Coverage Report

Created: 2023-02-22 06:14

/src/nettle-with-libgmp/sm4.c
Line
Count
Source (jump to first uncovered line)
1
/* sm4.c
2
3
   Copyright (C) 2022 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
#if HAVE_CONFIG_H
33
# include "config.h"
34
#endif
35
36
#include <assert.h>
37
#include <string.h>
38
39
#include "sm4.h"
40
41
#include "macros.h"
42
43
44
static const uint32_t fk[4] =
45
{
46
  0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
47
};
48
49
static const uint32_t ck[32] =
50
{
51
  0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
52
  0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
53
  0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
54
  0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
55
  0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
56
  0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
57
  0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
58
  0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
59
};
60
61
static const uint8_t sbox[256] =
62
{
63
  0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
64
  0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
65
  0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
66
  0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
67
  0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a,
68
  0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
69
  0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95,
70
  0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
71
  0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba,
72
  0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
73
  0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b,
74
  0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
75
  0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2,
76
  0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
77
  0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52,
78
  0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
79
  0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5,
80
  0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
81
  0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55,
82
  0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
83
  0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60,
84
  0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
85
  0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f,
86
  0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
87
  0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f,
88
  0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
89
  0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd,
90
  0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
91
  0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e,
92
  0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
93
  0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20,
94
  0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48
95
};
96
97
static uint32_t
98
sm4_t_non_lin_sub(uint32_t x)
99
4.67k
{
100
4.67k
  uint32_t out;
101
102
4.67k
  out  = (uint32_t)sbox[x & 0xff];
103
4.67k
  out |= (uint32_t)sbox[(x >> 8) & 0xff] << 8;
104
4.67k
  out |= (uint32_t)sbox[(x >> 16) & 0xff] << 16;
105
4.67k
  out |= (uint32_t)sbox[(x >> 24) & 0xff] << 24;
106
107
4.67k
  return out;
108
4.67k
}
109
110
static uint32_t
111
sm4_key_lin_sub(uint32_t x)
112
2.33k
{
113
2.33k
  return x ^ ROTL32(13, x) ^ ROTL32(23, x);
114
2.33k
}
115
116
static uint32_t
117
sm4_enc_lin_sub(uint32_t x)
118
2.33k
{
119
2.33k
  return x ^ ROTL32(2, x) ^ ROTL32(10, x) ^ ROTL32(18, x) ^ ROTL32(24, x);
120
2.33k
}
121
122
static uint32_t
123
sm4_key_sub(uint32_t x)
124
2.33k
{
125
2.33k
  return sm4_key_lin_sub(sm4_t_non_lin_sub(x));
126
2.33k
}
127
128
static uint32_t
129
sm4_enc_sub(uint32_t x)
130
2.33k
{
131
2.33k
  return sm4_enc_lin_sub(sm4_t_non_lin_sub(x));
132
2.33k
}
133
134
static uint32_t
135
sm4_round(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t rk)
136
2.33k
{
137
2.33k
  return x0 ^ sm4_enc_sub(x1 ^ x2 ^ x3 ^ rk);
138
2.33k
}
139
140
static void
141
sm4_set_key(struct sm4_ctx *ctx, const uint8_t *key, int encrypt)
142
73
{
143
73
  uint32_t rk0, rk1, rk2, rk3;
144
73
  unsigned i;
145
146
73
  rk0 = READ_UINT32(key +  0) ^ fk[0];
147
73
  rk1 = READ_UINT32(key +  4) ^ fk[1];
148
73
  rk2 = READ_UINT32(key +  8) ^ fk[2];
149
73
  rk3 = READ_UINT32(key + 12) ^ fk[3];
150
151
657
  for (i = 0; i < 32; i += 4)
152
584
    {
153
584
      rk0 ^= sm4_key_sub(rk1 ^ rk2 ^ rk3 ^ ck[i + 0]);
154
584
      rk1 ^= sm4_key_sub(rk2 ^ rk3 ^ rk0 ^ ck[i + 1]);
155
584
      rk2 ^= sm4_key_sub(rk3 ^ rk0 ^ rk1 ^ ck[i + 2]);
156
584
      rk3 ^= sm4_key_sub(rk0 ^ rk1 ^ rk2 ^ ck[i + 3]);
157
158
584
      if (encrypt)
159
584
        {
160
584
          ctx->rkey[i + 0] = rk0;
161
584
          ctx->rkey[i + 1] = rk1;
162
584
          ctx->rkey[i + 2] = rk2;
163
584
          ctx->rkey[i + 3] = rk3;
164
584
        }
165
0
      else
166
0
        {
167
0
          ctx->rkey[31 - 0 - i] = rk0;
168
0
          ctx->rkey[31 - 1 - i] = rk1;
169
0
          ctx->rkey[31 - 2 - i] = rk2;
170
0
          ctx->rkey[31 - 3 - i] = rk3;
171
0
        }
172
584
    }
173
73
}
174
175
void
176
sm4_set_encrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
177
73
{
178
73
  sm4_set_key(ctx, key, 1);
179
73
}
180
181
void
182
sm4_set_decrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
183
0
{
184
0
  sm4_set_key(ctx, key, 0);
185
0
}
186
187
void
188
sm4_crypt(const struct sm4_ctx *context,
189
    size_t length,
190
    uint8_t *dst,
191
    const uint8_t *src)
192
73
{
193
73
  const uint32_t *rk = context->rkey;
194
195
73
  assert( !(length % SM4_BLOCK_SIZE) );
196
197
146
  for ( ; length; length -= SM4_BLOCK_SIZE)
198
73
    {
199
73
      uint32_t x0, x1, x2, x3;
200
73
      unsigned i;
201
202
73
      x0 = READ_UINT32(src + 0 * 4);
203
73
      x1 = READ_UINT32(src + 1 * 4);
204
73
      x2 = READ_UINT32(src + 2 * 4);
205
73
      x3 = READ_UINT32(src + 3 * 4);
206
207
657
      for (i = 0; i < 32; i += 4)
208
584
        {
209
584
          x0 = sm4_round(x0, x1, x2, x3, rk[i + 0]);
210
584
          x1 = sm4_round(x1, x2, x3, x0, rk[i + 1]);
211
584
          x2 = sm4_round(x2, x3, x0, x1, rk[i + 2]);
212
584
          x3 = sm4_round(x3, x0, x1, x2, rk[i + 3]);
213
584
        }
214
215
73
      WRITE_UINT32(dst + 0 * 4, x3);
216
73
      WRITE_UINT32(dst + 1 * 4, x2);
217
73
      WRITE_UINT32(dst + 2 * 4, x1);
218
73
      WRITE_UINT32(dst + 3 * 4, x0);
219
220
73
      src += SM4_BLOCK_SIZE;
221
73
      dst += SM4_BLOCK_SIZE;
222
73
    }
223
73
}