Coverage Report

Created: 2023-02-22 06:14

/src/botan/src/lib/modes/cbc/cbc.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
* CBC Mode
3
* (C) 1999-2007,2013,2017 Jack Lloyd
4
* (C) 2016 Daniel Neus, Rohde & Schwarz Cybersecurity
5
* (C) 2018 Ribose Inc
6
*
7
* Botan is released under the Simplified BSD License (see license.txt)
8
*/
9
10
#include <botan/internal/cbc.h>
11
#include <botan/internal/mode_pad.h>
12
#include <botan/internal/rounding.h>
13
14
namespace Botan {
15
16
CBC_Mode::CBC_Mode(std::unique_ptr<BlockCipher> cipher,
17
                   std::unique_ptr<BlockCipherModePaddingMethod> padding) :
18
   m_cipher(std::move(cipher)),
19
   m_padding(std::move(padding)),
20
   m_block_size(m_cipher->block_size())
21
0
   {
22
0
   if(m_padding && !m_padding->valid_blocksize(m_block_size))
23
0
      throw Invalid_Argument("Padding " + m_padding->name() +
24
0
                             " cannot be used with " +
25
0
                             m_cipher->name() + "/CBC");
26
0
   }
27
28
void CBC_Mode::clear()
29
0
   {
30
0
   m_cipher->clear();
31
0
   reset();
32
0
   }
33
34
void CBC_Mode::reset()
35
0
   {
36
0
   m_state.clear();
37
0
   }
38
39
std::string CBC_Mode::name() const
40
0
   {
41
0
   if(m_padding)
42
0
      return cipher().name() + "/CBC/" + padding().name();
43
0
   else
44
0
      return cipher().name() + "/CBC/CTS";
45
0
   }
46
47
size_t CBC_Mode::update_granularity() const
48
0
   {
49
0
   return cipher().block_size();
50
0
   }
51
52
size_t CBC_Mode::ideal_granularity() const
53
0
   {
54
0
   return cipher().parallel_bytes();
55
0
   }
56
57
Key_Length_Specification CBC_Mode::key_spec() const
58
0
   {
59
0
   return cipher().key_spec();
60
0
   }
61
62
size_t CBC_Mode::default_nonce_length() const
63
0
   {
64
0
   return block_size();
65
0
   }
66
67
bool CBC_Mode::valid_nonce_length(size_t n) const
68
0
   {
69
0
   return (n == 0 || n == block_size());
70
0
   }
71
72
bool CBC_Mode::has_keying_material() const
73
0
   {
74
0
   return m_cipher->has_keying_material();
75
0
   }
76
77
void CBC_Mode::key_schedule(const uint8_t key[], size_t length)
78
0
   {
79
0
   m_cipher->set_key(key, length);
80
0
   m_state.clear();
81
0
   }
82
83
void CBC_Mode::start_msg(const uint8_t nonce[], size_t nonce_len)
84
0
   {
85
0
   if(!valid_nonce_length(nonce_len))
86
0
      throw Invalid_IV_Length(name(), nonce_len);
87
88
   /*
89
   * A nonce of zero length means carry the last ciphertext value over
90
   * as the new IV, as unfortunately some protocols require this. If
91
   * this is the first message then we use an IV of all zeros.
92
   */
93
0
   if(nonce_len)
94
0
      m_state.assign(nonce, nonce + nonce_len);
95
0
   else if(m_state.empty())
96
0
      m_state.resize(m_cipher->block_size());
97
   // else leave the state alone
98
0
   }
99
100
size_t CBC_Encryption::minimum_final_size() const
101
0
   {
102
0
   return 0;
103
0
   }
104
105
size_t CBC_Encryption::output_length(size_t input_length) const
106
0
   {
107
0
   if(input_length == 0)
108
0
      return block_size();
109
0
   else
110
0
      return round_up(input_length, block_size());
111
0
   }
112
113
size_t CBC_Encryption::process(uint8_t buf[], size_t sz)
114
0
   {
115
0
   BOTAN_STATE_CHECK(state().empty() == false);
116
0
   const size_t BS = block_size();
117
118
0
   BOTAN_ARG_CHECK(sz % BS == 0, "CBC input is not full blocks");
119
0
   const size_t blocks = sz / BS;
120
121
0
   if(blocks > 0)
122
0
      {
123
0
      xor_buf(&buf[0], state_ptr(), BS);
124
0
      cipher().encrypt(&buf[0]);
125
126
0
      for(size_t i = 1; i != blocks; ++i)
127
0
         {
128
0
         xor_buf(&buf[BS*i], &buf[BS*(i-1)], BS);
129
0
         cipher().encrypt(&buf[BS*i]);
130
0
         }
131
132
0
      state().assign(&buf[BS*(blocks-1)], &buf[BS*blocks]);
133
0
      }
134
135
0
   return sz;
136
0
   }
137
138
void CBC_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
139
0
   {
140
0
   BOTAN_STATE_CHECK(state().empty() == false);
141
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
142
143
0
   const size_t BS = block_size();
144
145
0
   const size_t bytes_in_final_block = (buffer.size()-offset) % BS;
146
147
0
   padding().add_padding(buffer, bytes_in_final_block, BS);
148
149
0
   BOTAN_ASSERT_EQUAL(buffer.size() % BS, offset % BS, "Padded to block boundary");
150
151
0
   update(buffer, offset);
152
0
   }
153
154
bool CTS_Encryption::valid_nonce_length(size_t n) const
155
0
   {
156
0
   return (n == block_size());
157
0
   }
158
159
size_t CTS_Encryption::minimum_final_size() const
160
0
   {
161
0
   return block_size() + 1;
162
0
   }
163
164
size_t CTS_Encryption::output_length(size_t input_length) const
165
0
   {
166
0
   return input_length; // no ciphertext expansion in CTS
167
0
   }
168
169
void CTS_Encryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
170
0
   {
171
0
   BOTAN_STATE_CHECK(state().empty() == false);
172
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
173
0
   uint8_t* buf = buffer.data() + offset;
174
0
   const size_t sz = buffer.size() - offset;
175
176
0
   const size_t BS = block_size();
177
178
0
   if(sz < BS + 1)
179
0
      throw Encoding_Error(name() + ": insufficient data to encrypt");
180
181
0
   if(sz % BS == 0)
182
0
      {
183
0
      update(buffer, offset);
184
185
      // swap last two blocks
186
0
      for(size_t i = 0; i != BS; ++i)
187
0
         std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]);
188
0
      }
189
0
   else
190
0
      {
191
0
      const size_t full_blocks = ((sz / BS) - 1) * BS;
192
0
      const size_t final_bytes = sz - full_blocks;
193
0
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");
194
195
0
      secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
196
0
      buffer.resize(full_blocks + offset);
197
0
      update(buffer, offset);
198
199
0
      xor_buf(last.data(), state_ptr(), BS);
200
0
      cipher().encrypt(last.data());
201
202
0
      for(size_t i = 0; i != final_bytes - BS; ++i)
203
0
         {
204
0
         last[i] ^= last[i + BS];
205
0
         last[i + BS] ^= last[i];
206
0
         }
207
208
0
      cipher().encrypt(last.data());
209
210
0
      buffer += last;
211
0
      }
212
0
   }
213
214
size_t CBC_Decryption::output_length(size_t input_length) const
215
0
   {
216
0
   return input_length; // precise for CTS, worst case otherwise
217
0
   }
218
219
size_t CBC_Decryption::minimum_final_size() const
220
0
   {
221
0
   return block_size();
222
0
   }
223
224
size_t CBC_Decryption::process(uint8_t buf[], size_t sz)
225
0
   {
226
0
   BOTAN_STATE_CHECK(state().empty() == false);
227
228
0
   const size_t BS = block_size();
229
230
0
   BOTAN_ARG_CHECK(sz % BS == 0, "Input is not full blocks");
231
0
   size_t blocks = sz / BS;
232
233
0
   while(blocks)
234
0
      {
235
0
      const size_t to_proc = std::min(BS * blocks, m_tempbuf.size());
236
237
0
      cipher().decrypt_n(buf, m_tempbuf.data(), to_proc / BS);
238
239
0
      xor_buf(m_tempbuf.data(), state_ptr(), BS);
240
0
      xor_buf(&m_tempbuf[BS], buf, to_proc - BS);
241
0
      copy_mem(state_ptr(), buf + (to_proc - BS), BS);
242
243
0
      copy_mem(buf, m_tempbuf.data(), to_proc);
244
245
0
      buf += to_proc;
246
0
      blocks -= to_proc / BS;
247
0
      }
248
249
0
   return sz;
250
0
   }
251
252
void CBC_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
253
0
   {
254
0
   BOTAN_STATE_CHECK(state().empty() == false);
255
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
256
0
   const size_t sz = buffer.size() - offset;
257
258
0
   const size_t BS = block_size();
259
260
0
   if(sz == 0 || sz % BS)
261
0
      throw Decoding_Error(name() + ": Ciphertext not a multiple of block size");
262
263
0
   update(buffer, offset);
264
265
0
   const size_t pad_bytes = BS - padding().unpad(&buffer[buffer.size()-BS], BS);
266
0
   buffer.resize(buffer.size() - pad_bytes); // remove padding
267
0
   if(pad_bytes == 0 && padding().name() != "NoPadding")
268
0
      {
269
0
      throw Decoding_Error("Invalid CBC padding");
270
0
      }
271
0
   }
272
273
void CBC_Decryption::reset()
274
0
   {
275
0
   CBC_Mode::reset();
276
0
   zeroise(m_tempbuf);
277
0
   }
278
279
bool CTS_Decryption::valid_nonce_length(size_t n) const
280
0
   {
281
0
   return (n == block_size());
282
0
   }
283
284
size_t CTS_Decryption::minimum_final_size() const
285
0
   {
286
0
   return block_size() + 1;
287
0
   }
288
289
void CTS_Decryption::finish(secure_vector<uint8_t>& buffer, size_t offset)
290
0
   {
291
0
   BOTAN_STATE_CHECK(state().empty() == false);
292
0
   BOTAN_ARG_CHECK(buffer.size() >= offset, "Offset is out of range");
293
0
   const size_t sz = buffer.size() - offset;
294
0
   uint8_t* buf = buffer.data() + offset;
295
296
0
   const size_t BS = block_size();
297
298
0
   if(sz < BS + 1)
299
0
      throw Encoding_Error(name() + ": insufficient data to decrypt");
300
301
0
   if(sz % BS == 0)
302
0
      {
303
      // swap last two blocks
304
305
0
      for(size_t i = 0; i != BS; ++i)
306
0
         std::swap(buffer[buffer.size()-BS+i], buffer[buffer.size()-2*BS+i]);
307
308
0
      update(buffer, offset);
309
0
      }
310
0
   else
311
0
      {
312
0
      const size_t full_blocks = ((sz / BS) - 1) * BS;
313
0
      const size_t final_bytes = sz - full_blocks;
314
0
      BOTAN_ASSERT(final_bytes > BS && final_bytes < 2*BS, "Left over size in expected range");
315
316
0
      secure_vector<uint8_t> last(buf + full_blocks, buf + full_blocks + final_bytes);
317
0
      buffer.resize(full_blocks + offset);
318
0
      update(buffer, offset);
319
320
0
      cipher().decrypt(last.data());
321
322
0
      xor_buf(last.data(), &last[BS], final_bytes - BS);
323
324
0
      for(size_t i = 0; i != final_bytes - BS; ++i)
325
0
         std::swap(last[i], last[i + BS]);
326
327
0
      cipher().decrypt(last.data());
328
0
      xor_buf(last.data(), state_ptr(), BS);
329
330
0
      buffer += last;
331
0
      }
332
0
   }
333
334
}