |
|
428 | 0 | X1 = *RK++ ^ ( RSb[ ( Y1 ) & 0xFF ] ) ^ |
429 | 0 | ( RSb[ ( Y0 >>8 ) & 0xFF ] << 8 ) ^ |
430 | 0 | ( RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ |
431 | 0 | ( RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); |
432 | |
|
433 | 0 | X2 = *RK++ ^ ( RSb[ ( Y2 ) & 0xFF ] ) ^ |
434 | 0 | ( RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ |
435 | 0 | ( RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ |
436 | 0 | ( RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); |
437 | |
|
438 | 0 | X3 = *RK ^ ( RSb[ ( Y3 ) & 0xFF ] ) ^ |
439 | 0 | ( RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ |
440 | 0 | ( RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ |
441 | 0 | ( RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); |
442 | 0 | } |
443 | 0 | else /* FZ_AES_ENCRYPT */ |
444 | 0 | { |
445 | 0 | for( i = (ctx->nr >> 1) - 1; i > 0; i-- ) |
446 | 0 | { |
447 | 0 | AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); |
448 | 0 | AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); |
449 | 0 | } |
450 | |
|
451 | 0 | AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); |
452 | |
|
453 | 0 | X0 = *RK++ ^ ( FSb[ ( Y0 ) & 0xFF ] ) ^ |
454 | 0 | ( FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ |
455 | 0 | ( FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ |
456 | 0 | ( FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); |
457 | |
|
458 | 0 | X1 = *RK++ ^ ( FSb[ ( Y1 ) & 0xFF ] ) ^ |
459 | 0 | ( FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ |
460 | 0 | ( FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ |
461 | 0 | ( FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); |
462 | |
|
463 | 0 | X2 = *RK++ ^ ( FSb[ ( Y2 ) & 0xFF ] ) ^ |
464 | 0 | ( FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ |
465 | 0 | ( FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ |
466 | 0 | ( FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); |
467 | |
|
468 | 0 | X3 = *RK ^ ( FSb[ ( Y3 ) & 0xFF ] ) ^ |
469 | 0 | ( FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^ |
470 | 0 | ( FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ |
471 | 0 | ( FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); |
472 | 0 | } |
473 | |
|
474 | 0 | PUT_ULONG_LE( X0, output, 0 ); |
475 | 0 | PUT_ULONG_LE( X1, output, 4 ); |
476 | 0 | PUT_ULONG_LE( X2, output, 8 ); |
477 | 0 | PUT_ULONG_LE( X3, output, 12 ); |
478 | 0 | } |
479 | | |
480 | | /* |
481 | | * AES-CBC buffer encryption/decryption |
482 | | */ |
483 | | void fz_aes_crypt_cbc( aes_context *ctx, |
484 | | int mode, |
485 | | size_t length, |
486 | | uint8_t iv[16], |
487 | | const uint8_t *input, |
488 | | uint8_t *output ) |
489 | 0 | { |
490 | 0 | int i; |
491 | 0 | uint8_t temp[16]; |
492 | |
|
493 | | #if defined(XYSSL_PADLOCK_C) && defined(XYSSL_HAVE_X86) |
494 | | if( padlock_supports( PADLOCK_ACE ) ) |
495 | | { |
496 | | if( padlock_xcryptcbc( ctx, mode, length, iv, input, output ) == 0 ) |
497 | | return; |
498 | | } |
499 | | #endif |
500 | |
|
501 | 0 | if( mode == FZ_AES_DECRYPT ) |
502 | 0 | { |
503 | 0 | while( length > 0 ) |
504 | 0 | { |
505 | 0 | memcpy( temp, input, 16 ); |
506 | 0 | fz_aes_crypt_ecb( ctx, mode, input, output ); |
507 | |
|
508 | 0 | for( i = 0; i < 16; i++ ) |
509 | 0 | output[i] = (uint8_t)( output[i] ^ iv[i] ); |
510 | |
|
511 | 0 | memcpy( iv, temp, 16 ); |
512 | |
|
513 | 0 | input += 16; |
514 | 0 | output += 16; |
515 | 0 | length -= 16; |
516 | 0 | } |
517 | 0 | } |
518 | 0 | else |
519 | 0 | { |
520 | 0 | while( length > 0 ) |
521 | 0 | { |
522 | 0 | for( i = 0; i < 16; i++ ) |
523 | 0 | output[i] = (uint8_t)( input[i] ^ iv[i] ); |
524 | |
|
525 | 0 | fz_aes_crypt_ecb( ctx, mode, output, output ); |
526 | 0 | memcpy( iv, output, 16 ); |
527 | |
|
528 | 0 | input += 16; |
529 | 0 | output += 16; |
530 | 0 | length -= 16; |
531 | 0 | } |
532 | 0 | } |
533 | 0 | } |
534 | | |
535 | | #ifdef UNUSED |
536 | | /* |
537 | | * AES-CFB buffer encryption/decryption |
538 | | */ |
539 | | void fz_aes_crypt_cfb( aes_context *ctx, |
540 | | int mode, |
541 | | int length, |
542 | | int *iv_off, |
543 | | uint8_t iv[16], |
544 | | const uint8_t *input, |
545 | | uint8_t *output ) |
546 | | { |
547 | | int c, n = *iv_off; |
548 | | |
549 | | if( mode == FZ_AES_DECRYPT ) |
550 | | { |
551 | | while( length-- ) |
552 | | { |
553 | | if( n == 0 ) |
554 | | fz_aes_crypt_ecb( ctx, FZ_AES_ENCRYPT, iv, iv ); |
555 | | |
556 | | c = *input++; |
557 | | *output++ = (uint8_t)( c ^ iv[n] ); |
558 | | iv[n] = (uint8_t) c; |
559 | | |
560 | | n = (n + 1) & 0x0F; |
561 | | } |
562 | | } |
563 | | else |
564 | | { |
565 | | while( length-- ) |
566 | | { |
567 | | if( n == 0 ) |
568 | | fz_aes_crypt_ecb( ctx, FZ_AES_ENCRYPT, iv, iv ); |
569 | | |
570 | | iv[n] = *output++ = (uint8_t)( iv[n] ^ *input++ ); |
571 | | |
572 | | n = (n + 1) & 0x0F; |
573 | | } |
574 | | } |
575 | | |
576 | | *iv_off = n; |
577 | | } |
578 | | #endif |