Coverage Report

Created: 2023-09-25 06:33

/src/nettle-with-libgmp/twofish.c
Line
Count
Source (jump to first uncovered line)
1
/* twofish.c
2
3
   The twofish block cipher.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
   Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
7
8
   Modifications for lsh, integrated testing
9
   Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
10
11
   This file is part of GNU Nettle.
12
13
   GNU Nettle is free software: you can redistribute it and/or
14
   modify it under the terms of either:
15
16
     * the GNU Lesser General Public License as published by the Free
17
       Software Foundation; either version 3 of the License, or (at your
18
       option) any later version.
19
20
   or
21
22
     * the GNU General Public License as published by the Free
23
       Software Foundation; either version 2 of the License, or (at your
24
       option) any later version.
25
26
   or both in parallel, as here.
27
28
   GNU Nettle is distributed in the hope that it will be useful,
29
   but WITHOUT ANY WARRANTY; without even the implied warranty of
30
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31
   General Public License for more details.
32
33
   You should have received copies of the GNU General Public License and
34
   the GNU Lesser General Public License along with this program.  If
35
   not, see http://www.gnu.org/licenses/.
36
*/
37
38
#if HAVE_CONFIG_H
39
# include "config.h"
40
#endif
41
42
#include <assert.h>
43
#include <string.h>
44
45
#include "twofish.h"
46
47
#include "macros.h"
48
49
/* Bitwise rotations on 32-bit words.  These are defined as macros that
50
 * evaluate their argument twice, so do not apply to any expressions with
51
 * side effects.
52
 */
53
54
1.02k
#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
55
1.24k
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
56
1.24k
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
57
1.02k
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))
58
59
/* ------------------------------------------------------------------------- */
60
61
/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
62
 * The permutations have been computed using the program twofish-data,
63
 * which is distributed along with this file.
64
 */
65
66
static const uint8_t q0[256] = {
67
  0xA9,0x67,0xB3,0xE8,0x04,0xFD,0xA3,0x76,
68
  0x9A,0x92,0x80,0x78,0xE4,0xDD,0xD1,0x38,
69
  0x0D,0xC6,0x35,0x98,0x18,0xF7,0xEC,0x6C,
70
  0x43,0x75,0x37,0x26,0xFA,0x13,0x94,0x48,
71
  0xF2,0xD0,0x8B,0x30,0x84,0x54,0xDF,0x23,
72
  0x19,0x5B,0x3D,0x59,0xF3,0xAE,0xA2,0x82,
73
  0x63,0x01,0x83,0x2E,0xD9,0x51,0x9B,0x7C,
74
  0xA6,0xEB,0xA5,0xBE,0x16,0x0C,0xE3,0x61,
75
  0xC0,0x8C,0x3A,0xF5,0x73,0x2C,0x25,0x0B,
76
  0xBB,0x4E,0x89,0x6B,0x53,0x6A,0xB4,0xF1,
77
  0xE1,0xE6,0xBD,0x45,0xE2,0xF4,0xB6,0x66,
78
  0xCC,0x95,0x03,0x56,0xD4,0x1C,0x1E,0xD7,
79
  0xFB,0xC3,0x8E,0xB5,0xE9,0xCF,0xBF,0xBA,
80
  0xEA,0x77,0x39,0xAF,0x33,0xC9,0x62,0x71,
81
  0x81,0x79,0x09,0xAD,0x24,0xCD,0xF9,0xD8,
82
  0xE5,0xC5,0xB9,0x4D,0x44,0x08,0x86,0xE7,
83
  0xA1,0x1D,0xAA,0xED,0x06,0x70,0xB2,0xD2,
84
  0x41,0x7B,0xA0,0x11,0x31,0xC2,0x27,0x90,
85
  0x20,0xF6,0x60,0xFF,0x96,0x5C,0xB1,0xAB,
86
  0x9E,0x9C,0x52,0x1B,0x5F,0x93,0x0A,0xEF,
87
  0x91,0x85,0x49,0xEE,0x2D,0x4F,0x8F,0x3B,
88
  0x47,0x87,0x6D,0x46,0xD6,0x3E,0x69,0x64,
89
  0x2A,0xCE,0xCB,0x2F,0xFC,0x97,0x05,0x7A,
90
  0xAC,0x7F,0xD5,0x1A,0x4B,0x0E,0xA7,0x5A,
91
  0x28,0x14,0x3F,0x29,0x88,0x3C,0x4C,0x02,
92
  0xB8,0xDA,0xB0,0x17,0x55,0x1F,0x8A,0x7D,
93
  0x57,0xC7,0x8D,0x74,0xB7,0xC4,0x9F,0x72,
94
  0x7E,0x15,0x22,0x12,0x58,0x07,0x99,0x34,
95
  0x6E,0x50,0xDE,0x68,0x65,0xBC,0xDB,0xF8,
96
  0xC8,0xA8,0x2B,0x40,0xDC,0xFE,0x32,0xA4,
97
  0xCA,0x10,0x21,0xF0,0xD3,0x5D,0x0F,0x00,
98
  0x6F,0x9D,0x36,0x42,0x4A,0x5E,0xC1,0xE0,
99
};
100
101
static const uint8_t q1[256] = {
102
  0x75,0xF3,0xC6,0xF4,0xDB,0x7B,0xFB,0xC8,
103
  0x4A,0xD3,0xE6,0x6B,0x45,0x7D,0xE8,0x4B,
104
  0xD6,0x32,0xD8,0xFD,0x37,0x71,0xF1,0xE1,
105
  0x30,0x0F,0xF8,0x1B,0x87,0xFA,0x06,0x3F,
106
  0x5E,0xBA,0xAE,0x5B,0x8A,0x00,0xBC,0x9D,
107
  0x6D,0xC1,0xB1,0x0E,0x80,0x5D,0xD2,0xD5,
108
  0xA0,0x84,0x07,0x14,0xB5,0x90,0x2C,0xA3,
109
  0xB2,0x73,0x4C,0x54,0x92,0x74,0x36,0x51,
110
  0x38,0xB0,0xBD,0x5A,0xFC,0x60,0x62,0x96,
111
  0x6C,0x42,0xF7,0x10,0x7C,0x28,0x27,0x8C,
112
  0x13,0x95,0x9C,0xC7,0x24,0x46,0x3B,0x70,
113
  0xCA,0xE3,0x85,0xCB,0x11,0xD0,0x93,0xB8,
114
  0xA6,0x83,0x20,0xFF,0x9F,0x77,0xC3,0xCC,
115
  0x03,0x6F,0x08,0xBF,0x40,0xE7,0x2B,0xE2,
116
  0x79,0x0C,0xAA,0x82,0x41,0x3A,0xEA,0xB9,
117
  0xE4,0x9A,0xA4,0x97,0x7E,0xDA,0x7A,0x17,
118
  0x66,0x94,0xA1,0x1D,0x3D,0xF0,0xDE,0xB3,
119
  0x0B,0x72,0xA7,0x1C,0xEF,0xD1,0x53,0x3E,
120
  0x8F,0x33,0x26,0x5F,0xEC,0x76,0x2A,0x49,
121
  0x81,0x88,0xEE,0x21,0xC4,0x1A,0xEB,0xD9,
122
  0xC5,0x39,0x99,0xCD,0xAD,0x31,0x8B,0x01,
123
  0x18,0x23,0xDD,0x1F,0x4E,0x2D,0xF9,0x48,
124
  0x4F,0xF2,0x65,0x8E,0x78,0x5C,0x58,0x19,
125
  0x8D,0xE5,0x98,0x57,0x67,0x7F,0x05,0x64,
126
  0xAF,0x63,0xB6,0xFE,0xF5,0xB7,0x3C,0xA5,
127
  0xCE,0xE9,0x68,0x44,0xE0,0x4D,0x43,0x69,
128
  0x29,0x2E,0xAC,0x15,0x59,0xA8,0x0A,0x9E,
129
  0x6E,0x47,0xDF,0x34,0x35,0x6A,0xCF,0xDC,
130
  0x22,0xC9,0xC0,0x9B,0x89,0xD4,0xED,0xAB,
131
  0x12,0xA2,0x0D,0x52,0xBB,0x02,0x2F,0xA9,
132
  0xD7,0x61,0x1E,0xB4,0x50,0x04,0xF6,0xC2,
133
  0x16,0x25,0x86,0x56,0x55,0x09,0xBE,0x91,
134
};
135
136
/* ------------------------------------------------------------------------- */
137
138
/* uint32_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
139
 *
140
 * Multiplication in GF(2^8). Larger return type, to avoid need for
141
 * type casts when the return value is shifted left.
142
 *
143
 * This function multiplies a times b in the Galois Field GF(2^8) with
144
 * primitive polynomial p.
145
 * The representation of the polynomials a, b, and p uses bits with
146
 * values 2^i to represent the terms x^i.  The polynomial p contains an
147
 * implicit term x^8.
148
 *
149
 * Note that addition and subtraction in GF(2^8) is simply the XOR
150
 * operation.
151
 */
152
153
static uint32_t
154
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
155
300k
{
156
300k
  uint32_t shift  = b;
157
300k
  uint8_t result = 0;
158
2.07M
  while (a)
159
1.77M
    {
160
1.77M
      if (a & 1) result ^= shift;
161
1.77M
      a = a >> 1;
162
1.77M
      shift = shift << 1;
163
1.77M
      if (shift & 0x100) shift ^= p;
164
1.77M
    }
165
300k
  return result;
166
300k
}
167
168
/* ------------------------------------------------------------------------- */
169
170
/* The matrix RS as specified in section 4.3 the twofish paper. */
171
172
static const uint8_t rs_matrix[4][8] = {
173
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
174
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
175
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
176
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };
177
178
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
179
 *
180
 * Computes the value RS * M, where M is a byte vector composed of the
181
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
182
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
183
 *
184
 * This function is used to compute the sub-keys S which are in turn used
185
 * to generate the S-boxes.
186
 */
187
188
static uint32_t
189
compute_s(uint32_t m1, uint32_t m2)
190
224
{
191
224
  uint32_t s = 0;
192
224
  int i;
193
1.12k
  for (i = 0; i < 4; i++)
194
896
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
195
896
      ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
196
896
      ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
197
896
      ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
198
896
      ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
199
896
      ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
200
896
      ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
201
896
      ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
202
224
  return s;
203
224
}
204
205
/* ------------------------------------------------------------------------- */
206
207
/* This table describes which q S-boxes are used for each byte in each stage
208
 * of the function h, cf. figure 2 of the twofish paper.
209
 */
210
211
static const uint8_t * const q_table[4][5] =
212
  { { q1, q1, q0, q0, q1 },
213
    { q0, q1, q1, q0, q0 },
214
    { q0, q0, q0, q1, q1 },
215
    { q1, q0, q1, q1, q0 } };
216
217
/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */
218
219
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
220
         { 0x5B, 0xEF, 0xEF, 0x01 },
221
         { 0xEF, 0x5B, 0x01, 0xEF },
222
         { 0xEF, 0x01, 0xEF, 0x5B } };
223
224
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
225
 *
226
 * Perform the h function (section 4.3.2) on one byte.  It consists of
227
 * repeated applications of the q permutation, followed by a XOR with
228
 * part of a sub-key.  Finally, the value is multiplied by one column of
229
 * the MDS matrix.  To obtain the result for a full word, the results of
230
 * h for the individual bytes are XORed.
231
 *
232
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
233
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
234
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
235
 */
236
237
static uint32_t
238
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
239
73.4k
{
240
73.4k
  uint8_t y = q_table[i][4][l0 ^
241
73.4k
            q_table[i][3][l1 ^
242
73.4k
              q_table[i][2][k == 2 ? x : l2 ^
243
61.5k
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];
244
245
73.4k
  return ( (gf_multiply(0x69, mds_matrix[0][i], y))
246
73.4k
     | (gf_multiply(0x69, mds_matrix[1][i], y) << 8)
247
73.4k
     | (gf_multiply(0x69, mds_matrix[2][i], y) << 16)
248
73.4k
     | (gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
249
73.4k
}
250
251
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
252
 *
253
 * Perform the function h on a word.  See the description of h_byte() above.
254
 */
255
256
static uint32_t
257
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
258
2.48k
{
259
2.48k
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
260
2.48k
    ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
261
2.48k
    ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
262
2.48k
    ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
263
2.48k
}
264
265
266
/* ------------------------------------------------------------------------- */
267
268
/* API */
269
270
/* Structure which contains the tables containing the subkeys and the
271
 * key-dependent s-boxes.
272
 */
273
274
275
/* Set up internal tables required for twofish encryption and decryption.
276
 *
277
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
278
 * supported.  Larger key sizes are silently truncated.  
279
 */
280
281
void
282
twofish_set_key(struct twofish_ctx *context,
283
    size_t keysize, const uint8_t *key)
284
62
{
285
62
  uint8_t key_copy[32];
286
62
  uint32_t m[8], s[4], t;
287
62
  int i, j, k;
288
289
  /* Extend key as necessary */
290
291
62
  assert(keysize <= 32);
292
293
  /* We do a little more copying than necessary, but that doesn't
294
   * really matter. */
295
62
  memset(key_copy, 0, 32);
296
62
  memcpy(key_copy, key, keysize);
297
298
558
  for (i = 0; i<8; i++)
299
496
    m[i] = LE_READ_UINT32(key_copy + i*4);
300
  
301
62
  if (keysize <= 16)
302
10
    k = 2;
303
52
  else if (keysize <= 24)
304
4
    k = 3;
305
48
  else
306
48
    k = 4;
307
308
  /* Compute sub-keys */
309
310
1.30k
  for (i = 0; i < 20; i++)
311
1.24k
    {
312
1.24k
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
313
1.24k
      t = rol8(t);
314
1.24k
      t += (context->keys[2*i] =
315
1.24k
      t + h(k, 2*i, m[0], m[2], m[4], m[6]));
316
1.24k
      t = rol9(t);
317
1.24k
      context->keys[2*i+1] = t;
318
1.24k
    }
319
320
  /* Compute key-dependent S-boxes */
321
322
286
  for (i = 0; i < k; i++)
323
224
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
324
325
310
  for (i = 0; i < 4; i++)
326
63.7k
    for (j = 0; j < 256; j++)
327
63.4k
      context->s_box[i][j] = h_byte(k, i, j,
328
63.4k
            s[0] >> (i*8),
329
63.4k
            s[1] >> (i*8),
330
63.4k
            s[2] >> (i*8),
331
63.4k
            s[3] >> (i*8));
332
62
}
333
334
void
335
twofish128_set_key(struct twofish_ctx *context, const uint8_t *key)
336
0
{
337
0
  twofish_set_key (context, TWOFISH128_KEY_SIZE, key);
338
0
}
339
void
340
twofish192_set_key(struct twofish_ctx *context, const uint8_t *key)
341
0
{
342
0
  twofish_set_key (context, TWOFISH192_KEY_SIZE, key);
343
0
}
344
void
345
twofish256_set_key(struct twofish_ctx *context, const uint8_t *key)
346
0
{
347
0
  twofish_set_key (context, TWOFISH256_KEY_SIZE, key);
348
0
}
349
350
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
351
 *
352
 * Before this function can be used, twofish_set_key() must be used in order to
353
 * set up various tables required for the encryption algorithm.
354
 * 
355
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
356
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
357
 * overlap.
358
 */
359
360
void
361
twofish_encrypt(const struct twofish_ctx *context,
362
    size_t length,
363
    uint8_t *ciphertext,
364
    const uint8_t *plaintext)
365
37
{
366
37
  const uint32_t * keys        = context->keys;
367
37
  const uint32_t (*s_box)[256] = context->s_box;
368
369
37
  assert( !(length % TWOFISH_BLOCK_SIZE) );
370
69
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
371
32
    {  
372
32
      uint32_t words[4];
373
32
      uint32_t r0, r1, r2, r3, t0, t1;
374
32
      int i;
375
376
160
      for (i = 0; i<4; i++, plaintext += 4)
377
128
  words[i] = LE_READ_UINT32(plaintext);
378
379
32
      r0 = words[0] ^ keys[0];
380
32
      r1 = words[1] ^ keys[1];
381
32
      r2 = words[2] ^ keys[2];
382
32
      r3 = words[3] ^ keys[3];
383
  
384
288
      for (i = 0; i < 8; i++) {
385
256
  t1 = (  s_box[1][r1 & 0xFF]
386
256
    ^ s_box[2][(r1 >> 8) & 0xFF]
387
256
    ^ s_box[3][(r1 >> 16) & 0xFF]
388
256
    ^ s_box[0][(r1 >> 24) & 0xFF]);
389
256
  t0 = (  s_box[0][r0 & 0xFF]
390
256
    ^ s_box[1][(r0 >> 8) & 0xFF]
391
256
    ^ s_box[2][(r0 >> 16) & 0xFF]
392
256
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
393
256
  r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
394
256
  r2 = (t0 + keys[4*i+8]) ^ r2;
395
256
  r2 = ror1(r2);
396
397
256
  t1 = (  s_box[1][r3 & 0xFF]
398
256
    ^ s_box[2][(r3 >> 8) & 0xFF]
399
256
    ^ s_box[3][(r3 >> 16) & 0xFF]
400
256
    ^ s_box[0][(r3 >> 24) & 0xFF]);
401
256
  t0 = (  s_box[0][r2 & 0xFF]
402
256
    ^ s_box[1][(r2 >> 8) & 0xFF]
403
256
    ^ s_box[2][(r2 >> 16) & 0xFF]
404
256
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
405
256
  r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
406
256
  r0 = (t0 + keys[4*i+10]) ^ r0;
407
256
  r0 = ror1(r0);
408
256
      }
409
410
32
      words[0] = r2 ^ keys[4];
411
32
      words[1] = r3 ^ keys[5];
412
32
      words[2] = r0 ^ keys[6];
413
32
      words[3] = r1 ^ keys[7];
414
415
160
      for (i = 0; i<4; i++, ciphertext += 4)
416
128
  LE_WRITE_UINT32(ciphertext, words[i]);
417
32
    }
418
37
}
419
420
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
421
 *
422
 * Before this function can be used, twofish_set_key() must be used in order to
423
 * set up various tables required for the decryption algorithm.
424
 * 
425
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
426
 * plaintext.  The memory areas of the plaintext and the ciphertext can
427
 * overlap.
428
 */
429
430
void
431
twofish_decrypt(const struct twofish_ctx *context,
432
    size_t length,
433
    uint8_t *plaintext,
434
    const uint8_t *ciphertext)
435
436
25
{
437
25
  const uint32_t *keys  = context->keys;
438
25
  const uint32_t (*s_box)[256] = context->s_box;
439
440
25
  assert( !(length % TWOFISH_BLOCK_SIZE) );
441
57
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
442
32
    {  
443
32
      uint32_t words[4];
444
32
      uint32_t r0, r1, r2, r3, t0, t1;
445
32
      int i;
446
447
160
      for (i = 0; i<4; i++, ciphertext += 4)
448
128
  words[i] = LE_READ_UINT32(ciphertext);
449
450
32
      r0 = words[2] ^ keys[6];
451
32
      r1 = words[3] ^ keys[7];
452
32
      r2 = words[0] ^ keys[4];
453
32
      r3 = words[1] ^ keys[5];
454
455
288
      for (i = 0; i < 8; i++) {
456
256
  t1 = (  s_box[1][r3 & 0xFF]
457
256
    ^ s_box[2][(r3 >> 8) & 0xFF]
458
256
    ^ s_box[3][(r3 >> 16) & 0xFF]
459
256
    ^ s_box[0][(r3 >> 24) & 0xFF]);
460
256
  t0 = (  s_box[0][r2 & 0xFF]
461
256
    ^ s_box[1][(r2 >> 8) & 0xFF]
462
256
    ^ s_box[2][(r2 >> 16) & 0xFF]
463
256
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
464
256
  r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
465
256
  r1 = ror1(r1);
466
256
  r0 = (t0 + keys[38-4*i]) ^ rol1(r0);
467
468
256
  t1 = (  s_box[1][r1 & 0xFF]
469
256
    ^ s_box[2][(r1 >> 8) & 0xFF]
470
256
    ^ s_box[3][(r1 >> 16) & 0xFF]
471
256
    ^ s_box[0][(r1 >> 24) & 0xFF]);
472
256
  t0 = (  s_box[0][r0 & 0xFF]
473
256
    ^ s_box[1][(r0 >> 8) & 0xFF]
474
256
    ^ s_box[2][(r0 >> 16) & 0xFF]
475
256
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
476
256
  r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
477
256
  r3 = ror1(r3);
478
256
  r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
479
256
      }
480
481
32
      words[0] = r0 ^ keys[0];
482
32
      words[1] = r1 ^ keys[1];
483
32
      words[2] = r2 ^ keys[2];
484
32
      words[3] = r3 ^ keys[3];
485
486
160
      for (i = 0; i<4; i++, plaintext += 4)
487
128
  LE_WRITE_UINT32(plaintext, words[i]);
488
32
    }
489
25
}