/src/gmp-6.2.1/mpn/mulmod_bnm1.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* mulmod_bnm1.c -- multiplication mod B^n-1. |
2 | | |
3 | | Contributed to the GNU project by Niels Möller, Torbjorn Granlund and |
4 | | Marco Bodrato. |
5 | | |
6 | | THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
7 | | SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
8 | | GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
9 | | |
10 | | Copyright 2009, 2010, 2012, 2013 Free Software Foundation, Inc. |
11 | | |
12 | | This file is part of the GNU MP Library. |
13 | | |
14 | | The GNU MP Library is free software; you can redistribute it and/or modify |
15 | | it under the terms of either: |
16 | | |
17 | | * the GNU Lesser General Public License as published by the Free |
18 | | Software Foundation; either version 3 of the License, or (at your |
19 | | option) any later version. |
20 | | |
21 | | or |
22 | | |
23 | | * the GNU General Public License as published by the Free Software |
24 | | Foundation; either version 2 of the License, or (at your option) any |
25 | | later version. |
26 | | |
27 | | or both in parallel, as here. |
28 | | |
29 | | The GNU MP Library is distributed in the hope that it will be useful, but |
30 | | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
31 | | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
32 | | for more details. |
33 | | |
34 | | You should have received copies of the GNU General Public License and the |
35 | | GNU Lesser General Public License along with the GNU MP Library. If not, |
36 | | see https://www.gnu.org/licenses/. */ |
37 | | |
38 | | |
39 | | #include "gmp-impl.h" |
40 | | #include "longlong.h" |
41 | | |
42 | | /* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is |
43 | | mod B^rn - 1, and values are semi-normalised; zero is represented |
44 | | as either 0 or B^n - 1. Needs a scratch of 2rn limbs at tp. |
45 | | tp==rp is allowed. */ |
46 | | void |
47 | | mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn, |
48 | | mp_ptr tp) |
49 | 0 | { |
50 | 0 | mp_limb_t cy; |
51 | |
|
52 | 0 | ASSERT (0 < rn); |
53 | |
|
54 | 0 | mpn_mul_n (tp, ap, bp, rn); |
55 | 0 | cy = mpn_add_n (rp, tp, tp + rn, rn); |
56 | | /* If cy == 1, then the value of rp is at most B^rn - 2, so there can |
57 | | * be no overflow when adding in the carry. */ |
58 | 0 | MPN_INCR_U (rp, rn, cy); |
59 | 0 | } |
60 | | |
61 | | |
62 | | /* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in |
63 | | semi-normalised representation, computation is mod B^rn + 1. Needs |
64 | | a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed. |
65 | | Output is normalised. */ |
66 | | static void |
67 | | mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn, |
68 | | mp_ptr tp) |
69 | 0 | { |
70 | 0 | mp_limb_t cy; |
71 | |
|
72 | 0 | ASSERT (0 < rn); |
73 | |
|
74 | 0 | mpn_mul_n (tp, ap, bp, rn + 1); |
75 | 0 | ASSERT (tp[2*rn+1] == 0); |
76 | 0 | ASSERT (tp[2*rn] < GMP_NUMB_MAX); |
77 | 0 | cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn); |
78 | 0 | rp[rn] = 0; |
79 | 0 | MPN_INCR_U (rp, rn+1, cy); |
80 | 0 | } |
81 | | |
82 | | |
83 | | /* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1) |
84 | | * |
85 | | * The result is expected to be ZERO if and only if one of the operand |
86 | | * already is. Otherwise the class [0] Mod(B^rn-1) is represented by |
87 | | * B^rn-1. This should not be a problem if mulmod_bnm1 is used to |
88 | | * combine results and obtain a natural number when one knows in |
89 | | * advance that the final value is less than (B^rn-1). |
90 | | * Moreover it should not be a problem if mulmod_bnm1 is used to |
91 | | * compute the full product with an+bn <= rn, because this condition |
92 | | * implies (B^an-1)(B^bn-1) < (B^rn-1) . |
93 | | * |
94 | | * Requires 0 < bn <= an <= rn and an + bn > rn/2 |
95 | | * Scratch need: rn + (need for recursive call OR rn + 4). This gives |
96 | | * |
97 | | * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4 |
98 | | */ |
99 | | void |
100 | | mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp) |
101 | 0 | { |
102 | 0 | ASSERT (0 < bn); |
103 | 0 | ASSERT (bn <= an); |
104 | 0 | ASSERT (an <= rn); |
105 | |
|
106 | 0 | if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD)) |
107 | 0 | { |
108 | 0 | if (UNLIKELY (bn < rn)) |
109 | 0 | { |
110 | 0 | if (UNLIKELY (an + bn <= rn)) |
111 | 0 | { |
112 | 0 | mpn_mul (rp, ap, an, bp, bn); |
113 | 0 | } |
114 | 0 | else |
115 | 0 | { |
116 | 0 | mp_limb_t cy; |
117 | 0 | mpn_mul (tp, ap, an, bp, bn); |
118 | 0 | cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn); |
119 | 0 | MPN_INCR_U (rp, rn, cy); |
120 | 0 | } |
121 | 0 | } |
122 | 0 | else |
123 | 0 | mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp); |
124 | 0 | } |
125 | 0 | else |
126 | 0 | { |
127 | 0 | mp_size_t n; |
128 | 0 | mp_limb_t cy; |
129 | 0 | mp_limb_t hi; |
130 | |
|
131 | 0 | n = rn >> 1; |
132 | | |
133 | | /* We need at least an + bn >= n, to be able to fit one of the |
134 | | recursive products at rp. Requiring strict inequality makes |
135 | | the code slightly simpler. If desired, we could avoid this |
136 | | restriction by initially halving rn as long as rn is even and |
137 | | an + bn <= rn/2. */ |
138 | |
|
139 | 0 | ASSERT (an + bn > n); |
140 | | |
141 | | /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1) |
142 | | and crt together as |
143 | | |
144 | | x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)] |
145 | | */ |
146 | |
|
147 | 0 | #define a0 ap |
148 | 0 | #define a1 (ap + n) |
149 | 0 | #define b0 bp |
150 | 0 | #define b1 (bp + n) |
151 | |
|
152 | 0 | #define xp tp /* 2n + 2 */ |
153 | | /* am1 maybe in {xp, n} */ |
154 | | /* bm1 maybe in {xp + n, n} */ |
155 | 0 | #define sp1 (tp + 2*n + 2) |
156 | | /* ap1 maybe in {sp1, n + 1} */ |
157 | | /* bp1 maybe in {sp1 + n + 1, n + 1} */ |
158 | |
|
159 | 0 | { |
160 | 0 | mp_srcptr am1, bm1; |
161 | 0 | mp_size_t anm, bnm; |
162 | 0 | mp_ptr so; |
163 | |
|
164 | 0 | bm1 = b0; |
165 | 0 | bnm = bn; |
166 | 0 | if (LIKELY (an > n)) |
167 | 0 | { |
168 | 0 | am1 = xp; |
169 | 0 | cy = mpn_add (xp, a0, n, a1, an - n); |
170 | 0 | MPN_INCR_U (xp, n, cy); |
171 | 0 | anm = n; |
172 | 0 | so = xp + n; |
173 | 0 | if (LIKELY (bn > n)) |
174 | 0 | { |
175 | 0 | bm1 = so; |
176 | 0 | cy = mpn_add (so, b0, n, b1, bn - n); |
177 | 0 | MPN_INCR_U (so, n, cy); |
178 | 0 | bnm = n; |
179 | 0 | so += n; |
180 | 0 | } |
181 | 0 | } |
182 | 0 | else |
183 | 0 | { |
184 | 0 | so = xp; |
185 | 0 | am1 = a0; |
186 | 0 | anm = an; |
187 | 0 | } |
188 | |
|
189 | 0 | mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so); |
190 | 0 | } |
191 | |
|
192 | 0 | { |
193 | 0 | int k; |
194 | 0 | mp_srcptr ap1, bp1; |
195 | 0 | mp_size_t anp, bnp; |
196 | |
|
197 | 0 | bp1 = b0; |
198 | 0 | bnp = bn; |
199 | 0 | if (LIKELY (an > n)) { |
200 | 0 | ap1 = sp1; |
201 | 0 | cy = mpn_sub (sp1, a0, n, a1, an - n); |
202 | 0 | sp1[n] = 0; |
203 | 0 | MPN_INCR_U (sp1, n + 1, cy); |
204 | 0 | anp = n + ap1[n]; |
205 | 0 | if (LIKELY (bn > n)) { |
206 | 0 | bp1 = sp1 + n + 1; |
207 | 0 | cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n); |
208 | 0 | sp1[2*n+1] = 0; |
209 | 0 | MPN_INCR_U (sp1 + n + 1, n + 1, cy); |
210 | 0 | bnp = n + bp1[n]; |
211 | 0 | } |
212 | 0 | } else { |
213 | 0 | ap1 = a0; |
214 | 0 | anp = an; |
215 | 0 | } |
216 | |
|
217 | 0 | if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD)) |
218 | 0 | k=0; |
219 | 0 | else |
220 | 0 | { |
221 | 0 | int mask; |
222 | 0 | k = mpn_fft_best_k (n, 0); |
223 | 0 | mask = (1<<k) - 1; |
224 | 0 | while (n & mask) {k--; mask >>=1;}; |
225 | 0 | } |
226 | 0 | if (k >= FFT_FIRST_K) |
227 | 0 | xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k); |
228 | 0 | else if (UNLIKELY (bp1 == b0)) |
229 | 0 | { |
230 | 0 | ASSERT (anp + bnp <= 2*n+1); |
231 | 0 | ASSERT (anp + bnp > n); |
232 | 0 | ASSERT (anp >= bnp); |
233 | 0 | mpn_mul (xp, ap1, anp, bp1, bnp); |
234 | 0 | anp = anp + bnp - n; |
235 | 0 | ASSERT (anp <= n || xp[2*n]==0); |
236 | 0 | anp-= anp > n; |
237 | 0 | cy = mpn_sub (xp, xp, n, xp + n, anp); |
238 | 0 | xp[n] = 0; |
239 | 0 | MPN_INCR_U (xp, n+1, cy); |
240 | 0 | } |
241 | 0 | else |
242 | 0 | mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp); |
243 | 0 | } |
244 | | |
245 | | /* Here the CRT recomposition begins. |
246 | | |
247 | | xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1) |
248 | | Division by 2 is a bitwise rotation. |
249 | | |
250 | | Assumes xp normalised mod (B^n+1). |
251 | | |
252 | | The residue class [0] is represented by [B^n-1]; except when |
253 | | both input are ZERO. |
254 | | */ |
255 | |
|
256 | 0 | #if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc |
257 | 0 | #if HAVE_NATIVE_mpn_rsh1add_nc |
258 | 0 | cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */ |
259 | 0 | hi = cy << (GMP_NUMB_BITS - 1); |
260 | 0 | cy = 0; |
261 | | /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi |
262 | | overflows, i.e. a further increment will not overflow again. */ |
263 | | #else /* ! _nc */ |
264 | | cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */ |
265 | | hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ |
266 | | cy >>= 1; |
267 | | /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that |
268 | | the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */ |
269 | | #endif |
270 | 0 | #if GMP_NAIL_BITS == 0 |
271 | 0 | add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi); |
272 | | #else |
273 | | cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1); |
274 | | rp[n-1] ^= hi; |
275 | | #endif |
276 | | #else /* ! HAVE_NATIVE_mpn_rsh1add_n */ |
277 | | #if HAVE_NATIVE_mpn_add_nc |
278 | | cy = mpn_add_nc(rp, rp, xp, n, xp[n]); |
279 | | #else /* ! _nc */ |
280 | | cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */ |
281 | | #endif |
282 | | cy += (rp[0]&1); |
283 | | mpn_rshift(rp, rp, n, 1); |
284 | | ASSERT (cy <= 2); |
285 | | hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ |
286 | | cy >>= 1; |
287 | | /* We can have cy != 0 only if hi = 0... */ |
288 | | ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0); |
289 | | rp[n-1] |= hi; |
290 | | /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */ |
291 | | #endif |
292 | 0 | ASSERT (cy <= 1); |
293 | | /* Next increment can not overflow, read the previous comments about cy. */ |
294 | 0 | ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0)); |
295 | 0 | MPN_INCR_U(rp, n, cy); |
296 | | |
297 | | /* Compute the highest half: |
298 | | ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n |
299 | | */ |
300 | 0 | if (UNLIKELY (an + bn < rn)) |
301 | 0 | { |
302 | | /* Note that in this case, the only way the result can equal |
303 | | zero mod B^{rn} - 1 is if one of the inputs is zero, and |
304 | | then the output of both the recursive calls and this CRT |
305 | | reconstruction is zero, not B^{rn} - 1. Which is good, |
306 | | since the latter representation doesn't fit in the output |
307 | | area.*/ |
308 | 0 | cy = mpn_sub_n (rp + n, rp, xp, an + bn - n); |
309 | | |
310 | | /* FIXME: This subtraction of the high parts is not really |
311 | | necessary, we do it to get the carry out, and for sanity |
312 | | checking. */ |
313 | 0 | cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n, |
314 | 0 | xp + an + bn - n, rn - (an + bn), cy); |
315 | 0 | ASSERT (an + bn == rn - 1 || |
316 | 0 | mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn))); |
317 | 0 | cy = mpn_sub_1 (rp, rp, an + bn, cy); |
318 | 0 | ASSERT (cy == (xp + an + bn - n)[0]); |
319 | 0 | } |
320 | 0 | else |
321 | 0 | { |
322 | 0 | cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n); |
323 | | /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO. |
324 | | DECR will affect _at most_ the lowest n limbs. */ |
325 | 0 | MPN_DECR_U (rp, 2*n, cy); |
326 | 0 | } |
327 | 0 | #undef a0 |
328 | 0 | #undef a1 |
329 | 0 | #undef b0 |
330 | 0 | #undef b1 |
331 | 0 | #undef xp |
332 | 0 | #undef sp1 |
333 | 0 | } |
334 | 0 | } |
335 | | |
336 | | mp_size_t |
337 | | mpn_mulmod_bnm1_next_size (mp_size_t n) |
338 | 0 | { |
339 | 0 | mp_size_t nh; |
340 | |
|
341 | 0 | if (BELOW_THRESHOLD (n, MULMOD_BNM1_THRESHOLD)) |
342 | 0 | return n; |
343 | 0 | if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1)) |
344 | 0 | return (n + (2-1)) & (-2); |
345 | 0 | if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1)) |
346 | 0 | return (n + (4-1)) & (-4); |
347 | | |
348 | 0 | nh = (n + 1) >> 1; |
349 | |
|
350 | 0 | if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD)) |
351 | 0 | return (n + (8-1)) & (-8); |
352 | | |
353 | 0 | return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0)); |
354 | 0 | } |