Coverage Report

Created: 2024-02-25 06:16

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
126
#define CAST_SMALL_KEY 10
56
57
26.5k
#define S1 cast_sbox1
58
26.5k
#define S2 cast_sbox2
59
26.5k
#define S3 cast_sbox3
60
26.5k
#define S4 cast_sbox4
61
5.04k
#define S5 cast_sbox5
62
5.04k
#define S6 cast_sbox6
63
5.04k
#define S7 cast_sbox7
64
5.04k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
31.5k
#define B0(x) ( (uint8_t) (x>>24) )
68
31.5k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
31.5k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
31.5k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
9.06k
#define F1(l, r, i) do {         \
76
9.06k
    t = ctx->Km[i] + r;           \
77
9.06k
    t = ROTL32(ctx->Kr[i], t);          \
78
9.06k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
9.06k
  } while (0)
80
8.72k
#define F2(l, r, i) do {         \
81
8.72k
    t = ctx->Km[i] ^ r;           \
82
8.72k
    t = ROTL32( ctx->Kr[i], t);         \
83
8.72k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
8.72k
  } while (0)
85
8.72k
#define F3(l, r, i) do {         \
86
8.72k
    t = ctx->Km[i] - r;           \
87
8.72k
    t = ROTL32(ctx->Kr[i], t);          \
88
8.72k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
8.72k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
64
{
99
64
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
1.04k
    {
101
1.04k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
1.04k
      l = READ_UINT32(src);
105
1.04k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
1.04k
      F1(l, r,  0);
109
1.04k
      F2(r, l,  1);
110
1.04k
      F3(l, r,  2);
111
1.04k
      F1(r, l,  3);
112
1.04k
      F2(l, r,  4);
113
1.04k
      F3(r, l,  5);
114
1.04k
      F1(l, r,  6);
115
1.04k
      F2(r, l,  7);
116
1.04k
      F3(l, r,  8);
117
1.04k
      F1(r, l,  9);
118
1.04k
      F2(l, r, 10);
119
1.04k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
1.04k
      if (ctx->rounds & 16) {
122
162
  F1(l, r, 12);
123
162
  F2(r, l, 13);
124
162
  F3(l, r, 14);
125
162
  F1(r, l, 15);
126
162
      }
127
      /* Put l,r into outblock */
128
1.04k
      WRITE_UINT32(dst, r);
129
1.04k
      WRITE_UINT32(dst + 4, l);
130
1.04k
    }
131
64
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
62
{
141
62
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
1.05k
    {
143
1.05k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
1.05k
      r = READ_UINT32(src);
147
1.05k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
1.05k
      if (ctx->rounds & 16) {
152
178
  F1(r, l, 15);
153
178
  F3(l, r, 14);
154
178
  F2(r, l, 13);
155
178
  F1(l, r, 12);
156
178
      }
157
1.05k
      F3(r, l, 11);
158
1.05k
      F2(l, r, 10);
159
1.05k
      F1(r, l,  9);
160
1.05k
      F3(l, r,  8);
161
1.05k
      F2(r, l,  7);
162
1.05k
      F1(l, r,  6);
163
1.05k
      F3(r, l,  5);
164
1.05k
      F2(l, r,  4);
165
1.05k
      F1(r, l,  3);
166
1.05k
      F3(l, r,  2);
167
1.05k
      F2(r, l,  1);
168
1.05k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
1.05k
      WRITE_UINT32(dst, l);
172
1.05k
      WRITE_UINT32(dst + 4, r);
173
1.05k
    }
174
62
}
175
176
/***** Key Schedule *****/
177
178
1.82k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
1.82k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
252
#define EXPAND(set, full) do {           \
182
252
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
252
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
252
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
252
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
252
                      \
187
252
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
252
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
252
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
252
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
252
                      \
192
252
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
252
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
252
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
252
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
252
                      \
197
252
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
252
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
252
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
252
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
252
                      \
202
252
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
252
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
252
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
252
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
252
                      \
207
252
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
252
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
252
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
252
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
252
                  \
212
252
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
252
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
252
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
252
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
252
    if (full)               \
217
252
      {                 \
218
156
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
156
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
156
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
156
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
156
      }                  \
223
252
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
126
{
229
126
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
126
  uint32_t w;
231
126
  int full;
232
233
126
  assert (length >= CAST5_MIN_KEY_SIZE);
234
126
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
126
  full = (length > CAST_SMALL_KEY);
237
238
126
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
126
  switch (length & 3)
242
126
    {
243
65
    case 0:
244
65
      w = READ_UINT32 (key + length - 4);
245
65
      break;
246
40
    case 3:
247
40
      w = READ_UINT24 (key + length - 3) << 8;
248
40
      break;
249
21
    case 2:
250
21
      w = READ_UINT16 (key + length - 2) << 16;
251
21
      break;
252
0
    case 1:
253
0
      w = (uint32_t) key[length - 1] << 24;
254
0
      break;
255
126
    }
256
257
126
  if (length <= 8)
258
27
    {
259
27
      x1 = w;
260
27
      x2 = x3 = 0;
261
27
    }
262
99
  else
263
99
    {
264
99
      x1 = READ_UINT32 (key + 4);
265
99
      if (length <= 12)
266
23
  {
267
23
    x2 = w;
268
23
    x3 = 0;
269
23
  }
270
76
      else
271
76
  {
272
76
    x2 = READ_UINT32 (key + 8);
273
76
    x3 = w;
274
76
  }
275
99
    }
276
277
1.82k
  EXPAND(SET_KM, full);
278
1.82k
  EXPAND(SET_KR, full);
279
280
126
  ctx->rounds = full ? 16 : 12;
281
126
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}