Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
240
#define CAST_SMALL_KEY 10
56
57
22.5k
#define S1 cast_sbox1
58
22.5k
#define S2 cast_sbox2
59
22.5k
#define S3 cast_sbox3
60
22.5k
#define S4 cast_sbox4
61
9.60k
#define S5 cast_sbox5
62
9.60k
#define S6 cast_sbox6
63
9.60k
#define S7 cast_sbox7
64
9.60k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
32.1k
#define B0(x) ( (uint8_t) (x>>24) )
68
32.1k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
32.1k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
32.1k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
7.98k
#define F1(l, r, i) do {         \
76
7.98k
    t = ctx->Km[i] + r;           \
77
7.98k
    t = ROTL32(ctx->Kr[i], t);          \
78
7.98k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
7.98k
  } while (0)
80
7.26k
#define F2(l, r, i) do {         \
81
7.26k
    t = ctx->Km[i] ^ r;           \
82
7.26k
    t = ROTL32( ctx->Kr[i], t);         \
83
7.26k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
7.26k
  } while (0)
85
7.26k
#define F3(l, r, i) do {         \
86
7.26k
    t = ctx->Km[i] - r;           \
87
7.26k
    t = ROTL32(ctx->Kr[i], t);          \
88
7.26k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
7.26k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
98
{
99
98
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
614
    {
101
614
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
614
      l = READ_UINT32(src);
105
614
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
614
      F1(l, r,  0);
109
614
      F2(r, l,  1);
110
614
      F3(l, r,  2);
111
614
      F1(r, l,  3);
112
614
      F2(l, r,  4);
113
614
      F3(r, l,  5);
114
614
      F1(l, r,  6);
115
614
      F2(r, l,  7);
116
614
      F3(l, r,  8);
117
614
      F1(r, l,  9);
118
614
      F2(l, r, 10);
119
614
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
614
      if (ctx->rounds & 16) {
122
155
  F1(l, r, 12);
123
155
  F2(r, l, 13);
124
155
  F3(l, r, 14);
125
155
  F1(r, l, 15);
126
155
      }
127
      /* Put l,r into outblock */
128
614
      WRITE_UINT32(dst, r);
129
614
      WRITE_UINT32(dst + 4, l);
130
614
    }
131
98
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
142
{
141
142
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
1.02k
    {
143
1.02k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
1.02k
      r = READ_UINT32(src);
147
1.02k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
1.02k
      if (ctx->rounds & 16) {
152
562
  F1(r, l, 15);
153
562
  F3(l, r, 14);
154
562
  F2(r, l, 13);
155
562
  F1(l, r, 12);
156
562
      }
157
1.02k
      F3(r, l, 11);
158
1.02k
      F2(l, r, 10);
159
1.02k
      F1(r, l,  9);
160
1.02k
      F3(l, r,  8);
161
1.02k
      F2(r, l,  7);
162
1.02k
      F1(l, r,  6);
163
1.02k
      F3(r, l,  5);
164
1.02k
      F2(l, r,  4);
165
1.02k
      F1(r, l,  3);
166
1.02k
      F3(l, r,  2);
167
1.02k
      F2(r, l,  1);
168
1.02k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
1.02k
      WRITE_UINT32(dst, l);
172
1.02k
      WRITE_UINT32(dst + 4, r);
173
1.02k
    }
174
142
}
175
176
/***** Key Schedule *****/
177
178
3.34k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
3.34k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
480
#define EXPAND(set, full) do {           \
182
480
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
480
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
480
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
480
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
480
                      \
187
480
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
480
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
480
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
480
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
480
                      \
192
480
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
480
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
480
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
480
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
480
                      \
197
480
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
480
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
480
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
480
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
480
                      \
202
480
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
480
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
480
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
480
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
480
                      \
207
480
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
480
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
480
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
480
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
480
                  \
212
480
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
480
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
480
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
480
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
480
    if (full)               \
217
480
      {                 \
218
234
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
234
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
234
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
234
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
234
      }                  \
223
480
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
240
{
229
240
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
240
  uint32_t w;
231
240
  int full;
232
233
240
  assert (length >= CAST5_MIN_KEY_SIZE);
234
240
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
240
  full = (length > CAST_SMALL_KEY);
237
238
240
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
240
  switch (length & 3)
242
240
    {
243
160
    case 0:
244
160
      w = READ_UINT32 (key + length - 4);
245
160
      break;
246
10
    case 3:
247
10
      w = READ_UINT24 (key + length - 3) << 8;
248
10
      break;
249
69
    case 2:
250
69
      w = READ_UINT16 (key + length - 2) << 16;
251
69
      break;
252
1
    case 1:
253
1
      w = (uint32_t) key[length - 1] << 24;
254
1
      break;
255
240
    }
256
257
240
  if (length <= 8)
258
55
    {
259
55
      x1 = w;
260
55
      x2 = x3 = 0;
261
55
    }
262
185
  else
263
185
    {
264
185
      x1 = READ_UINT32 (key + 4);
265
185
      if (length <= 12)
266
171
  {
267
171
    x2 = w;
268
171
    x3 = 0;
269
171
  }
270
14
      else
271
14
  {
272
14
    x2 = READ_UINT32 (key + 8);
273
14
    x3 = w;
274
14
  }
275
185
    }
276
277
3.34k
  EXPAND(SET_KM, full);
278
3.34k
  EXPAND(SET_KR, full);
279
280
240
  ctx->rounds = full ? 16 : 12;
281
240
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}