Coverage Report

Created: 2023-02-22 06:14

/src/nettle-with-mini-gmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
328
#define CAST_SMALL_KEY 10
56
57
13.5k
#define S1 cast_sbox1
58
13.5k
#define S2 cast_sbox2
59
13.5k
#define S3 cast_sbox3
60
13.5k
#define S4 cast_sbox4
61
13.1k
#define S5 cast_sbox5
62
13.1k
#define S6 cast_sbox6
63
13.1k
#define S7 cast_sbox7
64
13.1k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
26.6k
#define B0(x) ( (uint8_t) (x>>24) )
68
26.6k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
26.6k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
26.6k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
4.94k
#define F1(l, r, i) do {         \
76
4.94k
    t = ctx->Km[i] + r;           \
77
4.94k
    t = ROTL32(ctx->Kr[i], t);          \
78
4.94k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
4.94k
  } while (0)
80
4.30k
#define F2(l, r, i) do {         \
81
4.30k
    t = ctx->Km[i] ^ r;           \
82
4.30k
    t = ROTL32( ctx->Kr[i], t);         \
83
4.30k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
4.30k
  } while (0)
85
4.30k
#define F3(l, r, i) do {         \
86
4.30k
    t = ctx->Km[i] - r;           \
87
4.30k
    t = ROTL32(ctx->Kr[i], t);          \
88
4.30k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
4.30k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
178
{
99
178
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
454
    {
101
454
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
454
      l = READ_UINT32(src);
105
454
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
454
      F1(l, r,  0);
109
454
      F2(r, l,  1);
110
454
      F3(l, r,  2);
111
454
      F1(r, l,  3);
112
454
      F2(l, r,  4);
113
454
      F3(r, l,  5);
114
454
      F1(l, r,  6);
115
454
      F2(r, l,  7);
116
454
      F3(l, r,  8);
117
454
      F1(r, l,  9);
118
454
      F2(l, r, 10);
119
454
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
454
      if (ctx->rounds & 16) {
122
318
  F1(l, r, 12);
123
318
  F2(r, l, 13);
124
318
  F3(l, r, 14);
125
318
  F1(r, l, 15);
126
318
      }
127
      /* Put l,r into outblock */
128
454
      WRITE_UINT32(dst, r);
129
454
      WRITE_UINT32(dst + 4, l);
130
454
    }
131
178
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
150
{
141
150
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
464
    {
143
464
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
464
      r = READ_UINT32(src);
147
464
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
464
      if (ctx->rounds & 16) {
152
318
  F1(r, l, 15);
153
318
  F3(l, r, 14);
154
318
  F2(r, l, 13);
155
318
  F1(l, r, 12);
156
318
      }
157
464
      F3(r, l, 11);
158
464
      F2(l, r, 10);
159
464
      F1(r, l,  9);
160
464
      F3(l, r,  8);
161
464
      F2(r, l,  7);
162
464
      F1(l, r,  6);
163
464
      F3(r, l,  5);
164
464
      F2(l, r,  4);
165
464
      F1(r, l,  3);
166
464
      F3(l, r,  2);
167
464
      F2(r, l,  1);
168
464
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
464
      WRITE_UINT32(dst, l);
172
464
      WRITE_UINT32(dst + 4, r);
173
464
    }
174
150
}
175
176
/***** Key Schedule *****/
177
178
4.39k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
4.39k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
656
#define EXPAND(set, full) do {           \
182
656
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
656
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
656
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
656
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
656
                      \
187
656
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
656
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
656
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
656
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
656
                      \
192
656
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
656
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
656
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
656
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
656
                      \
197
656
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
656
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
656
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
656
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
656
                      \
202
656
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
656
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
656
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
656
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
656
                      \
207
656
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
656
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
656
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
656
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
656
                  \
212
656
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
656
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
656
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
656
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
656
    if (full)               \
217
656
      {                 \
218
228
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
228
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
228
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
228
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
228
      }                  \
223
656
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
328
{
229
328
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
328
  uint32_t w;
231
328
  int full;
232
233
328
  assert (length >= CAST5_MIN_KEY_SIZE);
234
328
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
328
  full = (length > CAST_SMALL_KEY);
237
238
328
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
328
  switch (length & 3)
242
328
    {
243
151
    case 0:
244
151
      w = READ_UINT32 (key + length - 4);
245
151
      break;
246
36
    case 3:
247
36
      w = READ_UINT24 (key + length - 3) << 8;
248
36
      break;
249
69
    case 2:
250
69
      w = READ_UINT16 (key + length - 2) << 16;
251
69
      break;
252
72
    case 1:
253
72
      w = (uint32_t) key[length - 1] << 24;
254
72
      break;
255
328
    }
256
257
328
  if (length <= 8)
258
141
    {
259
141
      x1 = w;
260
141
      x2 = x3 = 0;
261
141
    }
262
187
  else
263
187
    {
264
187
      x1 = READ_UINT32 (key + 4);
265
187
      if (length <= 12)
266
141
  {
267
141
    x2 = w;
268
141
    x3 = 0;
269
141
  }
270
46
      else
271
46
  {
272
46
    x2 = READ_UINT32 (key + 8);
273
46
    x3 = w;
274
46
  }
275
187
    }
276
277
4.39k
  EXPAND(SET_KM, full);
278
4.39k
  EXPAND(SET_KR, full);
279
280
328
  ctx->rounds = full ? 16 : 12;
281
328
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}