Coverage Report

Created: 2023-09-25 06:33

/src/nettle-with-libgmp/camellia-absorb.c
Line
Count
Source
1
/* camellia-absorb.c
2
3
   Final key setup processing for the camellia block cipher.
4
5
   Copyright (C) 2006,2007 NTT
6
   (Nippon Telegraph and Telephone Corporation).
7
8
   Copyright (C) 2010 Niels Möller
9
10
   This file is part of GNU Nettle.
11
12
   GNU Nettle is free software: you can redistribute it and/or
13
   modify it under the terms of either:
14
15
     * the GNU Lesser General Public License as published by the Free
16
       Software Foundation; either version 3 of the License, or (at your
17
       option) any later version.
18
19
   or
20
21
     * the GNU General Public License as published by the Free
22
       Software Foundation; either version 2 of the License, or (at your
23
       option) any later version.
24
25
   or both in parallel, as here.
26
27
   GNU Nettle is distributed in the hope that it will be useful,
28
   but WITHOUT ANY WARRANTY; without even the implied warranty of
29
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30
   General Public License for more details.
31
32
   You should have received copies of the GNU General Public License and
33
   the GNU Lesser General Public License along with this program.  If
34
   not, see http://www.gnu.org/licenses/.
35
*/
36
37
/*
38
 * Algorithm Specification 
39
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
40
 */
41
42
/* Based on camellia.c ver 1.2.0, see
43
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
44
 */
45
46
#if HAVE_CONFIG_H
47
# include "config.h"
48
#endif
49
50
/* For CHAR_BIT, needed by HAVE_NATIVE_64_BIT */
51
#include <limits.h>
52
53
#include "camellia-internal.h"
54
55
#include "macros.h"
56
57
void
58
_nettle_camellia_absorb(unsigned nkeys, uint64_t *dst, uint64_t *subkey)
59
217
{
60
217
  uint64_t kw2, kw4;
61
217
  uint32_t dw, tl, tr;
62
217
  unsigned i;
63
  
64
  /* At this point, the subkey array contains the subkeys as described
65
     in the spec, 26 for short keys and 34 for large keys. */
66
67
  /* absorb kw2 to other subkeys */
68
217
  kw2 = subkey[1];
69
70
217
  subkey[3] ^= kw2;
71
217
  subkey[5] ^= kw2;
72
217
  subkey[7] ^= kw2;
73
735
  for (i = 8; i < nkeys; i += 8)
74
518
    {
75
      /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
76
   and xor the result into the 32 high bits, but it still generates
77
   worse code than for explicit 32-bit operations. */
78
518
      kw2 ^= (kw2 & ~subkey[i+1]) << 32;
79
518
      dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROTL32(1, dw); 
80
81
518
      subkey[i+3] ^= kw2;
82
518
      subkey[i+5] ^= kw2;
83
518
      subkey[i+7] ^= kw2;
84
518
    }
85
217
  subkey[i] ^= kw2;
86
  
87
  /* absorb kw4 to other subkeys */  
88
217
  kw4 = subkey[nkeys + 1];
89
90
735
  for (i = nkeys - 8; i > 0; i -= 8)
91
518
    {
92
518
      subkey[i+6] ^= kw4;
93
518
      subkey[i+4] ^= kw4;
94
518
      subkey[i+2] ^= kw4;
95
518
      kw4 ^= (kw4 & ~subkey[i]) << 32;
96
518
      dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROTL32(1, dw);      
97
518
    }
98
99
217
  subkey[6] ^= kw4;
100
217
  subkey[4] ^= kw4;
101
217
  subkey[2] ^= kw4;
102
217
  subkey[0] ^= kw4;
103
104
  /* key XOR is end of F-function */
105
217
  dst[0] = subkey[0] ^ subkey[2];
106
217
  dst[1] = subkey[3];
107
108
217
  dst[2] = subkey[2] ^ subkey[4];
109
217
  dst[3] = subkey[3] ^ subkey[5];
110
217
  dst[4] = subkey[4] ^ subkey[6];
111
217
  dst[5] = subkey[5] ^ subkey[7];
112
113
735
  for (i = 8; i < nkeys; i += 8)
114
518
    {
115
518
      tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]);
116
518
      dw = tl & (subkey[i] >> 32);
117
518
      tr = subkey[i+2] ^ ROTL32(1, dw);
118
518
      dst[i-2] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr);
119
120
518
      dst[i-1] = subkey[i];
121
518
      dst[i] = subkey[i+1];
122
123
518
      tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]);
124
518
      dw = tl & (subkey[i+1] >> 32);
125
518
      tr = subkey[i-1] ^ ROTL32(1, dw);
126
518
      dst[i+1] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr);
127
128
518
      dst[i+2] = subkey[i+2] ^ subkey[i+4];
129
518
      dst[i+3] = subkey[i+3] ^ subkey[i+5];
130
518
      dst[i+4] = subkey[i+4] ^ subkey[i+6];
131
518
      dst[i+5] = subkey[i+5] ^ subkey[i+7];
132
518
    }
133
217
  dst[i-2] = subkey[i-2];
134
217
  dst[i-1] = subkey[i] ^ subkey[i-1];
135
136
#if !HAVE_NATIVE_64_BIT
137
  for (i = 0; i < nkeys; i += 8)
138
    {
139
      /* apply the inverse of the last half of F-function */
140
      CAMELLIA_F_HALF_INV(dst[i+1]);
141
      CAMELLIA_F_HALF_INV(dst[i+2]);
142
      CAMELLIA_F_HALF_INV(dst[i+3]);
143
      CAMELLIA_F_HALF_INV(dst[i+4]);
144
      CAMELLIA_F_HALF_INV(dst[i+5]);
145
      CAMELLIA_F_HALF_INV(dst[i+6]);
146
    }
147
#endif
148
  
149
217
}