Coverage Report

Created: 2023-09-25 06:33

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
54
#define CAST_SMALL_KEY 10
56
57
3.36k
#define S1 cast_sbox1
58
3.36k
#define S2 cast_sbox2
59
3.36k
#define S3 cast_sbox3
60
3.36k
#define S4 cast_sbox4
61
2.16k
#define S5 cast_sbox5
62
2.16k
#define S6 cast_sbox6
63
2.16k
#define S7 cast_sbox7
64
2.16k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
5.52k
#define B0(x) ( (uint8_t) (x>>24) )
68
5.52k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
5.52k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
5.52k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
1.18k
#define F1(l, r, i) do {         \
76
1.18k
    t = ctx->Km[i] + r;           \
77
1.18k
    t = ROTL32(ctx->Kr[i], t);          \
78
1.18k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
1.18k
  } while (0)
80
1.08k
#define F2(l, r, i) do {         \
81
1.08k
    t = ctx->Km[i] ^ r;           \
82
1.08k
    t = ROTL32( ctx->Kr[i], t);         \
83
1.08k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
1.08k
  } while (0)
85
1.08k
#define F3(l, r, i) do {         \
86
1.08k
    t = ctx->Km[i] - r;           \
87
1.08k
    t = ROTL32(ctx->Kr[i], t);          \
88
1.08k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
1.08k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
15
{
99
15
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
84
    {
101
84
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
84
      l = READ_UINT32(src);
105
84
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
84
      F1(l, r,  0);
109
84
      F2(r, l,  1);
110
84
      F3(l, r,  2);
111
84
      F1(r, l,  3);
112
84
      F2(l, r,  4);
113
84
      F3(r, l,  5);
114
84
      F1(l, r,  6);
115
84
      F2(r, l,  7);
116
84
      F3(l, r,  8);
117
84
      F1(r, l,  9);
118
84
      F2(l, r, 10);
119
84
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
84
      if (ctx->rounds & 16) {
122
8
  F1(l, r, 12);
123
8
  F2(r, l, 13);
124
8
  F3(l, r, 14);
125
8
  F1(r, l, 15);
126
8
      }
127
      /* Put l,r into outblock */
128
84
      WRITE_UINT32(dst, r);
129
84
      WRITE_UINT32(dst + 4, l);
130
84
    }
131
15
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
39
{
141
39
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
164
    {
143
164
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
164
      r = READ_UINT32(src);
147
164
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
164
      if (ctx->rounds & 16) {
152
88
  F1(r, l, 15);
153
88
  F3(l, r, 14);
154
88
  F2(r, l, 13);
155
88
  F1(l, r, 12);
156
88
      }
157
164
      F3(r, l, 11);
158
164
      F2(l, r, 10);
159
164
      F1(r, l,  9);
160
164
      F3(l, r,  8);
161
164
      F2(r, l,  7);
162
164
      F1(l, r,  6);
163
164
      F3(r, l,  5);
164
164
      F2(l, r,  4);
165
164
      F1(r, l,  3);
166
164
      F3(l, r,  2);
167
164
      F2(r, l,  1);
168
164
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
164
      WRITE_UINT32(dst, l);
172
164
      WRITE_UINT32(dst + 4, r);
173
164
    }
174
39
}
175
176
/***** Key Schedule *****/
177
178
824
#define SET_KM(i, k) ctx->Km[i] = (k)
179
824
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
108
#define EXPAND(set, full) do {           \
182
108
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
108
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
108
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
108
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
108
                      \
187
108
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
108
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
108
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
108
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
108
                      \
192
108
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
108
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
108
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
108
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
108
                      \
197
108
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
108
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
108
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
108
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
108
                      \
202
108
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
108
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
108
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
108
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
108
                      \
207
108
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
108
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
108
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
108
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
108
                  \
212
108
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
108
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
108
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
108
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
108
    if (full)               \
217
108
      {                 \
218
88
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
88
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
88
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
88
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
88
      }                  \
223
108
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
54
{
229
54
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
54
  uint32_t w;
231
54
  int full;
232
233
54
  assert (length >= CAST5_MIN_KEY_SIZE);
234
54
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
54
  full = (length > CAST_SMALL_KEY);
237
238
54
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
54
  switch (length & 3)
242
54
    {
243
22
    case 0:
244
22
      w = READ_UINT32 (key + length - 4);
245
22
      break;
246
28
    case 3:
247
28
      w = READ_UINT24 (key + length - 3) << 8;
248
28
      break;
249
0
    case 2:
250
0
      w = READ_UINT16 (key + length - 2) << 16;
251
0
      break;
252
4
    case 1:
253
4
      w = (uint32_t) key[length - 1] << 24;
254
4
      break;
255
54
    }
256
257
54
  if (length <= 8)
258
10
    {
259
10
      x1 = w;
260
10
      x2 = x3 = 0;
261
10
    }
262
44
  else
263
44
    {
264
44
      x1 = READ_UINT32 (key + 4);
265
44
      if (length <= 12)
266
20
  {
267
20
    x2 = w;
268
20
    x3 = 0;
269
20
  }
270
24
      else
271
24
  {
272
24
    x2 = READ_UINT32 (key + 8);
273
24
    x3 = w;
274
24
  }
275
44
    }
276
277
824
  EXPAND(SET_KM, full);
278
824
  EXPAND(SET_KR, full);
279
280
54
  ctx->rounds = full ? 16 : 12;
281
54
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}