Coverage Report

Created: 2025-12-11 06:38

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/libm-0.2.15/src/math/j0f.rs
Line
Count
Source
1
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
2
/*
3
 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4
 */
5
/*
6
 * ====================================================
7
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8
 *
9
 * Developed at SunPro, a Sun Microsystems, Inc. business.
10
 * Permission to use, copy, modify, and distribute this
11
 * software is freely granted, provided that this notice
12
 * is preserved.
13
 * ====================================================
14
 */
15
16
use super::{cosf, fabsf, logf, sinf, sqrtf};
17
18
const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
19
const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
20
21
0
fn common(ix: u32, x: f32, y0: bool) -> f32 {
22
    let z: f32;
23
    let s: f32;
24
    let mut c: f32;
25
    let mut ss: f32;
26
    let mut cc: f32;
27
    /*
28
     * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
29
     * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
30
     */
31
0
    s = sinf(x);
32
0
    c = cosf(x);
33
0
    if y0 {
34
0
        c = -c;
35
0
    }
36
0
    cc = s + c;
37
0
    if ix < 0x7f000000 {
38
0
        ss = s - c;
39
0
        z = -cosf(2.0 * x);
40
0
        if s * c < 0.0 {
41
0
            cc = z / ss;
42
0
        } else {
43
0
            ss = z / cc;
44
0
        }
45
0
        if ix < 0x58800000 {
46
0
            if y0 {
47
0
                ss = -ss;
48
0
            }
49
0
            cc = pzerof(x) * cc - qzerof(x) * ss;
50
0
        }
51
0
    }
52
0
    return INVSQRTPI * cc / sqrtf(x);
53
0
}
54
55
/* R0/S0 on [0, 2.00] */
56
const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */
57
const R03: f32 = -1.8997929874e-04; /* 0xb947352e */
58
const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */
59
const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */
60
const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */
61
const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */
62
const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */
63
const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */
64
65
/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
66
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
67
0
pub fn j0f(mut x: f32) -> f32 {
68
    let z: f32;
69
    let r: f32;
70
    let s: f32;
71
    let mut ix: u32;
72
73
0
    ix = x.to_bits();
74
0
    ix &= 0x7fffffff;
75
0
    if ix >= 0x7f800000 {
76
0
        return 1.0 / (x * x);
77
0
    }
78
0
    x = fabsf(x);
79
80
0
    if ix >= 0x40000000 {
81
        /* |x| >= 2 */
82
        /* large ulp error near zeros */
83
0
        return common(ix, x, false);
84
0
    }
85
0
    if ix >= 0x3a000000 {
86
        /* |x| >= 2**-11 */
87
        /* up to 4ulp error near 2 */
88
0
        z = x * x;
89
0
        r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
90
0
        s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
91
0
        return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
92
0
    }
93
0
    if ix >= 0x21800000 {
94
0
        /* |x| >= 2**-60 */
95
0
        x = 0.25 * x * x;
96
0
    }
97
0
    return 1.0 - x;
98
0
}
99
100
const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */
101
const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */
102
const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */
103
const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */
104
const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */
105
const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */
106
const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */
107
const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */
108
const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */
109
const V03: f32 = 2.5915085189e-07; /* 0x348b216c */
110
const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */
111
112
/// Zeroth order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
113
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
114
0
pub fn y0f(x: f32) -> f32 {
115
    let z: f32;
116
    let u: f32;
117
    let v: f32;
118
    let ix: u32;
119
120
0
    ix = x.to_bits();
121
0
    if (ix & 0x7fffffff) == 0 {
122
0
        return -1.0 / 0.0;
123
0
    }
124
0
    if (ix >> 31) != 0 {
125
0
        return 0.0 / 0.0;
126
0
    }
127
0
    if ix >= 0x7f800000 {
128
0
        return 1.0 / x;
129
0
    }
130
0
    if ix >= 0x40000000 {
131
        /* |x| >= 2.0 */
132
        /* large ulp error near zeros */
133
0
        return common(ix, x, true);
134
0
    }
135
0
    if ix >= 0x39000000 {
136
        /* x >= 2**-13 */
137
        /* large ulp error at x ~= 0.89 */
138
0
        z = x * x;
139
0
        u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
140
0
        v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
141
0
        return u / v + TPI * (j0f(x) * logf(x));
142
0
    }
143
0
    return U00 + TPI * logf(x);
144
0
}
145
146
/* The asymptotic expansions of pzero is
147
 *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
148
 * For x >= 2, We approximate pzero by
149
 *      pzero(x) = 1 + (R/S)
150
 * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
151
 *        S = 1 + pS0*s^2 + ... + pS4*s^10
152
 * and
153
 *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
154
 */
155
const PR8: [f32; 6] = [
156
    /* for x in [inf, 8]=1/[0,0.125] */
157
    0.0000000000e+00,  /* 0x00000000 */
158
    -7.0312500000e-02, /* 0xbd900000 */
159
    -8.0816707611e+00, /* 0xc1014e86 */
160
    -2.5706311035e+02, /* 0xc3808814 */
161
    -2.4852163086e+03, /* 0xc51b5376 */
162
    -5.2530439453e+03, /* 0xc5a4285a */
163
];
164
const PS8: [f32; 5] = [
165
    1.1653436279e+02, /* 0x42e91198 */
166
    3.8337448730e+03, /* 0x456f9beb */
167
    4.0597855469e+04, /* 0x471e95db */
168
    1.1675296875e+05, /* 0x47e4087c */
169
    4.7627726562e+04, /* 0x473a0bba */
170
];
171
const PR5: [f32; 6] = [
172
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
173
    -1.1412546255e-11, /* 0xad48c58a */
174
    -7.0312492549e-02, /* 0xbd8fffff */
175
    -4.1596107483e+00, /* 0xc0851b88 */
176
    -6.7674766541e+01, /* 0xc287597b */
177
    -3.3123129272e+02, /* 0xc3a59d9b */
178
    -3.4643338013e+02, /* 0xc3ad3779 */
179
];
180
const PS5: [f32; 5] = [
181
    6.0753936768e+01, /* 0x42730408 */
182
    1.0512523193e+03, /* 0x44836813 */
183
    5.9789707031e+03, /* 0x45bad7c4 */
184
    9.6254453125e+03, /* 0x461665c8 */
185
    2.4060581055e+03, /* 0x451660ee */
186
];
187
188
const PR3: [f32; 6] = [
189
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
190
    -2.5470459075e-09, /* 0xb12f081b */
191
    -7.0311963558e-02, /* 0xbd8fffb8 */
192
    -2.4090321064e+00, /* 0xc01a2d95 */
193
    -2.1965976715e+01, /* 0xc1afba52 */
194
    -5.8079170227e+01, /* 0xc2685112 */
195
    -3.1447946548e+01, /* 0xc1fb9565 */
196
];
197
const PS3: [f32; 5] = [
198
    3.5856033325e+01, /* 0x420f6c94 */
199
    3.6151397705e+02, /* 0x43b4c1ca */
200
    1.1936077881e+03, /* 0x44953373 */
201
    1.1279968262e+03, /* 0x448cffe6 */
202
    1.7358093262e+02, /* 0x432d94b8 */
203
];
204
205
const PR2: [f32; 6] = [
206
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
207
    -8.8753431271e-08, /* 0xb3be98b7 */
208
    -7.0303097367e-02, /* 0xbd8ffb12 */
209
    -1.4507384300e+00, /* 0xbfb9b1cc */
210
    -7.6356959343e+00, /* 0xc0f4579f */
211
    -1.1193166733e+01, /* 0xc1331736 */
212
    -3.2336456776e+00, /* 0xc04ef40d */
213
];
214
const PS2: [f32; 5] = [
215
    2.2220300674e+01, /* 0x41b1c32d */
216
    1.3620678711e+02, /* 0x430834f0 */
217
    2.7047027588e+02, /* 0x43873c32 */
218
    1.5387539673e+02, /* 0x4319e01a */
219
    1.4657617569e+01, /* 0x416a859a */
220
];
221
222
0
fn pzerof(x: f32) -> f32 {
223
    let p: &[f32; 6];
224
    let q: &[f32; 5];
225
    let z: f32;
226
    let r: f32;
227
    let s: f32;
228
    let mut ix: u32;
229
230
0
    ix = x.to_bits();
231
0
    ix &= 0x7fffffff;
232
0
    if ix >= 0x41000000 {
233
0
        p = &PR8;
234
0
        q = &PS8;
235
0
    } else if ix >= 0x409173eb {
236
0
        p = &PR5;
237
0
        q = &PS5;
238
0
    } else if ix >= 0x4036d917 {
239
0
        p = &PR3;
240
0
        q = &PS3;
241
0
    } else
242
    /*ix >= 0x40000000*/
243
0
    {
244
0
        p = &PR2;
245
0
        q = &PS2;
246
0
    }
247
0
    z = 1.0 / (x * x);
248
0
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
249
0
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
250
0
    return 1.0 + r / s;
251
0
}
252
253
/* For x >= 8, the asymptotic expansions of qzero is
254
 *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
255
 * We approximate pzero by
256
 *      qzero(x) = s*(-1.25 + (R/S))
257
 * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
258
 *        S = 1 + qS0*s^2 + ... + qS5*s^12
259
 * and
260
 *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
261
 */
262
const QR8: [f32; 6] = [
263
    /* for x in [inf, 8]=1/[0,0.125] */
264
    0.0000000000e+00, /* 0x00000000 */
265
    7.3242187500e-02, /* 0x3d960000 */
266
    1.1768206596e+01, /* 0x413c4a93 */
267
    5.5767340088e+02, /* 0x440b6b19 */
268
    8.8591972656e+03, /* 0x460a6cca */
269
    3.7014625000e+04, /* 0x471096a0 */
270
];
271
const QS8: [f32; 6] = [
272
    1.6377603149e+02,  /* 0x4323c6aa */
273
    8.0983447266e+03,  /* 0x45fd12c2 */
274
    1.4253829688e+05,  /* 0x480b3293 */
275
    8.0330925000e+05,  /* 0x49441ed4 */
276
    8.4050156250e+05,  /* 0x494d3359 */
277
    -3.4389928125e+05, /* 0xc8a7eb69 */
278
];
279
280
const QR5: [f32; 6] = [
281
    /* for x in [8,4.5454]=1/[0.125,0.22001] */
282
    1.8408595828e-11, /* 0x2da1ec79 */
283
    7.3242180049e-02, /* 0x3d95ffff */
284
    5.8356351852e+00, /* 0x40babd86 */
285
    1.3511157227e+02, /* 0x43071c90 */
286
    1.0272437744e+03, /* 0x448067cd */
287
    1.9899779053e+03, /* 0x44f8bf4b */
288
];
289
const QS5: [f32; 6] = [
290
    8.2776611328e+01,  /* 0x42a58da0 */
291
    2.0778142090e+03,  /* 0x4501dd07 */
292
    1.8847289062e+04,  /* 0x46933e94 */
293
    5.6751113281e+04,  /* 0x475daf1d */
294
    3.5976753906e+04,  /* 0x470c88c1 */
295
    -5.3543427734e+03, /* 0xc5a752be */
296
];
297
298
const QR3: [f32; 6] = [
299
    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
300
    4.3774099900e-09, /* 0x3196681b */
301
    7.3241114616e-02, /* 0x3d95ff70 */
302
    3.3442313671e+00, /* 0x405607e3 */
303
    4.2621845245e+01, /* 0x422a7cc5 */
304
    1.7080809021e+02, /* 0x432acedf */
305
    1.6673394775e+02, /* 0x4326bbe4 */
306
];
307
const QS3: [f32; 6] = [
308
    4.8758872986e+01,  /* 0x42430916 */
309
    7.0968920898e+02,  /* 0x44316c1c */
310
    3.7041481934e+03,  /* 0x4567825f */
311
    6.4604252930e+03,  /* 0x45c9e367 */
312
    2.5163337402e+03,  /* 0x451d4557 */
313
    -1.4924745178e+02, /* 0xc3153f59 */
314
];
315
316
const QR2: [f32; 6] = [
317
    /* for x in [2.8570,2]=1/[0.3499,0.5] */
318
    1.5044444979e-07, /* 0x342189db */
319
    7.3223426938e-02, /* 0x3d95f62a */
320
    1.9981917143e+00, /* 0x3fffc4bf */
321
    1.4495602608e+01, /* 0x4167edfd */
322
    3.1666231155e+01, /* 0x41fd5471 */
323
    1.6252708435e+01, /* 0x4182058c */
324
];
325
const QS2: [f32; 6] = [
326
    3.0365585327e+01,  /* 0x41f2ecb8 */
327
    2.6934811401e+02,  /* 0x4386ac8f */
328
    8.4478375244e+02,  /* 0x44533229 */
329
    8.8293585205e+02,  /* 0x445cbbe5 */
330
    2.1266638184e+02,  /* 0x4354aa98 */
331
    -5.3109550476e+00, /* 0xc0a9f358 */
332
];
333
334
0
fn qzerof(x: f32) -> f32 {
335
    let p: &[f32; 6];
336
    let q: &[f32; 6];
337
    let s: f32;
338
    let r: f32;
339
    let z: f32;
340
    let mut ix: u32;
341
342
0
    ix = x.to_bits();
343
0
    ix &= 0x7fffffff;
344
0
    if ix >= 0x41000000 {
345
0
        p = &QR8;
346
0
        q = &QS8;
347
0
    } else if ix >= 0x409173eb {
348
0
        p = &QR5;
349
0
        q = &QS5;
350
0
    } else if ix >= 0x4036d917 {
351
0
        p = &QR3;
352
0
        q = &QS3;
353
0
    } else
354
    /*ix >= 0x40000000*/
355
0
    {
356
0
        p = &QR2;
357
0
        q = &QS2;
358
0
    }
359
0
    z = 1.0 / (x * x);
360
0
    r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
361
0
    s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
362
0
    return (-0.125 + r / s) / x;
363
0
}