Coverage Report

Created: 2023-09-25 06:33

/src/nettle-with-libgmp/sm4.c
Line
Count
Source (jump to first uncovered line)
1
/* sm4.c
2
3
   Copyright (C) 2022 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
4
5
   This file is part of GNU Nettle.
6
7
   GNU Nettle is free software: you can redistribute it and/or
8
   modify it under the terms of either:
9
10
     * the GNU Lesser General Public License as published by the Free
11
       Software Foundation; either version 3 of the License, or (at your
12
       option) any later version.
13
14
   or
15
16
     * the GNU General Public License as published by the Free
17
       Software Foundation; either version 2 of the License, or (at your
18
       option) any later version.
19
20
   or both in parallel, as here.
21
22
   GNU Nettle is distributed in the hope that it will be useful,
23
   but WITHOUT ANY WARRANTY; without even the implied warranty of
24
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
25
   General Public License for more details.
26
27
   You should have received copies of the GNU General Public License and
28
   the GNU Lesser General Public License along with this program.  If
29
   not, see http://www.gnu.org/licenses/.
30
*/
31
32
#if HAVE_CONFIG_H
33
# include "config.h"
34
#endif
35
36
#include <assert.h>
37
#include <string.h>
38
39
#include "sm4.h"
40
41
#include "macros.h"
42
43
44
static const uint32_t fk[4] =
45
{
46
  0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
47
};
48
49
static const uint32_t ck[32] =
50
{
51
  0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
52
  0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
53
  0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
54
  0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
55
  0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
56
  0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
57
  0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
58
  0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
59
};
60
61
static const uint8_t sbox[256] =
62
{
63
  0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
64
  0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
65
  0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
66
  0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
67
  0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a,
68
  0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
69
  0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95,
70
  0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
71
  0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba,
72
  0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
73
  0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b,
74
  0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
75
  0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2,
76
  0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
77
  0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52,
78
  0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
79
  0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5,
80
  0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
81
  0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55,
82
  0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
83
  0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60,
84
  0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
85
  0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f,
86
  0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
87
  0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f,
88
  0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
89
  0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd,
90
  0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
91
  0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e,
92
  0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
93
  0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20,
94
  0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48
95
};
96
97
static uint32_t
98
sm4_t_non_lin_sub(uint32_t x)
99
6.33k
{
100
6.33k
  uint32_t out;
101
102
6.33k
  out  = (uint32_t)sbox[x & 0xff];
103
6.33k
  out |= (uint32_t)sbox[(x >> 8) & 0xff] << 8;
104
6.33k
  out |= (uint32_t)sbox[(x >> 16) & 0xff] << 16;
105
6.33k
  out |= (uint32_t)sbox[(x >> 24) & 0xff] << 24;
106
107
6.33k
  return out;
108
6.33k
}
109
110
static uint32_t
111
sm4_key_lin_sub(uint32_t x)
112
1.53k
{
113
1.53k
  return x ^ ROTL32(13, x) ^ ROTL32(23, x);
114
1.53k
}
115
116
static uint32_t
117
sm4_enc_lin_sub(uint32_t x)
118
4.80k
{
119
4.80k
  return x ^ ROTL32(2, x) ^ ROTL32(10, x) ^ ROTL32(18, x) ^ ROTL32(24, x);
120
4.80k
}
121
122
static uint32_t
123
sm4_key_sub(uint32_t x)
124
1.53k
{
125
1.53k
  return sm4_key_lin_sub(sm4_t_non_lin_sub(x));
126
1.53k
}
127
128
static uint32_t
129
sm4_enc_sub(uint32_t x)
130
4.80k
{
131
4.80k
  return sm4_enc_lin_sub(sm4_t_non_lin_sub(x));
132
4.80k
}
133
134
static uint32_t
135
sm4_round(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t rk)
136
4.80k
{
137
4.80k
  return x0 ^ sm4_enc_sub(x1 ^ x2 ^ x3 ^ rk);
138
4.80k
}
139
140
static void
141
sm4_set_key(struct sm4_ctx *ctx, const uint8_t *key, int encrypt)
142
48
{
143
48
  uint32_t rk0, rk1, rk2, rk3;
144
48
  unsigned i;
145
146
48
  rk0 = READ_UINT32(key +  0) ^ fk[0];
147
48
  rk1 = READ_UINT32(key +  4) ^ fk[1];
148
48
  rk2 = READ_UINT32(key +  8) ^ fk[2];
149
48
  rk3 = READ_UINT32(key + 12) ^ fk[3];
150
151
432
  for (i = 0; i < 32; i += 4)
152
384
    {
153
384
      rk0 ^= sm4_key_sub(rk1 ^ rk2 ^ rk3 ^ ck[i + 0]);
154
384
      rk1 ^= sm4_key_sub(rk2 ^ rk3 ^ rk0 ^ ck[i + 1]);
155
384
      rk2 ^= sm4_key_sub(rk3 ^ rk0 ^ rk1 ^ ck[i + 2]);
156
384
      rk3 ^= sm4_key_sub(rk0 ^ rk1 ^ rk2 ^ ck[i + 3]);
157
158
384
      if (encrypt)
159
384
        {
160
384
          ctx->rkey[i + 0] = rk0;
161
384
          ctx->rkey[i + 1] = rk1;
162
384
          ctx->rkey[i + 2] = rk2;
163
384
          ctx->rkey[i + 3] = rk3;
164
384
        }
165
0
      else
166
0
        {
167
0
          ctx->rkey[31 - 0 - i] = rk0;
168
0
          ctx->rkey[31 - 1 - i] = rk1;
169
0
          ctx->rkey[31 - 2 - i] = rk2;
170
0
          ctx->rkey[31 - 3 - i] = rk3;
171
0
        }
172
384
    }
173
48
}
174
175
void
176
sm4_set_encrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
177
48
{
178
48
  sm4_set_key(ctx, key, 1);
179
48
}
180
181
void
182
sm4_set_decrypt_key(struct sm4_ctx *ctx, const uint8_t *key)
183
0
{
184
0
  sm4_set_key(ctx, key, 0);
185
0
}
186
187
void
188
sm4_crypt(const struct sm4_ctx *context,
189
    size_t length,
190
    uint8_t *dst,
191
    const uint8_t *src)
192
757
{
193
757
  const uint32_t *rk = context->rkey;
194
195
757
  assert( !(length % SM4_BLOCK_SIZE) );
196
197
907
  for ( ; length; length -= SM4_BLOCK_SIZE)
198
150
    {
199
150
      uint32_t x0, x1, x2, x3;
200
150
      unsigned i;
201
202
150
      x0 = READ_UINT32(src + 0 * 4);
203
150
      x1 = READ_UINT32(src + 1 * 4);
204
150
      x2 = READ_UINT32(src + 2 * 4);
205
150
      x3 = READ_UINT32(src + 3 * 4);
206
207
1.35k
      for (i = 0; i < 32; i += 4)
208
1.20k
        {
209
1.20k
          x0 = sm4_round(x0, x1, x2, x3, rk[i + 0]);
210
1.20k
          x1 = sm4_round(x1, x2, x3, x0, rk[i + 1]);
211
1.20k
          x2 = sm4_round(x2, x3, x0, x1, rk[i + 2]);
212
1.20k
          x3 = sm4_round(x3, x0, x1, x2, rk[i + 3]);
213
1.20k
        }
214
215
150
      WRITE_UINT32(dst + 0 * 4, x3);
216
150
      WRITE_UINT32(dst + 1 * 4, x2);
217
150
      WRITE_UINT32(dst + 2 * 4, x1);
218
150
      WRITE_UINT32(dst + 3 * 4, x0);
219
220
150
      src += SM4_BLOCK_SIZE;
221
150
      dst += SM4_BLOCK_SIZE;
222
150
    }
223
757
}