Coverage Report

Created: 2023-02-22 06:14

/src/nettle-with-mini-gmp/sm4.c
Line
Count
Source (jump to first uncovered line)
1
/* sm4.c
2
3
   Copyright (C) 2022 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
#if HAVE_CONFIG_H
33
# include "config.h"
34
#endif
35
36
#include <assert.h>
37
#include <string.h>
38
39
#include "sm4.h"
40
41
#include "macros.h"
42
43
44
static const uint32_t fk[4] =
45
{
46
  0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
47
};
48
49
static const uint32_t ck[32] =
50
{
51
  0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
52
  0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
53
  0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
54
  0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
55
  0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
56
  0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
57
  0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
58
  0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
59
};
60
61
static const uint8_t sbox[256] =
62
{
63
  0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
64
  0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
65
  0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
66
  0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
67
  0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a,
68
  0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
69
  0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95,
70
  0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
71
  0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba,
72
  0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
73
  0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b,
74
  0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
75
  0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2,
76
  0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
77
  0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52,
78
  0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
79
  0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5,
80
  0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
81
  0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55,
82
  0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
83
  0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60,
84
  0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
85
  0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f,
86
  0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
87
  0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f,
88
  0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
89
  0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd,
90
  0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
91
  0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e,
92
  0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
93
  0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20,
94
  0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48
95
};
96
97
static uint32_t
98
sm4_t_non_lin_sub(uint32_t x)
99
4.03k
{
100
4.03k
  uint32_t out;
101
102
4.03k
  out  = (uint32_t)sbox[x & 0xff];
103
4.03k
  out |= (uint32_t)sbox[(x >> 8) & 0xff] << 8;
104
4.03k
  out |= (uint32_t)sbox[(x >> 16) & 0xff] << 16;
105
4.03k
  out |= (uint32_t)sbox[(x >> 24) & 0xff] << 24;
106
107
4.03k
  return out;
108
4.03k
}
109
110
static uint32_t
111
sm4_key_lin_sub(uint32_t x)
112
2.01k
{
113
2.01k
  return x ^ ROTL32(13, x) ^ ROTL32(23, x);
114
2.01k
}
115
116
static uint32_t
117
sm4_enc_lin_sub(uint32_t x)
118
2.01k
{
119
2.01k
  return x ^ ROTL32(2, x) ^ ROTL32(10, x) ^ ROTL32(18, x) ^ ROTL32(24, x);
120
2.01k
}
121
122
static uint32_t
123
sm4_key_sub(uint32_t x)
124
2.01k
{
125
2.01k
  return sm4_key_lin_sub(sm4_t_non_lin_sub(x));
126
2.01k
}
127
128
static uint32_t
129
sm4_enc_sub(uint32_t x)
130
2.01k
{
131
2.01k
  return sm4_enc_lin_sub(sm4_t_non_lin_sub(x));
132
2.01k
}
133
134
static uint32_t
135
sm4_round(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t rk)
136
2.01k
{
137
2.01k
  return x0 ^ sm4_enc_sub(x1 ^ x2 ^ x3 ^ rk);
138
2.01k
}
139
140
static void
141
sm4_set_key(struct sm4_ctx *ctx, const uint8_t *key, int encrypt)
142
63
{
143
63
  uint32_t rk0, rk1, rk2, rk3;
144
63
  unsigned i;
145
146
63
  rk0 = READ_UINT32(key +  0) ^ fk[0];
147
63
  rk1 = READ_UINT32(key +  4) ^ fk[1];
148
63
  rk2 = READ_UINT32(key +  8) ^ fk[2];
149
63
  rk3 = READ_UINT32(key + 12) ^ fk[3];
150
151
567
  for (i = 0; i < 32; i += 4)
152
504
    {
153
504
      rk0 ^= sm4_key_sub(rk1 ^ rk2 ^ rk3 ^ ck[i + 0]);
154
504
      rk1 ^= sm4_key_sub(rk2 ^ rk3 ^ rk0 ^ ck[i + 1]);
155
504
      rk2 ^= sm4_key_sub(rk3 ^ rk0 ^ rk1 ^ ck[i + 2]);
156
504
      rk3 ^= sm4_key_sub(rk0 ^ rk1 ^ rk2 ^ ck[i + 3]);
157
158
504
      if (encrypt)
159
504
        {
160
504
          ctx->rkey[i + 0] = rk0;
161
504
          ctx->rkey[i + 1] = rk1;
162
504
          ctx->rkey[i + 2] = rk2;
163
504
          ctx->rkey[i + 3] = rk3;
164
504
        }
165
0
      else
166
0
        {
167
0
          ctx->rkey[31 - 0 - i] = rk0;
168
0
          ctx->rkey[31 - 1 - i] = rk1;
169
0
          ctx->rkey[31 - 2 - i] = rk2;
170
0
          ctx->rkey[31 - 3 - i] = rk3;
171
0
        }
172
504
    }
173
63
}
174
175
void
176
sm4_set_encrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
177
63
{
178
63
  sm4_set_key(ctx, key, 1);
179
63
}
180
181
void
182
sm4_set_decrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
183
0
{
184
0
  sm4_set_key(ctx, key, 0);
185
0
}
186
187
void
188
sm4_crypt(const struct sm4_ctx *context,
189
    size_t length,
190
    uint8_t *dst,
191
    const uint8_t *src)
192
63
{
193
63
  const uint32_t *rk = context->rkey;
194
195
63
  assert( !(length % SM4_BLOCK_SIZE) );
196
197
126
  for ( ; length; length -= SM4_BLOCK_SIZE)
198
63
    {
199
63
      uint32_t x0, x1, x2, x3;
200
63
      unsigned i;
201
202
63
      x0 = READ_UINT32(src + 0 * 4);
203
63
      x1 = READ_UINT32(src + 1 * 4);
204
63
      x2 = READ_UINT32(src + 2 * 4);
205
63
      x3 = READ_UINT32(src + 3 * 4);
206
207
567
      for (i = 0; i < 32; i += 4)
208
504
        {
209
504
          x0 = sm4_round(x0, x1, x2, x3, rk[i + 0]);
210
504
          x1 = sm4_round(x1, x2, x3, x0, rk[i + 1]);
211
504
          x2 = sm4_round(x2, x3, x0, x1, rk[i + 2]);
212
504
          x3 = sm4_round(x3, x0, x1, x2, rk[i + 3]);
213
504
        }
214
215
63
      WRITE_UINT32(dst + 0 * 4, x3);
216
63
      WRITE_UINT32(dst + 1 * 4, x2);
217
63
      WRITE_UINT32(dst + 2 * 4, x1);
218
63
      WRITE_UINT32(dst + 3 * 4, x0);
219
220
63
      src += SM4_BLOCK_SIZE;
221
63
      dst += SM4_BLOCK_SIZE;
222
63
    }
223
63
}