Coverage Report

Created: 2023-02-22 06:14

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
279
#define CAST_SMALL_KEY 10
56
57
51.7k
#define S1 cast_sbox1
58
51.7k
#define S2 cast_sbox2
59
51.7k
#define S3 cast_sbox3
60
51.7k
#define S4 cast_sbox4
61
11.1k
#define S5 cast_sbox5
62
11.1k
#define S6 cast_sbox6
63
11.1k
#define S7 cast_sbox7
64
11.1k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
62.9k
#define B0(x) ( (uint8_t) (x>>24) )
68
62.9k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
62.9k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
62.9k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
18.2k
#define F1(l, r, i) do {         \
76
18.2k
    t = ctx->Km[i] + r;           \
77
18.2k
    t = ROTL32(ctx->Kr[i], t);          \
78
18.2k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
18.2k
  } while (0)
80
16.7k
#define F2(l, r, i) do {         \
81
16.7k
    t = ctx->Km[i] ^ r;           \
82
16.7k
    t = ROTL32( ctx->Kr[i], t);         \
83
16.7k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
16.7k
  } while (0)
85
16.7k
#define F3(l, r, i) do {         \
86
16.7k
    t = ctx->Km[i] - r;           \
87
16.7k
    t = ROTL32(ctx->Kr[i], t);          \
88
16.7k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
16.7k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
127
{
99
127
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
1.82k
    {
101
1.82k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
1.82k
      l = READ_UINT32(src);
105
1.82k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
1.82k
      F1(l, r,  0);
109
1.82k
      F2(r, l,  1);
110
1.82k
      F3(l, r,  2);
111
1.82k
      F1(r, l,  3);
112
1.82k
      F2(l, r,  4);
113
1.82k
      F3(r, l,  5);
114
1.82k
      F1(l, r,  6);
115
1.82k
      F2(r, l,  7);
116
1.82k
      F3(l, r,  8);
117
1.82k
      F1(r, l,  9);
118
1.82k
      F2(l, r, 10);
119
1.82k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
1.82k
      if (ctx->rounds & 16) {
122
641
  F1(l, r, 12);
123
641
  F2(r, l, 13);
124
641
  F3(l, r, 14);
125
641
  F1(r, l, 15);
126
641
      }
127
      /* Put l,r into outblock */
128
1.82k
      WRITE_UINT32(dst, r);
129
1.82k
      WRITE_UINT32(dst + 4, l);
130
1.82k
    }
131
127
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
152
{
141
152
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
2.00k
    {
143
2.00k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
2.00k
      r = READ_UINT32(src);
147
2.00k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
2.00k
      if (ctx->rounds & 16) {
152
812
  F1(r, l, 15);
153
812
  F3(l, r, 14);
154
812
  F2(r, l, 13);
155
812
  F1(l, r, 12);
156
812
      }
157
2.00k
      F3(r, l, 11);
158
2.00k
      F2(l, r, 10);
159
2.00k
      F1(r, l,  9);
160
2.00k
      F3(l, r,  8);
161
2.00k
      F2(r, l,  7);
162
2.00k
      F1(l, r,  6);
163
2.00k
      F3(r, l,  5);
164
2.00k
      F2(l, r,  4);
165
2.00k
      F1(r, l,  3);
166
2.00k
      F3(l, r,  2);
167
2.00k
      F2(r, l,  1);
168
2.00k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
2.00k
      WRITE_UINT32(dst, l);
172
2.00k
      WRITE_UINT32(dst + 4, r);
173
2.00k
    }
174
152
}
175
176
/***** Key Schedule *****/
177
178
3.80k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
3.80k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
558
#define EXPAND(set, full) do {           \
182
558
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
558
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
558
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
558
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
558
                      \
187
558
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
558
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
558
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
558
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
558
                      \
192
558
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
558
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
558
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
558
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
558
                      \
197
558
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
558
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
558
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
558
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
558
                      \
202
558
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
558
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
558
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
558
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
558
                      \
207
558
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
558
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
558
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
558
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
558
                  \
212
558
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
558
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
558
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
558
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
558
    if (full)               \
217
558
      {                 \
218
226
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
226
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
226
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
226
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
226
      }                  \
223
558
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
279
{
229
279
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
279
  uint32_t w;
231
279
  int full;
232
233
279
  assert (length >= CAST5_MIN_KEY_SIZE);
234
279
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
279
  full = (length > CAST_SMALL_KEY);
237
238
279
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
279
  switch (length & 3)
242
279
    {
243
146
    case 0:
244
146
      w = READ_UINT32 (key + length - 4);
245
146
      break;
246
34
    case 3:
247
34
      w = READ_UINT24 (key + length - 3) << 8;
248
34
      break;
249
35
    case 2:
250
35
      w = READ_UINT16 (key + length - 2) << 16;
251
35
      break;
252
64
    case 1:
253
64
      w = (uint32_t) key[length - 1] << 24;
254
64
      break;
255
279
    }
256
257
279
  if (length <= 8)
258
132
    {
259
132
      x1 = w;
260
132
      x2 = x3 = 0;
261
132
    }
262
147
  else
263
147
    {
264
147
      x1 = READ_UINT32 (key + 4);
265
147
      if (length <= 12)
266
42
  {
267
42
    x2 = w;
268
42
    x3 = 0;
269
42
  }
270
105
      else
271
105
  {
272
105
    x2 = READ_UINT32 (key + 8);
273
105
    x3 = w;
274
105
  }
275
147
    }
276
277
3.80k
  EXPAND(SET_KM, full);
278
3.80k
  EXPAND(SET_KR, full);
279
280
279
  ctx->rounds = full ? 16 : 12;
281
279
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}