/rust/registry/src/index.crates.io-6f17d22bba15001f/petgraph-0.7.1/src/algo/astar.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use std::collections::hash_map::Entry::{Occupied, Vacant}; |
2 | | use std::collections::{BinaryHeap, HashMap}; |
3 | | |
4 | | use std::hash::Hash; |
5 | | |
6 | | use crate::scored::MinScored; |
7 | | use crate::visit::{EdgeRef, GraphBase, IntoEdges, Visitable}; |
8 | | |
9 | | use crate::algo::Measure; |
10 | | |
11 | | /// \[Generic\] A* shortest path algorithm. |
12 | | /// |
13 | | /// Computes the shortest path from `start` to `finish`, including the total path cost. |
14 | | /// |
15 | | /// `finish` is implicitly given via the `is_goal` callback, which should return `true` if the |
16 | | /// given node is the finish node. |
17 | | /// |
18 | | /// The function `edge_cost` should return the cost for a particular edge. Edge costs must be |
19 | | /// non-negative. |
20 | | /// |
21 | | /// The function `estimate_cost` should return the estimated cost to the finish for a particular |
22 | | /// node. For the algorithm to find the actual shortest path, it should be admissible, meaning that |
23 | | /// it should never overestimate the actual cost to get to the nearest goal node. Estimate costs |
24 | | /// must also be non-negative. |
25 | | /// |
26 | | /// The graph should be `Visitable` and implement `IntoEdges`. |
27 | | /// |
28 | | /// # Example |
29 | | /// ``` |
30 | | /// use petgraph::Graph; |
31 | | /// use petgraph::algo::astar; |
32 | | /// |
33 | | /// let mut g = Graph::new(); |
34 | | /// let a = g.add_node((0., 0.)); |
35 | | /// let b = g.add_node((2., 0.)); |
36 | | /// let c = g.add_node((1., 1.)); |
37 | | /// let d = g.add_node((0., 2.)); |
38 | | /// let e = g.add_node((3., 3.)); |
39 | | /// let f = g.add_node((4., 2.)); |
40 | | /// g.extend_with_edges(&[ |
41 | | /// (a, b, 2), |
42 | | /// (a, d, 4), |
43 | | /// (b, c, 1), |
44 | | /// (b, f, 7), |
45 | | /// (c, e, 5), |
46 | | /// (e, f, 1), |
47 | | /// (d, e, 1), |
48 | | /// ]); |
49 | | /// |
50 | | /// // Graph represented with the weight of each edge |
51 | | /// // Edges with '*' are part of the optimal path. |
52 | | /// // |
53 | | /// // 2 1 |
54 | | /// // a ----- b ----- c |
55 | | /// // | 4* | 7 | |
56 | | /// // d f | 5 |
57 | | /// // | 1* | 1* | |
58 | | /// // \------ e ------/ |
59 | | /// |
60 | | /// let path = astar(&g, a, |finish| finish == f, |e| *e.weight(), |_| 0); |
61 | | /// assert_eq!(path, Some((6, vec![a, d, e, f]))); |
62 | | /// ``` |
63 | | /// |
64 | | /// Returns the total cost + the path of subsequent `NodeId` from start to finish, if one was |
65 | | /// found. |
66 | 0 | pub fn astar<G, F, H, K, IsGoal>( |
67 | 0 | graph: G, |
68 | 0 | start: G::NodeId, |
69 | 0 | mut is_goal: IsGoal, |
70 | 0 | mut edge_cost: F, |
71 | 0 | mut estimate_cost: H, |
72 | 0 | ) -> Option<(K, Vec<G::NodeId>)> |
73 | 0 | where |
74 | 0 | G: IntoEdges + Visitable, |
75 | 0 | IsGoal: FnMut(G::NodeId) -> bool, |
76 | 0 | G::NodeId: Eq + Hash, |
77 | 0 | F: FnMut(G::EdgeRef) -> K, |
78 | 0 | H: FnMut(G::NodeId) -> K, |
79 | 0 | K: Measure + Copy, |
80 | 0 | { |
81 | 0 | let mut visit_next = BinaryHeap::new(); |
82 | 0 | let mut scores = HashMap::new(); // g-values, cost to reach the node |
83 | 0 | let mut estimate_scores = HashMap::new(); // f-values, cost to reach + estimate cost to goal |
84 | 0 | let mut path_tracker = PathTracker::<G>::new(); |
85 | 0 |
|
86 | 0 | let zero_score = K::default(); |
87 | 0 | scores.insert(start, zero_score); |
88 | 0 | visit_next.push(MinScored(estimate_cost(start), start)); |
89 | | |
90 | 0 | while let Some(MinScored(estimate_score, node)) = visit_next.pop() { |
91 | 0 | if is_goal(node) { |
92 | 0 | let path = path_tracker.reconstruct_path_to(node); |
93 | 0 | let cost = scores[&node]; |
94 | 0 | return Some((cost, path)); |
95 | 0 | } |
96 | 0 |
|
97 | 0 | // This lookup can be unwrapped without fear of panic since the node was necessarily scored |
98 | 0 | // before adding it to `visit_next`. |
99 | 0 | let node_score = scores[&node]; |
100 | 0 |
|
101 | 0 | match estimate_scores.entry(node) { |
102 | 0 | Occupied(mut entry) => { |
103 | 0 | // If the node has already been visited with an equal or lower score than now, then |
104 | 0 | // we do not need to re-visit it. |
105 | 0 | if *entry.get() <= estimate_score { |
106 | 0 | continue; |
107 | 0 | } |
108 | 0 | entry.insert(estimate_score); |
109 | | } |
110 | 0 | Vacant(entry) => { |
111 | 0 | entry.insert(estimate_score); |
112 | 0 | } |
113 | | } |
114 | | |
115 | 0 | for edge in graph.edges(node) { |
116 | 0 | let next = edge.target(); |
117 | 0 | let next_score = node_score + edge_cost(edge); |
118 | 0 |
|
119 | 0 | match scores.entry(next) { |
120 | 0 | Occupied(mut entry) => { |
121 | 0 | // No need to add neighbors that we have already reached through a shorter path |
122 | 0 | // than now. |
123 | 0 | if *entry.get() <= next_score { |
124 | 0 | continue; |
125 | 0 | } |
126 | 0 | entry.insert(next_score); |
127 | | } |
128 | 0 | Vacant(entry) => { |
129 | 0 | entry.insert(next_score); |
130 | 0 | } |
131 | | } |
132 | | |
133 | 0 | path_tracker.set_predecessor(next, node); |
134 | 0 | let next_estimate_score = next_score + estimate_cost(next); |
135 | 0 | visit_next.push(MinScored(next_estimate_score, next)); |
136 | | } |
137 | | } |
138 | | |
139 | 0 | None |
140 | 0 | } |
141 | | |
142 | | struct PathTracker<G> |
143 | | where |
144 | | G: GraphBase, |
145 | | G::NodeId: Eq + Hash, |
146 | | { |
147 | | came_from: HashMap<G::NodeId, G::NodeId>, |
148 | | } |
149 | | |
150 | | impl<G> PathTracker<G> |
151 | | where |
152 | | G: GraphBase, |
153 | | G::NodeId: Eq + Hash, |
154 | | { |
155 | 0 | fn new() -> PathTracker<G> { |
156 | 0 | PathTracker { |
157 | 0 | came_from: HashMap::new(), |
158 | 0 | } |
159 | 0 | } |
160 | | |
161 | 0 | fn set_predecessor(&mut self, node: G::NodeId, previous: G::NodeId) { |
162 | 0 | self.came_from.insert(node, previous); |
163 | 0 | } |
164 | | |
165 | 0 | fn reconstruct_path_to(&self, last: G::NodeId) -> Vec<G::NodeId> { |
166 | 0 | let mut path = vec![last]; |
167 | 0 |
|
168 | 0 | let mut current = last; |
169 | 0 | while let Some(&previous) = self.came_from.get(¤t) { |
170 | 0 | path.push(previous); |
171 | 0 | current = previous; |
172 | 0 | } |
173 | | |
174 | 0 | path.reverse(); |
175 | 0 |
|
176 | 0 | path |
177 | 0 | } |
178 | | } |