Coverage Report

Created: 2024-02-25 06:16

/src/nettle-with-mini-gmp/serpent-set-key.c
Line
Count
Source (jump to first uncovered line)
1
/* serpent-set-key.c
2
3
   The serpent block cipher.
4
5
   For more details on this algorithm, see the Serpent website at
6
   http://www.cl.cam.ac.uk/~rja14/serpent.html
7
8
   Copyright (C) 2011, 2014  Niels Möller
9
   Copyright (C) 2010, 2011  Simon Josefsson
10
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
11
12
   This file is part of GNU Nettle.
13
14
   GNU Nettle is free software: you can redistribute it and/or
15
   modify it under the terms of either:
16
17
     * the GNU Lesser General Public License as published by the Free
18
       Software Foundation; either version 3 of the License, or (at your
19
       option) any later version.
20
21
   or
22
23
     * the GNU General Public License as published by the Free
24
       Software Foundation; either version 2 of the License, or (at your
25
       option) any later version.
26
27
   or both in parallel, as here.
28
29
   GNU Nettle is distributed in the hope that it will be useful,
30
   but WITHOUT ANY WARRANTY; without even the implied warranty of
31
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
32
   General Public License for more details.
33
34
   You should have received copies of the GNU General Public License and
35
   the GNU Lesser General Public License along with this program.  If
36
   not, see http://www.gnu.org/licenses/.
37
*/
38
39
/* This file is derived from cipher/serpent.c in Libgcrypt v1.4.6.
40
   The adaption to Nettle was made by Simon Josefsson on 2010-12-07
41
   with final touches on 2011-05-30.  Changes include replacing
42
   libgcrypt with nettle in the license template, renaming
43
   serpent_context to serpent_ctx, renaming u32 to uint32_t, removing
44
   libgcrypt stubs and selftests, modifying entry function prototypes,
45
   using FOR_BLOCKS to iterate through data in encrypt/decrypt, using
46
   LE_READ_UINT32 and LE_WRITE_UINT32 to access data in
47
   encrypt/decrypt, and running indent on the code. */
48
49
#if HAVE_CONFIG_H
50
#include "config.h"
51
#endif
52
53
#include <assert.h>
54
#include <limits.h>
55
56
#include "serpent.h"
57
58
#include "macros.h"
59
#include "serpent-internal.h"
60
61
/* Magic number, used during generating of the subkeys.  */
62
26.4k
#define PHI 0x9E3779B9
63
64
/* These are the S-Boxes of Serpent.  They are copied from Serpents
65
   reference implementation (the optimized one, contained in
66
   `floppy2') and are therefore:
67
68
     Copyright (C) 1998 Ross Anderson, Eli Biham, Lars Knudsen.
69
70
  To quote the Serpent homepage
71
  (http://www.cl.cam.ac.uk/~rja14/serpent.html):
72
73
  "Serpent is now completely in the public domain, and we impose no
74
   restrictions on its use.  This was announced on the 21st August at
75
   the First AES Candidate Conference. The optimised implementations
76
   in the submission package are now under the GNU PUBLIC LICENSE
77
   (GPL), although some comments in the code still say otherwise. You
78
   are welcome to use Serpent for any application."  */
79
80
/* FIXME: Except when used within the key schedule, the inputs are not
81
   used after the substitution, and hence we could allow them to be
82
   destroyed. Can this freedom be used to optimize the sboxes? */
83
#define SBOX0(type, a, b, c, d, w, x, y, z) \
84
800
  do { \
85
800
    type t02, t03, t05, t06, t07, t08, t09; \
86
800
    type t11, t12, t13, t14, t15, t17, t01; \
87
800
    t01 = b   ^ c  ; \
88
800
    t02 = a   | d  ; \
89
800
    t03 = a   ^ b  ; \
90
800
    z   = t02 ^ t01; \
91
800
    t05 = c   | z  ; \
92
800
    t06 = a   ^ d  ; \
93
800
    t07 = b   | c  ; \
94
800
    t08 = d   & t05; \
95
800
    t09 = t03 & t07; \
96
800
    y   = t09 ^ t08; \
97
800
    t11 = t09 & y  ; \
98
800
    t12 = c   ^ d  ; \
99
800
    t13 = t07 ^ t11; \
100
800
    t14 = b   & t06; \
101
800
    t15 = t06 ^ t13; \
102
800
    w   =     ~ t15; \
103
800
    t17 = w   ^ t14; \
104
800
    x   = t12 ^ t17; \
105
800
  } while (0)
106
107
#define SBOX1(type, a, b, c, d, w, x, y, z) \
108
800
  do { \
109
800
    type t02, t03, t04, t05, t06, t07, t08; \
110
800
    type t10, t11, t12, t13, t16, t17, t01; \
111
800
    t01 = a   | d  ; \
112
800
    t02 = c   ^ d  ; \
113
800
    t03 =     ~ b  ; \
114
800
    t04 = a   ^ c  ; \
115
800
    t05 = a   | t03; \
116
800
    t06 = d   & t04; \
117
800
    t07 = t01 & t02; \
118
800
    t08 = b   | t06; \
119
800
    y   = t02 ^ t05; \
120
800
    t10 = t07 ^ t08; \
121
800
    t11 = t01 ^ t10; \
122
800
    t12 = y   ^ t11; \
123
800
    t13 = b   & d  ; \
124
800
    z   =     ~ t10; \
125
800
    x   = t13 ^ t12; \
126
800
    t16 = t10 | x  ; \
127
800
    t17 = t05 & t16; \
128
800
    w   = c   ^ t17; \
129
800
  } while (0)
130
131
#define SBOX2(type, a, b, c, d, w, x, y, z) \
132
800
  do {            \
133
800
    type t02, t03, t05, t06, t07, t08; \
134
800
    type t09, t10, t12, t13, t14, t01; \
135
800
    t01 = a   | c  ; \
136
800
    t02 = a   ^ b  ; \
137
800
    t03 = d   ^ t01; \
138
800
    w   = t02 ^ t03; \
139
800
    t05 = c   ^ w  ; \
140
800
    t06 = b   ^ t05; \
141
800
    t07 = b   | t05; \
142
800
    t08 = t01 & t06; \
143
800
    t09 = t03 ^ t07; \
144
800
    t10 = t02 | t09; \
145
800
    x   = t10 ^ t08; \
146
800
    t12 = a   | d  ; \
147
800
    t13 = t09 ^ x  ; \
148
800
    t14 = b   ^ t13; \
149
800
    z   =     ~ t09; \
150
800
    y   = t12 ^ t14; \
151
800
  } while (0)
152
153
#define SBOX3(type, a, b, c, d, w, x, y, z) \
154
1.00k
  do {           \
155
1.00k
    type t02, t03, t04, t05, t06, t07, t08; \
156
1.00k
    type t09, t10, t11, t13, t14, t15, t01; \
157
1.00k
    t01 = a   ^ c  ; \
158
1.00k
    t02 = a   | d  ; \
159
1.00k
    t03 = a   & d  ; \
160
1.00k
    t04 = t01 & t02; \
161
1.00k
    t05 = b   | t03; \
162
1.00k
    t06 = a   & b  ; \
163
1.00k
    t07 = d   ^ t04; \
164
1.00k
    t08 = c   | t06; \
165
1.00k
    t09 = b   ^ t07; \
166
1.00k
    t10 = d   & t05; \
167
1.00k
    t11 = t02 ^ t10; \
168
1.00k
    z   = t08 ^ t09; \
169
1.00k
    t13 = d   | z  ; \
170
1.00k
    t14 = a   | t07; \
171
1.00k
    t15 = b   & t13; \
172
1.00k
    y   = t08 ^ t11; \
173
1.00k
    w   = t14 ^ t15; \
174
1.00k
    x   = t05 ^ t04; \
175
1.00k
  } while (0)
176
177
#define SBOX4(type, a, b, c, d, w, x, y, z) \
178
800
  do { \
179
800
    type t02, t03, t04, t05, t06, t08, t09; \
180
800
    type t10, t11, t12, t13, t14, t15, t16, t01; \
181
800
    t01 = a   | b  ; \
182
800
    t02 = b   | c  ; \
183
800
    t03 = a   ^ t02; \
184
800
    t04 = b   ^ d  ; \
185
800
    t05 = d   | t03; \
186
800
    t06 = d   & t01; \
187
800
    z   = t03 ^ t06; \
188
800
    t08 = z   & t04; \
189
800
    t09 = t04 & t05; \
190
800
    t10 = c   ^ t06; \
191
800
    t11 = b   & c  ; \
192
800
    t12 = t04 ^ t08; \
193
800
    t13 = t11 | t03; \
194
800
    t14 = t10 ^ t09; \
195
800
    t15 = a   & t05; \
196
800
    t16 = t11 | t12; \
197
800
    y   = t13 ^ t08; \
198
800
    x   = t15 ^ t16; \
199
800
    w   =     ~ t14; \
200
800
  } while (0)
201
202
#define SBOX5(type, a, b, c, d, w, x, y, z) \
203
800
  do { \
204
800
    type t02, t03, t04, t05, t07, t08, t09; \
205
800
    type t10, t11, t12, t13, t14, t01; \
206
800
    t01 = b   ^ d  ; \
207
800
    t02 = b   | d  ; \
208
800
    t03 = a   & t01; \
209
800
    t04 = c   ^ t02; \
210
800
    t05 = t03 ^ t04; \
211
800
    w   =     ~ t05; \
212
800
    t07 = a   ^ t01; \
213
800
    t08 = d   | w  ; \
214
800
    t09 = b   | t05; \
215
800
    t10 = d   ^ t08; \
216
800
    t11 = b   | t07; \
217
800
    t12 = t03 | w  ; \
218
800
    t13 = t07 | t10; \
219
800
    t14 = t01 ^ t11; \
220
800
    y   = t09 ^ t13; \
221
800
    x   = t07 ^ t08; \
222
800
    z   = t12 ^ t14; \
223
800
  } while (0)
224
225
#define SBOX6(type, a, b, c, d, w, x, y, z) \
226
800
  do { \
227
800
    type t02, t03, t04, t05, t07, t08, t09, t10;  \
228
800
    type t11, t12, t13, t15, t17, t18, t01; \
229
800
    t01 = a   & d  ; \
230
800
    t02 = b   ^ c  ; \
231
800
    t03 = a   ^ d  ; \
232
800
    t04 = t01 ^ t02; \
233
800
    t05 = b   | c  ; \
234
800
    x   =     ~ t04; \
235
800
    t07 = t03 & t05; \
236
800
    t08 = b   & x  ; \
237
800
    t09 = a   | c  ; \
238
800
    t10 = t07 ^ t08; \
239
800
    t11 = b   | d  ; \
240
800
    t12 = c   ^ t11; \
241
800
    t13 = t09 ^ t10; \
242
800
    y   =     ~ t13; \
243
800
    t15 = x   & t03; \
244
800
    z   = t12 ^ t07; \
245
800
    t17 = a   ^ b  ; \
246
800
    t18 = y   ^ t15; \
247
800
    w   = t17 ^ t18; \
248
800
  } while (0)
249
250
#define SBOX7(type, a, b, c, d, w, x, y, z) \
251
800
  do { \
252
800
    type t02, t03, t04, t05, t06, t08, t09, t10;  \
253
800
    type t11, t13, t14, t15, t16, t17, t01; \
254
800
    t01 = a   & c  ; \
255
800
    t02 =     ~ d  ; \
256
800
    t03 = a   & t02; \
257
800
    t04 = b   | t01; \
258
800
    t05 = a   & b  ; \
259
800
    t06 = c   ^ t04; \
260
800
    z   = t03 ^ t06; \
261
800
    t08 = c   | z  ; \
262
800
    t09 = d   | t05; \
263
800
    t10 = a   ^ t08; \
264
800
    t11 = t04 & z  ; \
265
800
    x   = t09 ^ t10; \
266
800
    t13 = b   ^ x  ; \
267
800
    t14 = t01 ^ x  ; \
268
800
    t15 = c   ^ t05; \
269
800
    t16 = t11 | t13; \
270
800
    t17 = t02 | t14; \
271
800
    w   = t15 ^ t17; \
272
800
    y   = a   ^ t16; \
273
800
  } while (0)
274
275
/* Key schedule */
276
/* Note: Increments k */
277
#define KS_RECURRENCE(w, i, k)            \
278
26.4k
  do {                 \
279
26.4k
    uint32_t _wn = (w)[(i)] ^ (w)[((i)+3)&7] ^ w[((i)+5)&7]   \
280
26.4k
      ^ w[((i)+7)&7] ^ PHI ^ (k)++;         \
281
26.4k
    ((w)[(i)] = ROTL32(11, _wn));         \
282
26.4k
  } while (0)
283
284
/* Note: Increments k four times and keys once */
285
#define KS(keys, s, w, i, k)          \
286
6.60k
  do {               \
287
6.60k
    KS_RECURRENCE(w, (i), (k));          \
288
6.60k
    KS_RECURRENCE(w, (i)+1, (k));        \
289
6.60k
    KS_RECURRENCE(w, (i)+2, (k));        \
290
6.60k
    KS_RECURRENCE(w, (i)+3, (k));        \
291
6.60k
    SBOX##s(uint32_t, w[(i)],w[(i)+1],w[(i)+2],w[(i)+3],    \
292
6.60k
      (*keys)[0],(*keys)[1],(*keys)[2],(*keys)[3]); \
293
6.60k
    (keys)++;             \
294
6.60k
  } while (0)
295
296
/* Pad user key and convert to an array of 8 uint32_t. */
297
static void
298
serpent_key_pad (const uint8_t *key, unsigned int key_length,
299
     uint32_t *w)
300
200
{
301
200
  unsigned int i;
302
303
200
  assert (key_length <= SERPENT_MAX_KEY_SIZE);
304
  
305
1.55k
  for (i = 0; key_length >= 4; key_length -=4, key += 4)
306
1.35k
    w[i++] = LE_READ_UINT32(key);
307
308
200
  if (i < 8)
309
128
    {
310
      /* Key must be padded according to the Serpent specification.
311
         "aabbcc" -> "aabbcc0100...00" -> 0x01ccbbaa. */
312
128
      uint32_t pad = 0x01;
313
      
314
302
      while (key_length > 0)
315
174
  pad = pad << 8 | key[--key_length];
316
317
128
      w[i++] = pad;
318
319
246
      while (i < 8)
320
118
  w[i++] = 0;
321
128
    }
322
200
}
323
324
/* Initialize CONTEXT with the key KEY of LENGTH bytes.  */
325
void
326
serpent_set_key (struct serpent_ctx *ctx,
327
     size_t length, const uint8_t * key)
328
200
{
329
200
  uint32_t w[8];
330
200
  uint32_t (*keys)[4];
331
200
  unsigned k;
332
  
333
200
  serpent_key_pad (key, length, w);
334
335
  /* Derive the 33 subkeys from KEY and store them in SUBKEYS. We do
336
     the recurrence in the key schedule using W as a circular buffer
337
     of just 8 uint32_t. */
338
339
  /* FIXME: Would be better to invoke SBOX with scalar variables as
340
     arguments, no arrays. To do that, unpack w into separate
341
     variables, use temporary variables as the SBOX destination. */
342
343
200
  keys = ctx->keys;
344
200
  k = 0;
345
200
  for (;;)
346
1.00k
    {
347
1.00k
      KS(keys, 3, w, 0, k);
348
1.00k
      if (k == 132)
349
200
  break;
350
800
      KS(keys, 2, w, 4, k);
351
800
      KS(keys, 1, w, 0, k);
352
800
      KS(keys, 0, w, 4, k);
353
800
      KS(keys, 7, w, 0, k);
354
800
      KS(keys, 6, w, 4, k);
355
800
      KS(keys, 5, w, 0, k);
356
800
      KS(keys, 4, w, 4, k);
357
800
    }
358
200
  assert (keys == ctx->keys + 33);
359
200
}
360
361
void
362
serpent128_set_key (struct serpent_ctx *ctx, const uint8_t *key)
363
0
{
364
0
  serpent_set_key (ctx, SERPENT128_KEY_SIZE, key);
365
0
}
366
367
void
368
serpent192_set_key (struct serpent_ctx *ctx, const uint8_t *key)
369
0
{
370
0
  serpent_set_key (ctx, SERPENT192_KEY_SIZE, key);
371
0
}
372
373
void
374
serpent256_set_key (struct serpent_ctx *ctx, const uint8_t *key)
375
0
{
376
0
  serpent_set_key (ctx, SERPENT256_KEY_SIZE, key);
377
0
}