Coverage Report

Created: 2024-02-25 06:16

/src/nettle-with-mini-gmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
321
#define CAST_SMALL_KEY 10
56
57
49.3k
#define S1 cast_sbox1
58
49.3k
#define S2 cast_sbox2
59
49.3k
#define S3 cast_sbox3
60
49.3k
#define S4 cast_sbox4
61
12.8k
#define S5 cast_sbox5
62
12.8k
#define S6 cast_sbox6
63
12.8k
#define S7 cast_sbox7
64
12.8k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
62.2k
#define B0(x) ( (uint8_t) (x>>24) )
68
62.2k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
62.2k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
62.2k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
17.0k
#define F1(l, r, i) do {         \
76
17.0k
    t = ctx->Km[i] + r;           \
77
17.0k
    t = ROTL32(ctx->Kr[i], t);          \
78
17.0k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
17.0k
  } while (0)
80
16.1k
#define F2(l, r, i) do {         \
81
16.1k
    t = ctx->Km[i] ^ r;           \
82
16.1k
    t = ROTL32( ctx->Kr[i], t);         \
83
16.1k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
16.1k
  } while (0)
85
16.1k
#define F3(l, r, i) do {         \
86
16.1k
    t = ctx->Km[i] - r;           \
87
16.1k
    t = ROTL32(ctx->Kr[i], t);          \
88
16.1k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
16.1k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
179
{
99
179
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
1.76k
    {
101
1.76k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
1.76k
      l = READ_UINT32(src);
105
1.76k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
1.76k
      F1(l, r,  0);
109
1.76k
      F2(r, l,  1);
110
1.76k
      F3(l, r,  2);
111
1.76k
      F1(r, l,  3);
112
1.76k
      F2(l, r,  4);
113
1.76k
      F3(r, l,  5);
114
1.76k
      F1(l, r,  6);
115
1.76k
      F2(r, l,  7);
116
1.76k
      F3(l, r,  8);
117
1.76k
      F1(r, l,  9);
118
1.76k
      F2(l, r, 10);
119
1.76k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
1.76k
      if (ctx->rounds & 16) {
122
396
  F1(l, r, 12);
123
396
  F2(r, l, 13);
124
396
  F3(l, r, 14);
125
396
  F1(r, l, 15);
126
396
      }
127
      /* Put l,r into outblock */
128
1.76k
      WRITE_UINT32(dst, r);
129
1.76k
      WRITE_UINT32(dst + 4, l);
130
1.76k
    }
131
179
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
142
{
141
142
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
2.04k
    {
143
2.04k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
2.04k
      r = READ_UINT32(src);
147
2.04k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
2.04k
      if (ctx->rounds & 16) {
152
531
  F1(r, l, 15);
153
531
  F3(l, r, 14);
154
531
  F2(r, l, 13);
155
531
  F1(l, r, 12);
156
531
      }
157
2.04k
      F3(r, l, 11);
158
2.04k
      F2(l, r, 10);
159
2.04k
      F1(r, l,  9);
160
2.04k
      F3(l, r,  8);
161
2.04k
      F2(r, l,  7);
162
2.04k
      F1(l, r,  6);
163
2.04k
      F3(r, l,  5);
164
2.04k
      F2(l, r,  4);
165
2.04k
      F1(r, l,  3);
166
2.04k
      F3(l, r,  2);
167
2.04k
      F2(r, l,  1);
168
2.04k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
2.04k
      WRITE_UINT32(dst, l);
172
2.04k
      WRITE_UINT32(dst + 4, r);
173
2.04k
    }
174
142
}
175
176
/***** Key Schedule *****/
177
178
4.55k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
4.55k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
642
#define EXPAND(set, full) do {           \
182
642
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
642
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
642
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
642
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
642
                      \
187
642
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
642
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
642
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
642
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
642
                      \
192
642
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
642
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
642
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
642
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
642
                      \
197
642
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
642
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
642
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
642
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
642
                      \
202
642
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
642
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
642
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
642
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
642
                      \
207
642
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
642
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
642
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
642
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
642
                  \
212
642
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
642
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
642
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
642
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
642
    if (full)               \
217
642
      {                 \
218
352
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
352
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
352
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
352
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
352
      }                  \
223
642
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
321
{
229
321
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
321
  uint32_t w;
231
321
  int full;
232
233
321
  assert (length >= CAST5_MIN_KEY_SIZE);
234
321
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
321
  full = (length > CAST_SMALL_KEY);
237
238
321
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
321
  switch (length & 3)
242
321
    {
243
156
    case 0:
244
156
      w = READ_UINT32 (key + length - 4);
245
156
      break;
246
63
    case 3:
247
63
      w = READ_UINT24 (key + length - 3) << 8;
248
63
      break;
249
70
    case 2:
250
70
      w = READ_UINT16 (key + length - 2) << 16;
251
70
      break;
252
32
    case 1:
253
32
      w = (uint32_t) key[length - 1] << 24;
254
32
      break;
255
321
    }
256
257
321
  if (length <= 8)
258
127
    {
259
127
      x1 = w;
260
127
      x2 = x3 = 0;
261
127
    }
262
194
  else
263
194
    {
264
194
      x1 = READ_UINT32 (key + 4);
265
194
      if (length <= 12)
266
120
  {
267
120
    x2 = w;
268
120
    x3 = 0;
269
120
  }
270
74
      else
271
74
  {
272
74
    x2 = READ_UINT32 (key + 8);
273
74
    x3 = w;
274
74
  }
275
194
    }
276
277
4.55k
  EXPAND(SET_KM, full);
278
4.55k
  EXPAND(SET_KR, full);
279
280
321
  ctx->rounds = full ? 16 : 12;
281
321
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}