Coverage Report

Created: 2023-09-25 06:34

/src/nettle-with-mini-gmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
347
#define CAST_SMALL_KEY 10
56
57
16.8k
#define S1 cast_sbox1
58
16.8k
#define S2 cast_sbox2
59
16.8k
#define S3 cast_sbox3
60
16.8k
#define S4 cast_sbox4
61
13.8k
#define S5 cast_sbox5
62
13.8k
#define S6 cast_sbox6
63
13.8k
#define S7 cast_sbox7
64
13.8k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
30.7k
#define B0(x) ( (uint8_t) (x>>24) )
68
30.7k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
30.7k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
30.7k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
6.05k
#define F1(l, r, i) do {         \
76
6.05k
    t = ctx->Km[i] + r;           \
77
6.05k
    t = ROTL32(ctx->Kr[i], t);          \
78
6.05k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
6.05k
  } while (0)
80
5.40k
#define F2(l, r, i) do {         \
81
5.40k
    t = ctx->Km[i] ^ r;           \
82
5.40k
    t = ROTL32( ctx->Kr[i], t);         \
83
5.40k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
5.40k
  } while (0)
85
5.40k
#define F3(l, r, i) do {         \
86
5.40k
    t = ctx->Km[i] - r;           \
87
5.40k
    t = ROTL32(ctx->Kr[i], t);          \
88
5.40k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
5.40k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
167
{
99
167
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
553
    {
101
553
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
553
      l = READ_UINT32(src);
105
553
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
553
      F1(l, r,  0);
109
553
      F2(r, l,  1);
110
553
      F3(l, r,  2);
111
553
      F1(r, l,  3);
112
553
      F2(l, r,  4);
113
553
      F3(r, l,  5);
114
553
      F1(l, r,  6);
115
553
      F2(r, l,  7);
116
553
      F3(l, r,  8);
117
553
      F1(r, l,  9);
118
553
      F2(l, r, 10);
119
553
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
553
      if (ctx->rounds & 16) {
122
327
  F1(l, r, 12);
123
327
  F2(r, l, 13);
124
327
  F3(l, r, 14);
125
327
  F1(r, l, 15);
126
327
      }
127
      /* Put l,r into outblock */
128
553
      WRITE_UINT32(dst, r);
129
553
      WRITE_UINT32(dst + 4, l);
130
553
    }
131
167
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
180
{
141
180
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
633
    {
143
633
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
633
      r = READ_UINT32(src);
147
633
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
633
      if (ctx->rounds & 16) {
152
330
  F1(r, l, 15);
153
330
  F3(l, r, 14);
154
330
  F2(r, l, 13);
155
330
  F1(l, r, 12);
156
330
      }
157
633
      F3(r, l, 11);
158
633
      F2(l, r, 10);
159
633
      F1(r, l,  9);
160
633
      F3(l, r,  8);
161
633
      F2(r, l,  7);
162
633
      F1(l, r,  6);
163
633
      F3(r, l,  5);
164
633
      F2(l, r,  4);
165
633
      F1(r, l,  3);
166
633
      F3(l, r,  2);
167
633
      F2(r, l,  1);
168
633
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
633
      WRITE_UINT32(dst, l);
172
633
      WRITE_UINT32(dst + 4, r);
173
633
    }
174
180
}
175
176
/***** Key Schedule *****/
177
178
4.85k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
4.85k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
694
#define EXPAND(set, full) do {           \
182
694
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
694
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
694
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
694
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
694
                      \
187
694
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
694
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
694
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
694
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
694
                      \
192
694
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
694
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
694
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
694
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
694
                      \
197
694
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
694
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
694
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
694
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
694
                      \
202
694
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
694
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
694
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
694
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
694
                      \
207
694
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
694
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
694
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
694
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
694
                  \
212
694
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
694
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
694
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
694
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
694
    if (full)               \
217
694
      {                 \
218
346
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
346
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
346
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
346
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
346
      }                  \
223
694
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
347
{
229
347
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
347
  uint32_t w;
231
347
  int full;
232
233
347
  assert (length >= CAST5_MIN_KEY_SIZE);
234
347
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
347
  full = (length > CAST_SMALL_KEY);
237
238
347
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
347
  switch (length & 3)
242
347
    {
243
198
    case 0:
244
198
      w = READ_UINT32 (key + length - 4);
245
198
      break;
246
34
    case 3:
247
34
      w = READ_UINT24 (key + length - 3) << 8;
248
34
      break;
249
81
    case 2:
250
81
      w = READ_UINT16 (key + length - 2) << 16;
251
81
      break;
252
34
    case 1:
253
34
      w = (uint32_t) key[length - 1] << 24;
254
34
      break;
255
347
    }
256
257
347
  if (length <= 8)
258
141
    {
259
141
      x1 = w;
260
141
      x2 = x3 = 0;
261
141
    }
262
206
  else
263
206
    {
264
206
      x1 = READ_UINT32 (key + 4);
265
206
      if (length <= 12)
266
144
  {
267
144
    x2 = w;
268
144
    x3 = 0;
269
144
  }
270
62
      else
271
62
  {
272
62
    x2 = READ_UINT32 (key + 8);
273
62
    x3 = w;
274
62
  }
275
206
    }
276
277
4.85k
  EXPAND(SET_KM, full);
278
4.85k
  EXPAND(SET_KR, full);
279
280
347
  ctx->rounds = full ? 16 : 12;
281
347
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}