/rust/registry/src/index.crates.io-1949cf8c6b5b557f/zerocopy-0.8.31/src/split_at.rs
Line | Count | Source |
1 | | // Copyright 2025 The Fuchsia Authors |
2 | | // |
3 | | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
4 | | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
5 | | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
6 | | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
7 | | // This file may not be copied, modified, or distributed except according to |
8 | | // those terms. |
9 | | |
10 | | use super::*; |
11 | | use crate::pointer::invariant::{Aligned, Exclusive, Invariants, Shared, Valid}; |
12 | | |
13 | | /// Types that can be split in two. |
14 | | /// |
15 | | /// This trait generalizes Rust's existing support for splitting slices to |
16 | | /// support slices and slice-based dynamically-sized types ("slice DSTs"). |
17 | | /// |
18 | | /// # Implementation |
19 | | /// |
20 | | /// **Do not implement this trait yourself!** Instead, use |
21 | | /// [`#[derive(SplitAt)]`][derive]; e.g.: |
22 | | /// |
23 | | /// ``` |
24 | | /// # use zerocopy_derive::{SplitAt, KnownLayout}; |
25 | | /// #[derive(SplitAt, KnownLayout)] |
26 | | /// #[repr(C)] |
27 | | /// struct MyStruct<T: ?Sized> { |
28 | | /// # /* |
29 | | /// ..., |
30 | | /// # */ |
31 | | /// // `SplitAt` types must have at least one field. |
32 | | /// field: T, |
33 | | /// } |
34 | | /// ``` |
35 | | /// |
36 | | /// This derive performs a sophisticated, compile-time safety analysis to |
37 | | /// determine whether a type is `SplitAt`. |
38 | | /// |
39 | | /// # Safety |
40 | | /// |
41 | | /// This trait does not convey any safety guarantees to code outside this crate. |
42 | | /// |
43 | | /// You must not rely on the `#[doc(hidden)]` internals of `SplitAt`. Future |
44 | | /// releases of zerocopy may make backwards-breaking changes to these items, |
45 | | /// including changes that only affect soundness, which may cause code which |
46 | | /// uses those items to silently become unsound. |
47 | | /// |
48 | | #[cfg_attr(feature = "derive", doc = "[derive]: zerocopy_derive::SplitAt")] |
49 | | #[cfg_attr( |
50 | | not(feature = "derive"), |
51 | | doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.SplitAt.html"), |
52 | | )] |
53 | | #[cfg_attr( |
54 | | not(no_zerocopy_diagnostic_on_unimplemented_1_78_0), |
55 | | diagnostic::on_unimplemented(note = "Consider adding `#[derive(SplitAt)]` to `{Self}`") |
56 | | )] |
57 | | // # Safety |
58 | | // |
59 | | // The trailing slice is well-aligned for its element type. `Self` is `[T]`, or |
60 | | // a `repr(C)` or `repr(transparent)` slice DST. |
61 | | pub unsafe trait SplitAt: KnownLayout<PointerMetadata = usize> { |
62 | | /// The element type of the trailing slice. |
63 | | type Elem; |
64 | | |
65 | | #[doc(hidden)] |
66 | | fn only_derive_is_allowed_to_implement_this_trait() |
67 | | where |
68 | | Self: Sized; |
69 | | |
70 | | /// Unsafely splits `self` in two. |
71 | | /// |
72 | | /// # Safety |
73 | | /// |
74 | | /// The caller promises that `l_len` is not greater than the length of |
75 | | /// `self`'s trailing slice. |
76 | | #[inline] |
77 | | #[must_use] |
78 | 0 | unsafe fn split_at_unchecked(&self, l_len: usize) -> Split<&Self> { |
79 | | // SAFETY: By precondition on the caller, `l_len <= self.len()`. |
80 | 0 | unsafe { Split::<&Self>::new(self, l_len) } |
81 | 0 | } |
82 | | |
83 | | /// Attempts to split `self` in two. |
84 | | /// |
85 | | /// Returns `None` if `l_len` is greater than the length of `self`'s |
86 | | /// trailing slice. |
87 | | /// |
88 | | /// # Examples |
89 | | /// |
90 | | /// ``` |
91 | | /// use zerocopy::{SplitAt, FromBytes}; |
92 | | /// # use zerocopy_derive::*; |
93 | | /// |
94 | | /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable)] |
95 | | /// #[repr(C)] |
96 | | /// struct Packet { |
97 | | /// length: u8, |
98 | | /// body: [u8], |
99 | | /// } |
100 | | /// |
101 | | /// // These bytes encode a `Packet`. |
102 | | /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
103 | | /// |
104 | | /// let packet = Packet::ref_from_bytes(bytes).unwrap(); |
105 | | /// |
106 | | /// assert_eq!(packet.length, 4); |
107 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
108 | | /// |
109 | | /// // Attempt to split `packet` at `length`. |
110 | | /// let split = packet.split_at(packet.length as usize).unwrap(); |
111 | | /// |
112 | | /// // Use the `Immutable` bound on `Packet` to prove that it's okay to |
113 | | /// // return concurrent references to `packet` and `rest`. |
114 | | /// let (packet, rest) = split.via_immutable(); |
115 | | /// |
116 | | /// assert_eq!(packet.length, 4); |
117 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
118 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
119 | | /// ``` |
120 | | #[inline] |
121 | | #[must_use = "has no side effects"] |
122 | 0 | fn split_at(&self, l_len: usize) -> Option<Split<&Self>> { |
123 | 0 | MetadataOf::new_in_bounds(self, l_len).map( |
124 | | #[inline(always)] |
125 | 0 | |l_len| { |
126 | | // SAFETY: We have ensured that `l_len <= self.len()` (by |
127 | | // post-condition on `MetadataOf::new_in_bounds`) |
128 | 0 | unsafe { Split::new(self, l_len.get()) } |
129 | 0 | }, |
130 | | ) |
131 | 0 | } |
132 | | |
133 | | /// Unsafely splits `self` in two. |
134 | | /// |
135 | | /// # Safety |
136 | | /// |
137 | | /// The caller promises that `l_len` is not greater than the length of |
138 | | /// `self`'s trailing slice. |
139 | | #[inline] |
140 | | #[must_use] |
141 | 0 | unsafe fn split_at_mut_unchecked(&mut self, l_len: usize) -> Split<&mut Self> { |
142 | | // SAFETY: By precondition on the caller, `l_len <= self.len()`. |
143 | 0 | unsafe { Split::<&mut Self>::new(self, l_len) } |
144 | 0 | } |
145 | | |
146 | | /// Attempts to split `self` in two. |
147 | | /// |
148 | | /// Returns `None` if `l_len` is greater than the length of `self`'s |
149 | | /// trailing slice, or if the given `l_len` would result in [the trailing |
150 | | /// padding](KnownLayout#slice-dst-layout) of the left portion overlapping |
151 | | /// the right portion. |
152 | | /// |
153 | | /// |
154 | | /// # Examples |
155 | | /// |
156 | | /// ``` |
157 | | /// use zerocopy::{SplitAt, FromBytes}; |
158 | | /// # use zerocopy_derive::*; |
159 | | /// |
160 | | /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes)] |
161 | | /// #[repr(C)] |
162 | | /// struct Packet<B: ?Sized> { |
163 | | /// length: u8, |
164 | | /// body: B, |
165 | | /// } |
166 | | /// |
167 | | /// // These bytes encode a `Packet`. |
168 | | /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
169 | | /// |
170 | | /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap(); |
171 | | /// |
172 | | /// assert_eq!(packet.length, 4); |
173 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
174 | | /// |
175 | | /// { |
176 | | /// // Attempt to split `packet` at `length`. |
177 | | /// let split = packet.split_at_mut(packet.length as usize).unwrap(); |
178 | | /// |
179 | | /// // Use the `IntoBytes` bound on `Packet` to prove that it's okay to |
180 | | /// // return concurrent references to `packet` and `rest`. |
181 | | /// let (packet, rest) = split.via_into_bytes(); |
182 | | /// |
183 | | /// assert_eq!(packet.length, 4); |
184 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
185 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
186 | | /// |
187 | | /// rest.fill(0); |
188 | | /// } |
189 | | /// |
190 | | /// assert_eq!(packet.length, 4); |
191 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]); |
192 | | /// ``` |
193 | | #[inline] |
194 | 0 | fn split_at_mut(&mut self, l_len: usize) -> Option<Split<&mut Self>> { |
195 | 0 | MetadataOf::new_in_bounds(self, l_len).map( |
196 | | #[inline(always)] |
197 | 0 | |l_len| { |
198 | | // SAFETY: We have ensured that `l_len <= self.len()` (by |
199 | | // post-condition on `MetadataOf::new_in_bounds`) |
200 | 0 | unsafe { Split::new(self, l_len.get()) } |
201 | 0 | }, |
202 | | ) |
203 | 0 | } |
204 | | } |
205 | | |
206 | | // SAFETY: `[T]`'s trailing slice is `[T]`, which is trivially aligned. |
207 | | unsafe impl<T> SplitAt for [T] { |
208 | | type Elem = T; |
209 | | |
210 | | #[inline] |
211 | | #[allow(dead_code)] |
212 | 0 | fn only_derive_is_allowed_to_implement_this_trait() |
213 | 0 | where |
214 | 0 | Self: Sized, |
215 | | { |
216 | 0 | } |
217 | | } |
218 | | |
219 | | /// A `T` that has been split into two possibly-overlapping parts. |
220 | | /// |
221 | | /// For some dynamically sized types, the padding that appears after the |
222 | | /// trailing slice field [is a dynamic function of the trailing slice |
223 | | /// length](KnownLayout#slice-dst-layout). If `T` is split at a length that |
224 | | /// requires trailing padding, the trailing padding of the left part of the |
225 | | /// split `T` will overlap the right part. If `T` is a mutable reference or |
226 | | /// permits interior mutation, you must ensure that the left and right parts do |
227 | | /// not overlap. You can do this at zero-cost using using |
228 | | /// [`Self::via_immutable`], [`Self::via_into_bytes`], or |
229 | | /// [`Self::via_unaligned`], or with a dynamic check by using |
230 | | /// [`Self::via_runtime_check`]. |
231 | | #[derive(Debug)] |
232 | | pub struct Split<T> { |
233 | | /// A pointer to the source slice DST. |
234 | | source: T, |
235 | | /// The length of the future left half of `source`. |
236 | | /// |
237 | | /// # Safety |
238 | | /// |
239 | | /// If `source` is a pointer to a slice DST, `l_len` is no greater than |
240 | | /// `source`'s length. |
241 | | l_len: usize, |
242 | | } |
243 | | |
244 | | impl<T> Split<T> { |
245 | | /// Produces a `Split` of `source` with `l_len`. |
246 | | /// |
247 | | /// # Safety |
248 | | /// |
249 | | /// `l_len` is no greater than `source`'s length. |
250 | | #[inline(always)] |
251 | 0 | unsafe fn new(source: T, l_len: usize) -> Self { |
252 | 0 | Self { source, l_len } |
253 | 0 | } |
254 | | } |
255 | | |
256 | | impl<'a, T> Split<&'a T> |
257 | | where |
258 | | T: ?Sized + SplitAt, |
259 | | { |
260 | | #[inline(always)] |
261 | 0 | fn into_ptr(self) -> Split<Ptr<'a, T, (Shared, Aligned, Valid)>> { |
262 | 0 | let source = Ptr::from_ref(self.source); |
263 | | // SAFETY: `Ptr::from_ref(self.source)` points to exactly `self.source` |
264 | | // and thus maintains the invariants of `self` with respect to `l_len`. |
265 | 0 | unsafe { Split::new(source, self.l_len) } |
266 | 0 | } |
267 | | |
268 | | /// Produces the split parts of `self`, using [`Immutable`] to ensure that |
269 | | /// it is sound to have concurrent references to both parts. |
270 | | /// |
271 | | /// # Examples |
272 | | /// |
273 | | /// ``` |
274 | | /// use zerocopy::{SplitAt, FromBytes}; |
275 | | /// # use zerocopy_derive::*; |
276 | | /// |
277 | | /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable)] |
278 | | /// #[repr(C)] |
279 | | /// struct Packet { |
280 | | /// length: u8, |
281 | | /// body: [u8], |
282 | | /// } |
283 | | /// |
284 | | /// // These bytes encode a `Packet`. |
285 | | /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
286 | | /// |
287 | | /// let packet = Packet::ref_from_bytes(bytes).unwrap(); |
288 | | /// |
289 | | /// assert_eq!(packet.length, 4); |
290 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
291 | | /// |
292 | | /// // Attempt to split `packet` at `length`. |
293 | | /// let split = packet.split_at(packet.length as usize).unwrap(); |
294 | | /// |
295 | | /// // Use the `Immutable` bound on `Packet` to prove that it's okay to |
296 | | /// // return concurrent references to `packet` and `rest`. |
297 | | /// let (packet, rest) = split.via_immutable(); |
298 | | /// |
299 | | /// assert_eq!(packet.length, 4); |
300 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
301 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
302 | | /// ``` |
303 | | #[must_use = "has no side effects"] |
304 | | #[inline(always)] |
305 | 0 | pub fn via_immutable(self) -> (&'a T, &'a [T::Elem]) |
306 | 0 | where |
307 | 0 | T: Immutable, |
308 | | { |
309 | 0 | let (l, r) = self.into_ptr().via_immutable(); |
310 | 0 | (l.as_ref(), r.as_ref()) |
311 | 0 | } |
312 | | |
313 | | /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that |
314 | | /// it is sound to have concurrent references to both parts. |
315 | | /// |
316 | | /// # Examples |
317 | | /// |
318 | | /// ``` |
319 | | /// use zerocopy::{SplitAt, FromBytes}; |
320 | | /// # use zerocopy_derive::*; |
321 | | /// |
322 | | /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, IntoBytes)] |
323 | | /// #[repr(C)] |
324 | | /// struct Packet<B: ?Sized> { |
325 | | /// length: u8, |
326 | | /// body: B, |
327 | | /// } |
328 | | /// |
329 | | /// // These bytes encode a `Packet`. |
330 | | /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
331 | | /// |
332 | | /// let packet = Packet::<[u8]>::ref_from_bytes(bytes).unwrap(); |
333 | | /// |
334 | | /// assert_eq!(packet.length, 4); |
335 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
336 | | /// |
337 | | /// // Attempt to split `packet` at `length`. |
338 | | /// let split = packet.split_at(packet.length as usize).unwrap(); |
339 | | /// |
340 | | /// // Use the `IntoBytes` bound on `Packet` to prove that it's okay to |
341 | | /// // return concurrent references to `packet` and `rest`. |
342 | | /// let (packet, rest) = split.via_into_bytes(); |
343 | | /// |
344 | | /// assert_eq!(packet.length, 4); |
345 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
346 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
347 | | /// ``` |
348 | | #[must_use = "has no side effects"] |
349 | | #[inline(always)] |
350 | 0 | pub fn via_into_bytes(self) -> (&'a T, &'a [T::Elem]) |
351 | 0 | where |
352 | 0 | T: IntoBytes, |
353 | | { |
354 | 0 | let (l, r) = self.into_ptr().via_into_bytes(); |
355 | 0 | (l.as_ref(), r.as_ref()) |
356 | 0 | } |
357 | | |
358 | | /// Produces the split parts of `self`, using [`Unaligned`] to ensure that |
359 | | /// it is sound to have concurrent references to both parts. |
360 | | /// |
361 | | /// # Examples |
362 | | /// |
363 | | /// ``` |
364 | | /// use zerocopy::{SplitAt, FromBytes}; |
365 | | /// # use zerocopy_derive::*; |
366 | | /// |
367 | | /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, Unaligned)] |
368 | | /// #[repr(C)] |
369 | | /// struct Packet { |
370 | | /// length: u8, |
371 | | /// body: [u8], |
372 | | /// } |
373 | | /// |
374 | | /// // These bytes encode a `Packet`. |
375 | | /// let bytes = &[4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
376 | | /// |
377 | | /// let packet = Packet::ref_from_bytes(bytes).unwrap(); |
378 | | /// |
379 | | /// assert_eq!(packet.length, 4); |
380 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
381 | | /// |
382 | | /// // Attempt to split `packet` at `length`. |
383 | | /// let split = packet.split_at(packet.length as usize).unwrap(); |
384 | | /// |
385 | | /// // Use the `Unaligned` bound on `Packet` to prove that it's okay to |
386 | | /// // return concurrent references to `packet` and `rest`. |
387 | | /// let (packet, rest) = split.via_unaligned(); |
388 | | /// |
389 | | /// assert_eq!(packet.length, 4); |
390 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
391 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
392 | | /// ``` |
393 | | #[must_use = "has no side effects"] |
394 | | #[inline(always)] |
395 | 0 | pub fn via_unaligned(self) -> (&'a T, &'a [T::Elem]) |
396 | 0 | where |
397 | 0 | T: Unaligned, |
398 | | { |
399 | 0 | let (l, r) = self.into_ptr().via_unaligned(); |
400 | 0 | (l.as_ref(), r.as_ref()) |
401 | 0 | } |
402 | | |
403 | | /// Produces the split parts of `self`, using a dynamic check to ensure that |
404 | | /// it is sound to have concurrent references to both parts. You should |
405 | | /// prefer using [`Self::via_immutable`], [`Self::via_into_bytes`], or |
406 | | /// [`Self::via_unaligned`], which have no runtime cost. |
407 | | /// |
408 | | /// Note that this check is overly conservative if `T` is [`Immutable`]; for |
409 | | /// some types, this check will reject some splits which |
410 | | /// [`Self::via_immutable`] will accept. |
411 | | /// |
412 | | /// # Examples |
413 | | /// |
414 | | /// ``` |
415 | | /// use zerocopy::{SplitAt, FromBytes, IntoBytes, network_endian::U16}; |
416 | | /// # use zerocopy_derive::*; |
417 | | /// |
418 | | /// #[derive(SplitAt, FromBytes, KnownLayout, Immutable, Debug)] |
419 | | /// #[repr(C, align(2))] |
420 | | /// struct Packet { |
421 | | /// length: U16, |
422 | | /// body: [u8], |
423 | | /// } |
424 | | /// |
425 | | /// // These bytes encode a `Packet`. |
426 | | /// let bytes = [ |
427 | | /// 4u16.to_be(), |
428 | | /// 1u16.to_be(), |
429 | | /// 2u16.to_be(), |
430 | | /// 3u16.to_be(), |
431 | | /// 4u16.to_be() |
432 | | /// ]; |
433 | | /// |
434 | | /// let packet = Packet::ref_from_bytes(bytes.as_bytes()).unwrap(); |
435 | | /// |
436 | | /// assert_eq!(packet.length, 4); |
437 | | /// assert_eq!(packet.body, [0, 1, 0, 2, 0, 3, 0, 4]); |
438 | | /// |
439 | | /// // Attempt to split `packet` at `length`. |
440 | | /// let split = packet.split_at(packet.length.into()).unwrap(); |
441 | | /// |
442 | | /// // Use a dynamic check to prove that it's okay to return concurrent |
443 | | /// // references to `packet` and `rest`. |
444 | | /// let (packet, rest) = split.via_runtime_check().unwrap(); |
445 | | /// |
446 | | /// assert_eq!(packet.length, 4); |
447 | | /// assert_eq!(packet.body, [0, 1, 0, 2]); |
448 | | /// assert_eq!(rest, [0, 3, 0, 4]); |
449 | | /// |
450 | | /// // Attempt to split `packet` at `length - 1`. |
451 | | /// let idx = packet.length.get() - 1; |
452 | | /// let split = packet.split_at(idx as usize).unwrap(); |
453 | | /// |
454 | | /// // Attempt (and fail) to use a dynamic check to prove that it's okay |
455 | | /// // to return concurrent references to `packet` and `rest`. Note that |
456 | | /// // this is a case of `via_runtime_check` being overly conservative. |
457 | | /// // Although the left and right parts indeed overlap, the `Immutable` |
458 | | /// // bound ensures that concurrently referencing these overlapping |
459 | | /// // parts is sound. |
460 | | /// assert!(split.via_runtime_check().is_err()); |
461 | | /// ``` |
462 | | #[must_use = "has no side effects"] |
463 | | #[inline(always)] |
464 | 0 | pub fn via_runtime_check(self) -> Result<(&'a T, &'a [T::Elem]), Self> { |
465 | 0 | match self.into_ptr().via_runtime_check() { |
466 | 0 | Ok((l, r)) => Ok((l.as_ref(), r.as_ref())), |
467 | 0 | Err(s) => Err(s.into_ref()), |
468 | | } |
469 | 0 | } |
470 | | |
471 | | /// Unsafely produces the split parts of `self`. |
472 | | /// |
473 | | /// # Safety |
474 | | /// |
475 | | /// If `T` permits interior mutation, the trailing padding bytes of the left |
476 | | /// portion must not overlap the right portion. For some dynamically sized |
477 | | /// types, the padding that appears after the trailing slice field [is a |
478 | | /// dynamic function of the trailing slice |
479 | | /// length](KnownLayout#slice-dst-layout). Thus, for some types, this |
480 | | /// condition is dependent on the length of the left portion. |
481 | | #[must_use = "has no side effects"] |
482 | | #[inline(always)] |
483 | 0 | pub unsafe fn via_unchecked(self) -> (&'a T, &'a [T::Elem]) { |
484 | | // SAFETY: The aliasing of `self.into_ptr()` is not `Exclusive`, but the |
485 | | // caller has promised that if `T` permits interior mutation then the |
486 | | // left and right portions of `self` split at `l_len` do not overlap. |
487 | 0 | let (l, r) = unsafe { self.into_ptr().via_unchecked() }; |
488 | 0 | (l.as_ref(), r.as_ref()) |
489 | 0 | } |
490 | | } |
491 | | |
492 | | impl<'a, T> Split<&'a mut T> |
493 | | where |
494 | | T: ?Sized + SplitAt, |
495 | | { |
496 | | #[inline(always)] |
497 | 0 | fn into_ptr(self) -> Split<Ptr<'a, T, (Exclusive, Aligned, Valid)>> { |
498 | 0 | let source = Ptr::from_mut(self.source); |
499 | | // SAFETY: `Ptr::from_mut(self.source)` points to exactly `self.source`, |
500 | | // and thus maintains the invariants of `self` with respect to `l_len`. |
501 | 0 | unsafe { Split::new(source, self.l_len) } |
502 | 0 | } |
503 | | |
504 | | /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that |
505 | | /// it is sound to have concurrent references to both parts. |
506 | | /// |
507 | | /// # Examples |
508 | | /// |
509 | | /// ``` |
510 | | /// use zerocopy::{SplitAt, FromBytes}; |
511 | | /// # use zerocopy_derive::*; |
512 | | /// |
513 | | /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes)] |
514 | | /// #[repr(C)] |
515 | | /// struct Packet<B: ?Sized> { |
516 | | /// length: u8, |
517 | | /// body: B, |
518 | | /// } |
519 | | /// |
520 | | /// // These bytes encode a `Packet`. |
521 | | /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
522 | | /// |
523 | | /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap(); |
524 | | /// |
525 | | /// assert_eq!(packet.length, 4); |
526 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
527 | | /// |
528 | | /// { |
529 | | /// // Attempt to split `packet` at `length`. |
530 | | /// let split = packet.split_at_mut(packet.length as usize).unwrap(); |
531 | | /// |
532 | | /// // Use the `IntoBytes` bound on `Packet` to prove that it's okay to |
533 | | /// // return concurrent references to `packet` and `rest`. |
534 | | /// let (packet, rest) = split.via_into_bytes(); |
535 | | /// |
536 | | /// assert_eq!(packet.length, 4); |
537 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
538 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
539 | | /// |
540 | | /// rest.fill(0); |
541 | | /// } |
542 | | /// |
543 | | /// assert_eq!(packet.length, 4); |
544 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]); |
545 | | /// ``` |
546 | | #[must_use = "has no side effects"] |
547 | | #[inline(always)] |
548 | 0 | pub fn via_into_bytes(self) -> (&'a mut T, &'a mut [T::Elem]) |
549 | 0 | where |
550 | 0 | T: IntoBytes, |
551 | | { |
552 | 0 | let (l, r) = self.into_ptr().via_into_bytes(); |
553 | 0 | (l.as_mut(), r.as_mut()) |
554 | 0 | } |
555 | | |
556 | | /// Produces the split parts of `self`, using [`Unaligned`] to ensure that |
557 | | /// it is sound to have concurrent references to both parts. |
558 | | /// |
559 | | /// # Examples |
560 | | /// |
561 | | /// ``` |
562 | | /// use zerocopy::{SplitAt, FromBytes}; |
563 | | /// # use zerocopy_derive::*; |
564 | | /// |
565 | | /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes, Unaligned)] |
566 | | /// #[repr(C)] |
567 | | /// struct Packet<B: ?Sized> { |
568 | | /// length: u8, |
569 | | /// body: B, |
570 | | /// } |
571 | | /// |
572 | | /// // These bytes encode a `Packet`. |
573 | | /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
574 | | /// |
575 | | /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap(); |
576 | | /// |
577 | | /// assert_eq!(packet.length, 4); |
578 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
579 | | /// |
580 | | /// { |
581 | | /// // Attempt to split `packet` at `length`. |
582 | | /// let split = packet.split_at_mut(packet.length as usize).unwrap(); |
583 | | /// |
584 | | /// // Use the `Unaligned` bound on `Packet` to prove that it's okay to |
585 | | /// // return concurrent references to `packet` and `rest`. |
586 | | /// let (packet, rest) = split.via_unaligned(); |
587 | | /// |
588 | | /// assert_eq!(packet.length, 4); |
589 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
590 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
591 | | /// |
592 | | /// rest.fill(0); |
593 | | /// } |
594 | | /// |
595 | | /// assert_eq!(packet.length, 4); |
596 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]); |
597 | | /// ``` |
598 | | #[must_use = "has no side effects"] |
599 | | #[inline(always)] |
600 | 0 | pub fn via_unaligned(self) -> (&'a mut T, &'a mut [T::Elem]) |
601 | 0 | where |
602 | 0 | T: Unaligned, |
603 | | { |
604 | 0 | let (l, r) = self.into_ptr().via_unaligned(); |
605 | 0 | (l.as_mut(), r.as_mut()) |
606 | 0 | } |
607 | | |
608 | | /// Produces the split parts of `self`, using a dynamic check to ensure that |
609 | | /// it is sound to have concurrent references to both parts. You should |
610 | | /// prefer using [`Self::via_into_bytes`] or [`Self::via_unaligned`], which |
611 | | /// have no runtime cost. |
612 | | /// |
613 | | /// # Examples |
614 | | /// |
615 | | /// ``` |
616 | | /// use zerocopy::{SplitAt, FromBytes}; |
617 | | /// # use zerocopy_derive::*; |
618 | | /// |
619 | | /// #[derive(SplitAt, FromBytes, KnownLayout, IntoBytes, Debug)] |
620 | | /// #[repr(C)] |
621 | | /// struct Packet<B: ?Sized> { |
622 | | /// length: u8, |
623 | | /// body: B, |
624 | | /// } |
625 | | /// |
626 | | /// // These bytes encode a `Packet`. |
627 | | /// let mut bytes = &mut [4, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
628 | | /// |
629 | | /// let packet = Packet::<[u8]>::mut_from_bytes(bytes).unwrap(); |
630 | | /// |
631 | | /// assert_eq!(packet.length, 4); |
632 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 5, 6, 7, 8, 9]); |
633 | | /// |
634 | | /// { |
635 | | /// // Attempt to split `packet` at `length`. |
636 | | /// let split = packet.split_at_mut(packet.length as usize).unwrap(); |
637 | | /// |
638 | | /// // Use a dynamic check to prove that it's okay to return concurrent |
639 | | /// // references to `packet` and `rest`. |
640 | | /// let (packet, rest) = split.via_runtime_check().unwrap(); |
641 | | /// |
642 | | /// assert_eq!(packet.length, 4); |
643 | | /// assert_eq!(packet.body, [1, 2, 3, 4]); |
644 | | /// assert_eq!(rest, [5, 6, 7, 8, 9]); |
645 | | /// |
646 | | /// rest.fill(0); |
647 | | /// } |
648 | | /// |
649 | | /// assert_eq!(packet.length, 4); |
650 | | /// assert_eq!(packet.body, [1, 2, 3, 4, 0, 0, 0, 0, 0]); |
651 | | /// ``` |
652 | | #[must_use = "has no side effects"] |
653 | | #[inline(always)] |
654 | 0 | pub fn via_runtime_check(self) -> Result<(&'a mut T, &'a mut [T::Elem]), Self> { |
655 | 0 | match self.into_ptr().via_runtime_check() { |
656 | 0 | Ok((l, r)) => Ok((l.as_mut(), r.as_mut())), |
657 | 0 | Err(s) => Err(s.into_mut()), |
658 | | } |
659 | 0 | } |
660 | | |
661 | | /// Unsafely produces the split parts of `self`. |
662 | | /// |
663 | | /// # Safety |
664 | | /// |
665 | | /// The trailing padding bytes of the left portion must not overlap the |
666 | | /// right portion. For some dynamically sized types, the padding that |
667 | | /// appears after the trailing slice field [is a dynamic function of the |
668 | | /// trailing slice length](KnownLayout#slice-dst-layout). Thus, for some |
669 | | /// types, this condition is dependent on the length of the left portion. |
670 | | #[must_use = "has no side effects"] |
671 | | #[inline(always)] |
672 | 0 | pub unsafe fn via_unchecked(self) -> (&'a mut T, &'a mut [T::Elem]) { |
673 | | // SAFETY: The aliasing of `self.into_ptr()` is `Exclusive`, and the |
674 | | // caller has promised that the left and right portions of `self` split |
675 | | // at `l_len` do not overlap. |
676 | 0 | let (l, r) = unsafe { self.into_ptr().via_unchecked() }; |
677 | 0 | (l.as_mut(), r.as_mut()) |
678 | 0 | } |
679 | | } |
680 | | |
681 | | impl<'a, T, I> Split<Ptr<'a, T, I>> |
682 | | where |
683 | | T: ?Sized + SplitAt, |
684 | | I: Invariants<Alignment = Aligned, Validity = Valid>, |
685 | | { |
686 | 0 | fn into_ref(self) -> Split<&'a T> |
687 | 0 | where |
688 | 0 | I: Invariants<Aliasing = Shared>, |
689 | | { |
690 | | // SAFETY: `self.source.as_ref()` points to exactly the same referent as |
691 | | // `self.source` and thus maintains the invariants of `self` with |
692 | | // respect to `l_len`. |
693 | 0 | unsafe { Split::new(self.source.as_ref(), self.l_len) } |
694 | 0 | } |
695 | | |
696 | 0 | fn into_mut(self) -> Split<&'a mut T> |
697 | 0 | where |
698 | 0 | I: Invariants<Aliasing = Exclusive>, |
699 | | { |
700 | | // SAFETY: `self.source.as_mut()` points to exactly the same referent as |
701 | | // `self.source` and thus maintains the invariants of `self` with |
702 | | // respect to `l_len`. |
703 | 0 | unsafe { Split::new(self.source.unify_invariants().as_mut(), self.l_len) } |
704 | 0 | } |
705 | | |
706 | | /// Produces the length of `self`'s left part. |
707 | | #[inline(always)] |
708 | 0 | fn l_len(&self) -> MetadataOf<T> { |
709 | | // SAFETY: By invariant on `Split`, `self.l_len` is not greater than the |
710 | | // length of `self.source`. |
711 | 0 | unsafe { MetadataOf::<T>::new_unchecked(self.l_len) } |
712 | 0 | } |
713 | | |
714 | | /// Produces the split parts of `self`, using [`Immutable`] to ensure that |
715 | | /// it is sound to have concurrent references to both parts. |
716 | | #[inline(always)] |
717 | 0 | fn via_immutable(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>) |
718 | 0 | where |
719 | 0 | T: Immutable, |
720 | 0 | I: Invariants<Aliasing = Shared>, |
721 | | { |
722 | | // SAFETY: `Aliasing = Shared` and `T: Immutable`. |
723 | 0 | unsafe { self.via_unchecked() } |
724 | 0 | } |
725 | | |
726 | | /// Produces the split parts of `self`, using [`IntoBytes`] to ensure that |
727 | | /// it is sound to have concurrent references to both parts. |
728 | | #[inline(always)] |
729 | 0 | fn via_into_bytes(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>) |
730 | 0 | where |
731 | 0 | T: IntoBytes, |
732 | | { |
733 | | // SAFETY: By `T: IntoBytes`, `T` has no padding for any length. |
734 | | // Consequently, `T` can be split into non-overlapping parts at any |
735 | | // index. |
736 | 0 | unsafe { self.via_unchecked() } |
737 | 0 | } |
738 | | |
739 | | /// Produces the split parts of `self`, using [`Unaligned`] to ensure that |
740 | | /// it is sound to have concurrent references to both parts. |
741 | | #[inline(always)] |
742 | 0 | fn via_unaligned(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>) |
743 | 0 | where |
744 | 0 | T: Unaligned, |
745 | | { |
746 | | // SAFETY: By `T: SplitAt + Unaligned`, `T` is either a slice or a |
747 | | // `repr(C)` or `repr(transparent)` slice DST that is well-aligned at |
748 | | // any address and length. If `T` is a slice DST with alignment 1, |
749 | | // `repr(C)` or `repr(transparent)` ensures that no padding is placed |
750 | | // after the final element of the trailing slice. Consequently, `T` can |
751 | | // be split into strictly non-overlapping parts any any index. |
752 | 0 | unsafe { self.via_unchecked() } |
753 | 0 | } |
754 | | |
755 | | /// Produces the split parts of `self`, using a dynamic check to ensure that |
756 | | /// it is sound to have concurrent references to both parts. You should |
757 | | /// prefer using [`Self::via_immutable`], [`Self::via_into_bytes`], or |
758 | | /// [`Self::via_unaligned`], which have no runtime cost. |
759 | | #[inline(always)] |
760 | 0 | fn via_runtime_check(self) -> Result<(Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>), Self> { |
761 | 0 | let l_len = self.l_len(); |
762 | | // FIXME(#1290): Once we require `KnownLayout` on all fields, add an |
763 | | // `IS_IMMUTABLE` associated const, and add `T::IS_IMMUTABLE ||` to the |
764 | | // below check. |
765 | 0 | if l_len.padding_needed_for() == 0 { |
766 | | // SAFETY: By `T: SplitAt`, `T` is either `[T]`, or a `repr(C)` or |
767 | | // `repr(transparent)` slice DST, for which the trailing padding |
768 | | // needed to accommodate `l_len` trailing elements is |
769 | | // `l_len.padding_needed_for()`. If no trailing padding is required, |
770 | | // the left and right parts are strictly non-overlapping. |
771 | 0 | Ok(unsafe { self.via_unchecked() }) |
772 | | } else { |
773 | 0 | Err(self) |
774 | | } |
775 | 0 | } |
776 | | |
777 | | /// Unsafely produces the split parts of `self`. |
778 | | /// |
779 | | /// # Safety |
780 | | /// |
781 | | /// The caller promises that if `I::Aliasing` is [`Exclusive`] or `T` |
782 | | /// permits interior mutation, then `l_len.padding_needed_for() == 0`. |
783 | | #[inline(always)] |
784 | 0 | unsafe fn via_unchecked(self) -> (Ptr<'a, T, I>, Ptr<'a, [T::Elem], I>) { |
785 | 0 | let l_len = self.l_len(); |
786 | 0 | let inner = self.source.as_inner(); |
787 | | |
788 | | // SAFETY: By invariant on `Self::l_len`, `l_len` is not greater than |
789 | | // the length of `inner`'s trailing slice. |
790 | 0 | let (left, right) = unsafe { inner.split_at_unchecked(l_len) }; |
791 | | |
792 | | // Lemma 0: `left` and `right` conform to the aliasing invariant |
793 | | // `I::Aliasing`. Proof: If `I::Aliasing` is `Exclusive` or `T` permits |
794 | | // interior mutation, the caller promises that `l_len.padding_needed_for() |
795 | | // == 0`. Consequently, by post-condition on `PtrInner::split_at_unchecked`, |
796 | | // there is no trailing padding after `left`'s final element that would |
797 | | // overlap into `right`. If `I::Aliasing` is shared and `T` forbids interior |
798 | | // mutation, then overlap between their referents is permissible. |
799 | | |
800 | | // SAFETY: |
801 | | // 0. `left` conforms to the aliasing invariant of `I::Aliasing`, by Lemma 0. |
802 | | // 1. `left` conforms to the alignment invariant of `I::Alignment, because |
803 | | // the referents of `left` and `Self` have the same address and type |
804 | | // (and, thus, alignment requirement). |
805 | | // 2. `left` conforms to the validity invariant of `I::Validity`, neither |
806 | | // the type nor bytes of `left`'s referent have been changed. |
807 | 0 | let left = unsafe { Ptr::from_inner(left) }; |
808 | | |
809 | | // SAFETY: |
810 | | // 0. `right` conforms to the aliasing invariant of `I::Aliasing`, by Lemma |
811 | | // 0. |
812 | | // 1. `right` conforms to the alignment invariant of `I::Alignment, because |
813 | | // if `ptr` with `I::Alignment = Aligned`, then by invariant on `T: |
814 | | // SplitAt`, the trailing slice of `ptr` (from which `right` is derived) |
815 | | // will also be well-aligned. |
816 | | // 2. `right` conforms to the validity invariant of `I::Validity`, |
817 | | // because `right: [T::Elem]` is derived from the trailing slice of |
818 | | // `ptr`, which, by contract on `T: SplitAt::Elem`, has type |
819 | | // `[T::Elem]`. The `left` part cannot be used to invalidate `right`, |
820 | | // because the caller promises that if `I::Aliasing` is `Exclusive` |
821 | | // or `T` permits interior mutation, then `l_len.padding_needed_for() |
822 | | // == 0` and thus the parts will be non-overlapping. |
823 | 0 | let right = unsafe { Ptr::from_inner(right) }; |
824 | | |
825 | 0 | (left, right) |
826 | 0 | } |
827 | | } |
828 | | |
829 | | #[cfg(test)] |
830 | | mod tests { |
831 | | #[cfg(feature = "derive")] |
832 | | #[test] |
833 | | fn test_split_at() { |
834 | | use crate::{FromBytes, Immutable, IntoBytes, KnownLayout, SplitAt}; |
835 | | |
836 | | #[derive(FromBytes, KnownLayout, SplitAt, IntoBytes, Immutable, Debug)] |
837 | | #[repr(C)] |
838 | | struct SliceDst<const OFFSET: usize> { |
839 | | prefix: [u8; OFFSET], |
840 | | trailing: [u8], |
841 | | } |
842 | | |
843 | | #[allow(clippy::as_conversions)] |
844 | | fn test_split_at<const OFFSET: usize, const BUFFER_SIZE: usize>() { |
845 | | // Test `split_at` |
846 | | let n: usize = BUFFER_SIZE - OFFSET; |
847 | | let arr = [1; BUFFER_SIZE]; |
848 | | let dst = SliceDst::<OFFSET>::ref_from_bytes(&arr[..]).unwrap(); |
849 | | for i in 0..=n { |
850 | | let (l, r) = dst.split_at(i).unwrap().via_runtime_check().unwrap(); |
851 | | let l_sum: u8 = l.trailing.iter().sum(); |
852 | | let r_sum: u8 = r.iter().sum(); |
853 | | assert_eq!(l_sum, i as u8); |
854 | | assert_eq!(r_sum, (n - i) as u8); |
855 | | assert_eq!(l_sum + r_sum, n as u8); |
856 | | } |
857 | | |
858 | | // Test `split_at_mut` |
859 | | let n: usize = BUFFER_SIZE - OFFSET; |
860 | | let mut arr = [1; BUFFER_SIZE]; |
861 | | let dst = SliceDst::<OFFSET>::mut_from_bytes(&mut arr[..]).unwrap(); |
862 | | for i in 0..=n { |
863 | | let (l, r) = dst.split_at_mut(i).unwrap().via_runtime_check().unwrap(); |
864 | | let l_sum: u8 = l.trailing.iter().sum(); |
865 | | let r_sum: u8 = r.iter().sum(); |
866 | | assert_eq!(l_sum, i as u8); |
867 | | assert_eq!(r_sum, (n - i) as u8); |
868 | | assert_eq!(l_sum + r_sum, n as u8); |
869 | | } |
870 | | } |
871 | | |
872 | | test_split_at::<0, 16>(); |
873 | | test_split_at::<1, 17>(); |
874 | | test_split_at::<2, 18>(); |
875 | | } |
876 | | |
877 | | #[cfg(feature = "derive")] |
878 | | #[test] |
879 | | #[allow(clippy::as_conversions)] |
880 | | fn test_split_at_overlapping() { |
881 | | use crate::{FromBytes, Immutable, IntoBytes, KnownLayout, SplitAt}; |
882 | | |
883 | | #[derive(FromBytes, KnownLayout, SplitAt, Immutable)] |
884 | | #[repr(C, align(2))] |
885 | | struct SliceDst { |
886 | | prefix: u8, |
887 | | trailing: [u8], |
888 | | } |
889 | | |
890 | | const N: usize = 16; |
891 | | |
892 | | let arr = [1u16; N]; |
893 | | let dst = SliceDst::ref_from_bytes(arr.as_bytes()).unwrap(); |
894 | | |
895 | | for i in 0..N { |
896 | | let split = dst.split_at(i).unwrap().via_runtime_check(); |
897 | | if i % 2 == 1 { |
898 | | assert!(split.is_ok()); |
899 | | } else { |
900 | | assert!(split.is_err()); |
901 | | } |
902 | | } |
903 | | } |
904 | | } |