Coverage Report

Created: 2024-06-28 06:39

/src/gmp-6.2.1/mpn/mulmod_bnm1.c
Line
Count
Source (jump to first uncovered line)
1
/* mulmod_bnm1.c -- multiplication mod B^n-1.
2
3
   Contributed to the GNU project by Niels Möller, Torbjorn Granlund and
4
   Marco Bodrato.
5
6
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
7
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2009, 2010, 2012, 2013 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
39
#include "gmp-impl.h"
40
#include "longlong.h"
41
42
/* Inputs are {ap,rn} and {bp,rn}; output is {rp,rn}, computation is
43
   mod B^rn - 1, and values are semi-normalised; zero is represented
44
   as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.
45
   tp==rp is allowed. */
46
void
47
mpn_bc_mulmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
48
        mp_ptr tp)
49
0
{
50
0
  mp_limb_t cy;
51
52
0
  ASSERT (0 < rn);
53
54
0
  mpn_mul_n (tp, ap, bp, rn);
55
0
  cy = mpn_add_n (rp, tp, tp + rn, rn);
56
  /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
57
   * be no overflow when adding in the carry. */
58
0
  MPN_INCR_U (rp, rn, cy);
59
0
}
60
61
62
/* Inputs are {ap,rn+1} and {bp,rn+1}; output is {rp,rn+1}, in
63
   semi-normalised representation, computation is mod B^rn + 1. Needs
64
   a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed.
65
   Output is normalised. */
66
static void
67
mpn_bc_mulmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t rn,
68
        mp_ptr tp)
69
0
{
70
0
  mp_limb_t cy;
71
72
0
  ASSERT (0 < rn);
73
74
0
  mpn_mul_n (tp, ap, bp, rn + 1);
75
0
  ASSERT (tp[2*rn+1] == 0);
76
0
  ASSERT (tp[2*rn] < GMP_NUMB_MAX);
77
0
  cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn);
78
0
  rp[rn] = 0;
79
0
  MPN_INCR_U (rp, rn+1, cy);
80
0
}
81
82
83
/* Computes {rp,MIN(rn,an+bn)} <- {ap,an}*{bp,bn} Mod(B^rn-1)
84
 *
85
 * The result is expected to be ZERO if and only if one of the operand
86
 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
87
 * B^rn-1. This should not be a problem if mulmod_bnm1 is used to
88
 * combine results and obtain a natural number when one knows in
89
 * advance that the final value is less than (B^rn-1).
90
 * Moreover it should not be a problem if mulmod_bnm1 is used to
91
 * compute the full product with an+bn <= rn, because this condition
92
 * implies (B^an-1)(B^bn-1) < (B^rn-1) .
93
 *
94
 * Requires 0 < bn <= an <= rn and an + bn > rn/2
95
 * Scratch need: rn + (need for recursive call OR rn + 4). This gives
96
 *
97
 * S(n) <= rn + MAX (rn + 4, S(n/2)) <= 2rn + 4
98
 */
99
void
100
mpn_mulmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_srcptr bp, mp_size_t bn, mp_ptr tp)
101
0
{
102
0
  ASSERT (0 < bn);
103
0
  ASSERT (bn <= an);
104
0
  ASSERT (an <= rn);
105
106
0
  if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, MULMOD_BNM1_THRESHOLD))
107
0
    {
108
0
      if (UNLIKELY (bn < rn))
109
0
  {
110
0
    if (UNLIKELY (an + bn <= rn))
111
0
      {
112
0
        mpn_mul (rp, ap, an, bp, bn);
113
0
      }
114
0
    else
115
0
      {
116
0
        mp_limb_t cy;
117
0
        mpn_mul (tp, ap, an, bp, bn);
118
0
        cy = mpn_add (rp, tp, rn, tp + rn, an + bn - rn);
119
0
        MPN_INCR_U (rp, rn, cy);
120
0
      }
121
0
  }
122
0
      else
123
0
  mpn_bc_mulmod_bnm1 (rp, ap, bp, rn, tp);
124
0
    }
125
0
  else
126
0
    {
127
0
      mp_size_t n;
128
0
      mp_limb_t cy;
129
0
      mp_limb_t hi;
130
131
0
      n = rn >> 1;
132
133
      /* We need at least an + bn >= n, to be able to fit one of the
134
   recursive products at rp. Requiring strict inequality makes
135
   the code slightly simpler. If desired, we could avoid this
136
   restriction by initially halving rn as long as rn is even and
137
   an + bn <= rn/2. */
138
139
0
      ASSERT (an + bn > n);
140
141
      /* Compute xm = a*b mod (B^n - 1), xp = a*b mod (B^n + 1)
142
   and crt together as
143
144
   x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
145
      */
146
147
0
#define a0 ap
148
0
#define a1 (ap + n)
149
0
#define b0 bp
150
0
#define b1 (bp + n)
151
152
0
#define xp  tp  /* 2n + 2 */
153
      /* am1  maybe in {xp, n} */
154
      /* bm1  maybe in {xp + n, n} */
155
0
#define sp1 (tp + 2*n + 2)
156
      /* ap1  maybe in {sp1, n + 1} */
157
      /* bp1  maybe in {sp1 + n + 1, n + 1} */
158
159
0
      {
160
0
  mp_srcptr am1, bm1;
161
0
  mp_size_t anm, bnm;
162
0
  mp_ptr so;
163
164
0
  bm1 = b0;
165
0
  bnm = bn;
166
0
  if (LIKELY (an > n))
167
0
    {
168
0
      am1 = xp;
169
0
      cy = mpn_add (xp, a0, n, a1, an - n);
170
0
      MPN_INCR_U (xp, n, cy);
171
0
      anm = n;
172
0
      so = xp + n;
173
0
      if (LIKELY (bn > n))
174
0
        {
175
0
    bm1 = so;
176
0
    cy = mpn_add (so, b0, n, b1, bn - n);
177
0
    MPN_INCR_U (so, n, cy);
178
0
    bnm = n;
179
0
    so += n;
180
0
        }
181
0
    }
182
0
  else
183
0
    {
184
0
      so = xp;
185
0
      am1 = a0;
186
0
      anm = an;
187
0
    }
188
189
0
  mpn_mulmod_bnm1 (rp, n, am1, anm, bm1, bnm, so);
190
0
      }
191
192
0
      {
193
0
  int       k;
194
0
  mp_srcptr ap1, bp1;
195
0
  mp_size_t anp, bnp;
196
197
0
  bp1 = b0;
198
0
  bnp = bn;
199
0
  if (LIKELY (an > n)) {
200
0
    ap1 = sp1;
201
0
    cy = mpn_sub (sp1, a0, n, a1, an - n);
202
0
    sp1[n] = 0;
203
0
    MPN_INCR_U (sp1, n + 1, cy);
204
0
    anp = n + ap1[n];
205
0
    if (LIKELY (bn > n)) {
206
0
      bp1 = sp1 + n + 1;
207
0
      cy = mpn_sub (sp1 + n + 1, b0, n, b1, bn - n);
208
0
      sp1[2*n+1] = 0;
209
0
      MPN_INCR_U (sp1 + n + 1, n + 1, cy);
210
0
      bnp = n + bp1[n];
211
0
    }
212
0
  } else {
213
0
    ap1 = a0;
214
0
    anp = an;
215
0
  }
216
217
0
  if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
218
0
    k=0;
219
0
  else
220
0
    {
221
0
      int mask;
222
0
      k = mpn_fft_best_k (n, 0);
223
0
      mask = (1<<k) - 1;
224
0
      while (n & mask) {k--; mask >>=1;};
225
0
    }
226
0
  if (k >= FFT_FIRST_K)
227
0
    xp[n] = mpn_mul_fft (xp, n, ap1, anp, bp1, bnp, k);
228
0
  else if (UNLIKELY (bp1 == b0))
229
0
    {
230
0
      ASSERT (anp + bnp <= 2*n+1);
231
0
      ASSERT (anp + bnp > n);
232
0
      ASSERT (anp >= bnp);
233
0
      mpn_mul (xp, ap1, anp, bp1, bnp);
234
0
      anp = anp + bnp - n;
235
0
      ASSERT (anp <= n || xp[2*n]==0);
236
0
      anp-= anp > n;
237
0
      cy = mpn_sub (xp, xp, n, xp + n, anp);
238
0
      xp[n] = 0;
239
0
      MPN_INCR_U (xp, n+1, cy);
240
0
    }
241
0
  else
242
0
    mpn_bc_mulmod_bnp1 (xp, ap1, bp1, n, xp);
243
0
      }
244
245
      /* Here the CRT recomposition begins.
246
247
   xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
248
   Division by 2 is a bitwise rotation.
249
250
   Assumes xp normalised mod (B^n+1).
251
252
   The residue class [0] is represented by [B^n-1]; except when
253
   both input are ZERO.
254
      */
255
256
0
#if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
257
0
#if HAVE_NATIVE_mpn_rsh1add_nc
258
0
      cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
259
0
      hi = cy << (GMP_NUMB_BITS - 1);
260
0
      cy = 0;
261
      /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
262
   overflows, i.e. a further increment will not overflow again. */
263
#else /* ! _nc */
264
      cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
265
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
266
      cy >>= 1;
267
      /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
268
   the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
269
#endif
270
0
#if GMP_NAIL_BITS == 0
271
0
      add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);
272
#else
273
      cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
274
      rp[n-1] ^= hi;
275
#endif
276
#else /* ! HAVE_NATIVE_mpn_rsh1add_n */
277
#if HAVE_NATIVE_mpn_add_nc
278
      cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
279
#else /* ! _nc */
280
      cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
281
#endif
282
      cy += (rp[0]&1);
283
      mpn_rshift(rp, rp, n, 1);
284
      ASSERT (cy <= 2);
285
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
286
      cy >>= 1;
287
      /* We can have cy != 0 only if hi = 0... */
288
      ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
289
      rp[n-1] |= hi;
290
      /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
291
#endif
292
0
      ASSERT (cy <= 1);
293
      /* Next increment can not overflow, read the previous comments about cy. */
294
0
      ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
295
0
      MPN_INCR_U(rp, n, cy);
296
297
      /* Compute the highest half:
298
   ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
299
       */
300
0
      if (UNLIKELY (an + bn < rn))
301
0
  {
302
    /* Note that in this case, the only way the result can equal
303
       zero mod B^{rn} - 1 is if one of the inputs is zero, and
304
       then the output of both the recursive calls and this CRT
305
       reconstruction is zero, not B^{rn} - 1. Which is good,
306
       since the latter representation doesn't fit in the output
307
       area.*/
308
0
    cy = mpn_sub_n (rp + n, rp, xp, an + bn - n);
309
310
    /* FIXME: This subtraction of the high parts is not really
311
       necessary, we do it to get the carry out, and for sanity
312
       checking. */
313
0
    cy = xp[n] + mpn_sub_nc (xp + an + bn - n, rp + an + bn - n,
314
0
           xp + an + bn - n, rn - (an + bn), cy);
315
0
    ASSERT (an + bn == rn - 1 ||
316
0
      mpn_zero_p (xp + an + bn - n + 1, rn - 1 - (an + bn)));
317
0
    cy = mpn_sub_1 (rp, rp, an + bn, cy);
318
0
    ASSERT (cy == (xp + an + bn - n)[0]);
319
0
  }
320
0
      else
321
0
  {
322
0
    cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
323
    /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
324
       DECR will affect _at most_ the lowest n limbs. */
325
0
    MPN_DECR_U (rp, 2*n, cy);
326
0
  }
327
0
#undef a0
328
0
#undef a1
329
0
#undef b0
330
0
#undef b1
331
0
#undef xp
332
0
#undef sp1
333
0
    }
334
0
}
335
336
mp_size_t
337
mpn_mulmod_bnm1_next_size (mp_size_t n)
338
0
{
339
0
  mp_size_t nh;
340
341
0
  if (BELOW_THRESHOLD (n,     MULMOD_BNM1_THRESHOLD))
342
0
    return n;
343
0
  if (BELOW_THRESHOLD (n, 4 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
344
0
    return (n + (2-1)) & (-2);
345
0
  if (BELOW_THRESHOLD (n, 8 * (MULMOD_BNM1_THRESHOLD - 1) + 1))
346
0
    return (n + (4-1)) & (-4);
347
348
0
  nh = (n + 1) >> 1;
349
350
0
  if (BELOW_THRESHOLD (nh, MUL_FFT_MODF_THRESHOLD))
351
0
    return (n + (8-1)) & (-8);
352
353
0
  return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 0));
354
0
}