Coverage Report

Created: 2024-02-25 06:16

/src/nettle-with-libgmp/serpent-set-key.c
Line
Count
Source (jump to first uncovered line)
1
/* serpent-set-key.c
2
3
   The serpent block cipher.
4
5
   For more details on this algorithm, see the Serpent website at
6
   http://www.cl.cam.ac.uk/~rja14/serpent.html
7
8
   Copyright (C) 2011, 2014  Niels Möller
9
   Copyright (C) 2010, 2011  Simon Josefsson
10
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
11
12
   This file is part of GNU Nettle.
13
14
   GNU Nettle is free software: you can redistribute it and/or
15
   modify it under the terms of either:
16
17
     * the GNU Lesser General Public License as published by the Free
18
       Software Foundation; either version 3 of the License, or (at your
19
       option) any later version.
20
21
   or
22
23
     * the GNU General Public License as published by the Free
24
       Software Foundation; either version 2 of the License, or (at your
25
       option) any later version.
26
27
   or both in parallel, as here.
28
29
   GNU Nettle is distributed in the hope that it will be useful,
30
   but WITHOUT ANY WARRANTY; without even the implied warranty of
31
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
32
   General Public License for more details.
33
34
   You should have received copies of the GNU General Public License and
35
   the GNU Lesser General Public License along with this program.  If
36
   not, see http://www.gnu.org/licenses/.
37
*/
38
39
/* This file is derived from cipher/serpent.c in Libgcrypt v1.4.6.
40
   The adaption to Nettle was made by Simon Josefsson on 2010-12-07
41
   with final touches on 2011-05-30.  Changes include replacing
42
   libgcrypt with nettle in the license template, renaming
43
   serpent_context to serpent_ctx, renaming u32 to uint32_t, removing
44
   libgcrypt stubs and selftests, modifying entry function prototypes,
45
   using FOR_BLOCKS to iterate through data in encrypt/decrypt, using
46
   LE_READ_UINT32 and LE_WRITE_UINT32 to access data in
47
   encrypt/decrypt, and running indent on the code. */
48
49
#if HAVE_CONFIG_H
50
#include "config.h"
51
#endif
52
53
#include <assert.h>
54
#include <limits.h>
55
56
#include "serpent.h"
57
58
#include "macros.h"
59
#include "serpent-internal.h"
60
61
/* Magic number, used during generating of the subkeys.  */
62
7.92k
#define PHI 0x9E3779B9
63
64
/* These are the S-Boxes of Serpent.  They are copied from Serpents
65
   reference implementation (the optimized one, contained in
66
   `floppy2') and are therefore:
67
68
     Copyright (C) 1998 Ross Anderson, Eli Biham, Lars Knudsen.
69
70
  To quote the Serpent homepage
71
  (http://www.cl.cam.ac.uk/~rja14/serpent.html):
72
73
  "Serpent is now completely in the public domain, and we impose no
74
   restrictions on its use.  This was announced on the 21st August at
75
   the First AES Candidate Conference. The optimised implementations
76
   in the submission package are now under the GNU PUBLIC LICENSE
77
   (GPL), although some comments in the code still say otherwise. You
78
   are welcome to use Serpent for any application."  */
79
80
/* FIXME: Except when used within the key schedule, the inputs are not
81
   used after the substitution, and hence we could allow them to be
82
   destroyed. Can this freedom be used to optimize the sboxes? */
83
#define SBOX0(type, a, b, c, d, w, x, y, z) \
84
240
  do { \
85
240
    type t02, t03, t05, t06, t07, t08, t09; \
86
240
    type t11, t12, t13, t14, t15, t17, t01; \
87
240
    t01 = b   ^ c  ; \
88
240
    t02 = a   | d  ; \
89
240
    t03 = a   ^ b  ; \
90
240
    z   = t02 ^ t01; \
91
240
    t05 = c   | z  ; \
92
240
    t06 = a   ^ d  ; \
93
240
    t07 = b   | c  ; \
94
240
    t08 = d   & t05; \
95
240
    t09 = t03 & t07; \
96
240
    y   = t09 ^ t08; \
97
240
    t11 = t09 & y  ; \
98
240
    t12 = c   ^ d  ; \
99
240
    t13 = t07 ^ t11; \
100
240
    t14 = b   & t06; \
101
240
    t15 = t06 ^ t13; \
102
240
    w   =     ~ t15; \
103
240
    t17 = w   ^ t14; \
104
240
    x   = t12 ^ t17; \
105
240
  } while (0)
106
107
#define SBOX1(type, a, b, c, d, w, x, y, z) \
108
240
  do { \
109
240
    type t02, t03, t04, t05, t06, t07, t08; \
110
240
    type t10, t11, t12, t13, t16, t17, t01; \
111
240
    t01 = a   | d  ; \
112
240
    t02 = c   ^ d  ; \
113
240
    t03 =     ~ b  ; \
114
240
    t04 = a   ^ c  ; \
115
240
    t05 = a   | t03; \
116
240
    t06 = d   & t04; \
117
240
    t07 = t01 & t02; \
118
240
    t08 = b   | t06; \
119
240
    y   = t02 ^ t05; \
120
240
    t10 = t07 ^ t08; \
121
240
    t11 = t01 ^ t10; \
122
240
    t12 = y   ^ t11; \
123
240
    t13 = b   & d  ; \
124
240
    z   =     ~ t10; \
125
240
    x   = t13 ^ t12; \
126
240
    t16 = t10 | x  ; \
127
240
    t17 = t05 & t16; \
128
240
    w   = c   ^ t17; \
129
240
  } while (0)
130
131
#define SBOX2(type, a, b, c, d, w, x, y, z) \
132
240
  do {            \
133
240
    type t02, t03, t05, t06, t07, t08; \
134
240
    type t09, t10, t12, t13, t14, t01; \
135
240
    t01 = a   | c  ; \
136
240
    t02 = a   ^ b  ; \
137
240
    t03 = d   ^ t01; \
138
240
    w   = t02 ^ t03; \
139
240
    t05 = c   ^ w  ; \
140
240
    t06 = b   ^ t05; \
141
240
    t07 = b   | t05; \
142
240
    t08 = t01 & t06; \
143
240
    t09 = t03 ^ t07; \
144
240
    t10 = t02 | t09; \
145
240
    x   = t10 ^ t08; \
146
240
    t12 = a   | d  ; \
147
240
    t13 = t09 ^ x  ; \
148
240
    t14 = b   ^ t13; \
149
240
    z   =     ~ t09; \
150
240
    y   = t12 ^ t14; \
151
240
  } while (0)
152
153
#define SBOX3(type, a, b, c, d, w, x, y, z) \
154
300
  do {           \
155
300
    type t02, t03, t04, t05, t06, t07, t08; \
156
300
    type t09, t10, t11, t13, t14, t15, t01; \
157
300
    t01 = a   ^ c  ; \
158
300
    t02 = a   | d  ; \
159
300
    t03 = a   & d  ; \
160
300
    t04 = t01 & t02; \
161
300
    t05 = b   | t03; \
162
300
    t06 = a   & b  ; \
163
300
    t07 = d   ^ t04; \
164
300
    t08 = c   | t06; \
165
300
    t09 = b   ^ t07; \
166
300
    t10 = d   & t05; \
167
300
    t11 = t02 ^ t10; \
168
300
    z   = t08 ^ t09; \
169
300
    t13 = d   | z  ; \
170
300
    t14 = a   | t07; \
171
300
    t15 = b   & t13; \
172
300
    y   = t08 ^ t11; \
173
300
    w   = t14 ^ t15; \
174
300
    x   = t05 ^ t04; \
175
300
  } while (0)
176
177
#define SBOX4(type, a, b, c, d, w, x, y, z) \
178
240
  do { \
179
240
    type t02, t03, t04, t05, t06, t08, t09; \
180
240
    type t10, t11, t12, t13, t14, t15, t16, t01; \
181
240
    t01 = a   | b  ; \
182
240
    t02 = b   | c  ; \
183
240
    t03 = a   ^ t02; \
184
240
    t04 = b   ^ d  ; \
185
240
    t05 = d   | t03; \
186
240
    t06 = d   & t01; \
187
240
    z   = t03 ^ t06; \
188
240
    t08 = z   & t04; \
189
240
    t09 = t04 & t05; \
190
240
    t10 = c   ^ t06; \
191
240
    t11 = b   & c  ; \
192
240
    t12 = t04 ^ t08; \
193
240
    t13 = t11 | t03; \
194
240
    t14 = t10 ^ t09; \
195
240
    t15 = a   & t05; \
196
240
    t16 = t11 | t12; \
197
240
    y   = t13 ^ t08; \
198
240
    x   = t15 ^ t16; \
199
240
    w   =     ~ t14; \
200
240
  } while (0)
201
202
#define SBOX5(type, a, b, c, d, w, x, y, z) \
203
240
  do { \
204
240
    type t02, t03, t04, t05, t07, t08, t09; \
205
240
    type t10, t11, t12, t13, t14, t01; \
206
240
    t01 = b   ^ d  ; \
207
240
    t02 = b   | d  ; \
208
240
    t03 = a   & t01; \
209
240
    t04 = c   ^ t02; \
210
240
    t05 = t03 ^ t04; \
211
240
    w   =     ~ t05; \
212
240
    t07 = a   ^ t01; \
213
240
    t08 = d   | w  ; \
214
240
    t09 = b   | t05; \
215
240
    t10 = d   ^ t08; \
216
240
    t11 = b   | t07; \
217
240
    t12 = t03 | w  ; \
218
240
    t13 = t07 | t10; \
219
240
    t14 = t01 ^ t11; \
220
240
    y   = t09 ^ t13; \
221
240
    x   = t07 ^ t08; \
222
240
    z   = t12 ^ t14; \
223
240
  } while (0)
224
225
#define SBOX6(type, a, b, c, d, w, x, y, z) \
226
240
  do { \
227
240
    type t02, t03, t04, t05, t07, t08, t09, t10;  \
228
240
    type t11, t12, t13, t15, t17, t18, t01; \
229
240
    t01 = a   & d  ; \
230
240
    t02 = b   ^ c  ; \
231
240
    t03 = a   ^ d  ; \
232
240
    t04 = t01 ^ t02; \
233
240
    t05 = b   | c  ; \
234
240
    x   =     ~ t04; \
235
240
    t07 = t03 & t05; \
236
240
    t08 = b   & x  ; \
237
240
    t09 = a   | c  ; \
238
240
    t10 = t07 ^ t08; \
239
240
    t11 = b   | d  ; \
240
240
    t12 = c   ^ t11; \
241
240
    t13 = t09 ^ t10; \
242
240
    y   =     ~ t13; \
243
240
    t15 = x   & t03; \
244
240
    z   = t12 ^ t07; \
245
240
    t17 = a   ^ b  ; \
246
240
    t18 = y   ^ t15; \
247
240
    w   = t17 ^ t18; \
248
240
  } while (0)
249
250
#define SBOX7(type, a, b, c, d, w, x, y, z) \
251
240
  do { \
252
240
    type t02, t03, t04, t05, t06, t08, t09, t10;  \
253
240
    type t11, t13, t14, t15, t16, t17, t01; \
254
240
    t01 = a   & c  ; \
255
240
    t02 =     ~ d  ; \
256
240
    t03 = a   & t02; \
257
240
    t04 = b   | t01; \
258
240
    t05 = a   & b  ; \
259
240
    t06 = c   ^ t04; \
260
240
    z   = t03 ^ t06; \
261
240
    t08 = c   | z  ; \
262
240
    t09 = d   | t05; \
263
240
    t10 = a   ^ t08; \
264
240
    t11 = t04 & z  ; \
265
240
    x   = t09 ^ t10; \
266
240
    t13 = b   ^ x  ; \
267
240
    t14 = t01 ^ x  ; \
268
240
    t15 = c   ^ t05; \
269
240
    t16 = t11 | t13; \
270
240
    t17 = t02 | t14; \
271
240
    w   = t15 ^ t17; \
272
240
    y   = a   ^ t16; \
273
240
  } while (0)
274
275
/* Key schedule */
276
/* Note: Increments k */
277
#define KS_RECURRENCE(w, i, k)            \
278
7.92k
  do {                 \
279
7.92k
    uint32_t _wn = (w)[(i)] ^ (w)[((i)+3)&7] ^ w[((i)+5)&7]   \
280
7.92k
      ^ w[((i)+7)&7] ^ PHI ^ (k)++;         \
281
7.92k
    ((w)[(i)] = ROTL32(11, _wn));         \
282
7.92k
  } while (0)
283
284
/* Note: Increments k four times and keys once */
285
#define KS(keys, s, w, i, k)          \
286
1.98k
  do {               \
287
1.98k
    KS_RECURRENCE(w, (i), (k));          \
288
1.98k
    KS_RECURRENCE(w, (i)+1, (k));        \
289
1.98k
    KS_RECURRENCE(w, (i)+2, (k));        \
290
1.98k
    KS_RECURRENCE(w, (i)+3, (k));        \
291
1.98k
    SBOX##s(uint32_t, w[(i)],w[(i)+1],w[(i)+2],w[(i)+3],    \
292
1.98k
      (*keys)[0],(*keys)[1],(*keys)[2],(*keys)[3]); \
293
1.98k
    (keys)++;             \
294
1.98k
  } while (0)
295
296
/* Pad user key and convert to an array of 8 uint32_t. */
297
static void
298
serpent_key_pad (const uint8_t *key, unsigned int key_length,
299
     uint32_t *w)
300
60
{
301
60
  unsigned int i;
302
303
60
  assert (key_length <= SERPENT_MAX_KEY_SIZE);
304
  
305
505
  for (i = 0; key_length >= 4; key_length -=4, key += 4)
306
445
    w[i++] = LE_READ_UINT32(key);
307
308
60
  if (i < 8)
309
20
    {
310
      /* Key must be padded according to the Serpent specification.
311
         "aabbcc" -> "aabbcc0100...00" -> 0x01ccbbaa. */
312
20
      uint32_t pad = 0x01;
313
      
314
32
      while (key_length > 0)
315
12
  pad = pad << 8 | key[--key_length];
316
317
20
      w[i++] = pad;
318
319
35
      while (i < 8)
320
15
  w[i++] = 0;
321
20
    }
322
60
}
323
324
/* Initialize CONTEXT with the key KEY of LENGTH bytes.  */
325
void
326
serpent_set_key (struct serpent_ctx *ctx,
327
     size_t length, const uint8_t * key)
328
60
{
329
60
  uint32_t w[8];
330
60
  uint32_t (*keys)[4];
331
60
  unsigned k;
332
  
333
60
  serpent_key_pad (key, length, w);
334
335
  /* Derive the 33 subkeys from KEY and store them in SUBKEYS. We do
336
     the recurrence in the key schedule using W as a circular buffer
337
     of just 8 uint32_t. */
338
339
  /* FIXME: Would be better to invoke SBOX with scalar variables as
340
     arguments, no arrays. To do that, unpack w into separate
341
     variables, use temporary variables as the SBOX destination. */
342
343
60
  keys = ctx->keys;
344
60
  k = 0;
345
60
  for (;;)
346
300
    {
347
300
      KS(keys, 3, w, 0, k);
348
300
      if (k == 132)
349
60
  break;
350
240
      KS(keys, 2, w, 4, k);
351
240
      KS(keys, 1, w, 0, k);
352
240
      KS(keys, 0, w, 4, k);
353
240
      KS(keys, 7, w, 0, k);
354
240
      KS(keys, 6, w, 4, k);
355
240
      KS(keys, 5, w, 0, k);
356
240
      KS(keys, 4, w, 4, k);
357
240
    }
358
60
  assert (keys == ctx->keys + 33);
359
60
}
360
361
void
362
serpent128_set_key (struct serpent_ctx *ctx, const uint8_t *key)
363
0
{
364
0
  serpent_set_key (ctx, SERPENT128_KEY_SIZE, key);
365
0
}
366
367
void
368
serpent192_set_key (struct serpent_ctx *ctx, const uint8_t *key)
369
0
{
370
0
  serpent_set_key (ctx, SERPENT192_KEY_SIZE, key);
371
0
}
372
373
void
374
serpent256_set_key (struct serpent_ctx *ctx, const uint8_t *key)
375
0
{
376
0
  serpent_set_key (ctx, SERPENT256_KEY_SIZE, key);
377
0
}