Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-libgmp/ecc-secp256r1.c
Line
Count
Source (jump to first uncovered line)
1
/* ecc-secp256r1.c
2
3
   Compile time constant (but machine dependent) tables.
4
5
   Copyright (C) 2013, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
35
36
#if HAVE_CONFIG_H
37
# include "config.h"
38
#endif
39
40
#include <assert.h>
41
42
#include "ecc-internal.h"
43
44
#if HAVE_NATIVE_ecc_secp256r1_redc
45
# define USE_REDC 1
46
#else
47
# define USE_REDC (ECC_REDC_SIZE != 0)
48
#endif
49
50
#include "ecc-secp256r1.h"
51
52
#if HAVE_NATIVE_ecc_secp256r1_redc
53
# define ecc_secp256r1_redc _nettle_ecc_secp256r1_redc
54
void
55
ecc_secp256r1_redc (const struct ecc_modulo *p, mp_limb_t *rp, mp_limb_t *xp);
56
#else /* !HAVE_NATIVE_ecc_secp256r1_redc */
57
# if ECC_REDC_SIZE > 0
58
#   define ecc_secp256r1_redc ecc_pp1_redc
59
# elif ECC_REDC_SIZE == 0
60
#   define ecc_secp256r1_redc NULL
61
# else
62
#  error Configuration error
63
# endif
64
#endif /* !HAVE_NATIVE_ecc_secp256r1_redc */
65
66
#if ECC_BMODP_SIZE < ECC_LIMB_SIZE
67
#define ecc_secp256r1_modp ecc_mod
68
#define ecc_secp256r1_modq ecc_mod
69
#elif GMP_NUMB_BITS == 64
70
71
static void
72
ecc_secp256r1_modp (const struct ecc_modulo *p, mp_limb_t *rp, mp_limb_t *xp)
73
224
{
74
224
  mp_limb_t d1, u1, cy;
75
224
  mp_size_t n;
76
77
  /* Reduce to < B^4 p up front, to avoid first quotient overflowing a limb. */
78
224
  cy = mpn_sub_n (xp + 4, xp + 4, p->m, p->size);
79
224
  mpn_cnd_add_n (cy, xp + 4, xp + 4, p->m, p->size);
80
81
224
  d1 = UINT64_C(0xffffffff00000001);
82
672
  for (n = 2*p->size, u1 = xp[--n] ;; n--)
83
896
    {
84
896
      mp_limb_t u0, q1, q0, qmax, r, t, mask;
85
896
      u0 = xp[n-1];
86
87
      /* Since d0 == 0, 2/1 division gives a good enough quotient
88
   approximation.
89
90
   <q1, q0> = v * u1 + <u1,u0>, with v = 2^32 - 1:
91
92
     +---+---+
93
     | u1| u0|
94
     +---+---+
95
         |-u1|
96
       +-+-+-+
97
       | u1|
98
           +-+-+-+-+
99
           | q1| q0|
100
           +---+---+
101
      */
102
896
      q1 = u1 - (u1 > u0);
103
896
      q0 = u0 - u1;
104
896
      t = u1 << 32;
105
896
      q0 += t;
106
896
      q1 += (u1 >> 32) + (q0 < t) + 1;
107
108
      /* Force q = B-1 when u1 == d1 */
109
896
      qmax = - (mp_limb_t) (u1 >= d1);
110
111
      /* Candidate remainder r = u0 - q d1 (mod B), and 2/1 division
112
   adjustments. */
113
896
      r = u0 + (q1 << 32) - q1;
114
896
      mask = - (mp_limb_t) (r > q0);
115
896
      q1 += mask;
116
896
      r += (mask & d1);
117
896
      mask = - (mp_limb_t) (r >= d1);
118
896
      q1 -= mask;
119
896
      r -= (mask & d1);
120
121
      /* In the case that u1 == d1, we get q1 == 0, r == 0 here (and
122
   correct 2/1 quotient would be B). Replace with q1 = B-1, r =
123
   d1. */
124
896
      q1 |= qmax;
125
896
      r += d1 & qmax;
126
127
896
      cy = mpn_submul_1 (xp + n - 4, p->m, 3, q1);
128
896
      mask = - (mp_limb_t) (r < cy);
129
896
      if (n == p->size)
130
224
  {
131
224
    rp[3] = r - cy + (mask & d1) + mpn_cnd_add_n (mask, rp, xp, p->m, 3);
132
224
    return;
133
224
  }
134
672
      u1 = r - cy + (mask & d1) + mpn_cnd_add_n (mask, xp + n - 4, xp + n- 4, p->m, 3);
135
672
    }
136
224
}
137
138
static void
139
ecc_secp256r1_modq (const struct ecc_modulo *q, mp_limb_t *rp, mp_limb_t *xp)
140
404
{
141
404
  mp_limb_t d1, cy;
142
404
  mp_size_t n;
143
144
  /* Reduce to < B^4 p up front, to avoid first quotient overflowing a limb. */
145
404
  cy = mpn_sub_n (xp + 4, xp + 4, q->m, q->size);
146
404
  mpn_cnd_add_n (cy, xp + 4, xp + 4, q->m, q->size);
147
148
404
  d1 = UINT64_C(0xffffffff00000000);
149
404
  n = 2*q->size;
150
404
  for (;;)
151
1.61k
    {
152
1.61k
      mp_limb_t u1, u0, q1, q0, r, t, qmax, mask;
153
1.61k
      u1 = xp[--n];
154
1.61k
      u0 = xp[n-1];
155
156
      /* divappr2, specialized for d1 = 2^64 - 2^32, d0 = 2^64-1.
157
158
   <q1, q0> = v * u1 + <u1,u0>, with v = 2^32 - 1:
159
160
     +---+---+
161
     | u1| u0|
162
     +---+---+
163
         |-u1|
164
       +-+-+-+
165
       | u1|
166
           +-+-+-+-+
167
           | q1| q0|
168
           +---+---+
169
      */
170
1.61k
      q1 = u1 - (u1 > u0);
171
1.61k
      q0 = u0 - u1;
172
1.61k
      t = u1 << 32;
173
1.61k
      q0 += t;
174
1.61k
      q1 += (q0 < t);
175
1.61k
      t = u1 >> 32;
176
      /* The divappr2 algorithm handles only q < B - 1. If we check
177
   for u1 >= d1 = 2^{64}-2^{32}, we cover all cases where q =
178
   2^64-1, and some when q = 2^64-2. The latter case is
179
   corrected by the final adjustment. */
180
1.61k
      qmax = - (mp_limb_t) (t == 0xffffffff);
181
1.61k
      q1 += t + 1;
182
183
      /* Candidate remainder r = u0 - q (d1 + 1) (mod B), and divappr2
184
   adjustments.
185
186
   For general divappr2, the expression is
187
188
     r = u_0 - q1 d1 - floor(q1 d0 / B) - 1
189
190
   but in our case floor(q1 d0 / B) simplifies to q1 - 1.
191
      */
192
1.61k
      r = u0 + (q1 << 32) - q1;
193
1.61k
      mask = - (mp_limb_t) (r >= q0);
194
1.61k
      q1 += mask;
195
1.61k
      r += (mask & (d1 + 1));
196
1.61k
      q1 += (r >= d1 - 1);
197
198
      /* Replace by qmax, when that is needed */
199
1.61k
      q1 |= qmax;
200
201
      /* Subtract, may underflow. */
202
1.61k
      cy = mpn_submul_1 (xp + n - 4, q->m, 4, q1);
203
1.61k
      if (n == q->size)
204
404
  {
205
404
    mpn_cnd_add_n (cy > u1, rp, xp, q->m, 4);
206
404
    return;
207
404
  }
208
1.21k
      mpn_cnd_add_n (cy > u1, xp + n - 4, xp + n- 4, q->m, 4);
209
1.21k
    }
210
404
}
211
212
#else
213
#error Unsupported parameters
214
#endif
215
216
#define ECC_SECP256R1_INV_ITCH (4*ECC_LIMB_SIZE)
217
218
static void
219
ecc_secp256r1_inv (const struct ecc_modulo *p,
220
       mp_limb_t *rp, const mp_limb_t *ap,
221
       mp_limb_t *scratch)
222
321
{
223
1.60k
#define a5m1 scratch
224
1.60k
#define t0 (scratch + ECC_LIMB_SIZE)
225
1.28k
#define a15m1 t0
226
963
#define a32m1 a5m1
227
4.17k
#define tp (scratch + 2*ECC_LIMB_SIZE)
228
/*
229
   Addition chain for p - 2 = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 3
230
231
    2^5 - 1 = 1 + 2 (2^4 - 1) = 1 + 2 (2^2+1)(2 + 1)    4 S + 3 M
232
    2^{15} - 1 = (2^5 - 1) (1 + 2^5 (1 + 2^5)          10 S + 2 M
233
    2^{16} - 1 = 1 + 2 (2^{15} - 1)                       S +   M
234
    2^{32} - 1 = (2^{16} + 1) (2^{16} - 1)             16 S +   M
235
    2^{64} - 2^{32} + 1 = 2^{32} (2^{32} - 1) + 1      32 S +   M
236
    2^{192} - 2^{160} + 2^{128} + 2^{32} - 1
237
        = 2^{128} (2^{64} - 2^{32} + 1) + 2^{32} - 1  128 S +   M
238
    2^{224} - 2^{192} + 2^{160} + 2^{64} - 1
239
        = 2^{32} (...) + 2^{32} - 1                    32 S +   M
240
    2^{239} - 2^{207} + 2^{175} + 2^{79} - 1
241
        = 2^{15} (...) + 2^{15} - 1                    15 S +   M
242
    2^{254} - 2^{222} + 2^{190} + 2^{94} - 1
243
        = 2^{15} (...) + 2^{15} - 1                    15 S +   M
244
    p - 2 = 2^2 (...) + 1                               2 S     M
245
                                                   ---------------
246
                  255 S + 13 M
247
 */
248
321
  ecc_mod_sqr (p, rp, ap, tp);      /* a^2 */
249
321
  ecc_mod_mul (p, rp, rp, ap, tp);    /* a^3 */
250
321
  ecc_mod_pow_2kp1 (p, t0, rp, 2, tp);    /* a^{2^4 - 1} */
251
321
  ecc_mod_sqr (p, rp, t0, tp);      /* a^{2^5 - 2} */
252
321
  ecc_mod_mul (p, a5m1, rp, ap, tp);    /* a^{2^5 - 1}, a5m1 */
253
254
321
  ecc_mod_pow_2kp1 (p, rp, a5m1, 5, tp);  /* a^{2^{10} - 1, a5m1*/
255
321
  ecc_mod_pow_2k_mul (p, a15m1, rp, 5, a5m1, tp); /* a^{2^{15} - 1}, a5m1 a15m1 */
256
321
  ecc_mod_sqr (p, rp, a15m1, tp);    /* a^{2^{16} - 2}, a15m1 */
257
321
  ecc_mod_mul (p, rp, rp, ap, tp);    /* a^{2^{16} - 1}, a15m1 */
258
321
  ecc_mod_pow_2kp1 (p, a32m1, rp, 16, tp);  /* a^{2^{32} - 1}, a15m1, a32m1 */
259
260
321
  ecc_mod_pow_2k_mul (p, rp, a32m1, 32, ap, tp);/* a^{2^{64} - 2^{32} + 1 */
261
321
  ecc_mod_pow_2k_mul (p, rp, rp, 128, a32m1, tp); /* a^{2^{192} - 2^{160} + 2^{128} + 2^{32} - 1} */
262
321
  ecc_mod_pow_2k_mul (p, rp, rp, 32, a32m1, tp);/* a^{2^{224} - 2^{192} + 2^{160} + 2^{64} - 1} */
263
321
  ecc_mod_pow_2k_mul (p, rp, rp, 15, a15m1, tp);/* a^{2^{239} - 2^{207} + 2^{175} + 2^{79} - 1} */
264
321
  ecc_mod_pow_2k_mul (p, rp, rp, 15, a15m1, tp);/* a^{2^{254} - 2^{222} + 2^{190} + 2^{94} - 1} */
265
321
  ecc_mod_pow_2k_mul (p, rp, rp, 2, ap, tp);  /* a^{2^{256} - 2^{224} + 2^{192} + 2^{96} - 3} */
266
267
321
#undef a5m1
268
321
#undef t0
269
321
#undef a15m1
270
321
#undef a32m1
271
321
#undef tp
272
321
}
273
274
/* To guarantee that inputs to ecc_mod_zero_p are in the required range. */
275
#if ECC_LIMB_SIZE * GMP_NUMB_BITS != 256
276
#error Unsupported limb size
277
#endif
278
279
#define ECC_SECP256R1_SQRT_ITCH (3*ECC_LIMB_SIZE)
280
281
static int
282
ecc_secp256r1_sqrt (const struct ecc_modulo *m,
283
        mp_limb_t *rp,
284
        const mp_limb_t *cp,
285
        mp_limb_t *scratch)
286
0
{
287
  /* This computes the square root modulo p256 using the identity:
288
289
     sqrt(c) = c^(2^254 − 2^222 + 2^190 + 2^94)  (mod P-256)
290
291
     which can be seen as a special case of Tonelli-Shanks with e=1.
292
293
     It would be nice to share part of the addition chain between inverse and sqrt.
294
295
     We need
296
297
       p-2 = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 3 (inverse)
298
299
     and
300
301
       (p+1)/4 = 2^{254} − 2^{222} + 2^{190} + 2^{94} (sqrt)
302
303
     which we can both get conveniently from
304
305
       (p-3)/4 = 2^{254} − 2^{222} + 2^{190} + 2^{94} - 1
306
307
     But addition chain for 2^{94} - 1 appears to cost a few more mul
308
     operations than the current, separate, chains. */
309
310
0
#define t0 scratch
311
0
#define tp (scratch + ECC_LIMB_SIZE)
312
313
0
  ecc_mod_sqr        (m, rp, cp, tp);    /* c^2 */
314
0
  ecc_mod_mul        (m, t0, rp, cp, tp);  /* c^3 */
315
0
  ecc_mod_pow_2kp1   (m, rp, t0, 2, tp);  /* c^(2^4 - 1) */
316
0
  ecc_mod_pow_2kp1   (m, t0, rp, 4, tp);  /* c^(2^8 - 1) */
317
0
  ecc_mod_pow_2kp1   (m, rp, t0, 8, tp);  /* c^(2^16 - 1) */
318
0
  ecc_mod_pow_2kp1   (m, t0, rp, 16, tp); /* c^(2^32 - 1) */
319
0
  ecc_mod_pow_2k_mul (m, rp, t0, 32, cp, tp);  /* c^(2^64 - 2^32 + 1) */
320
0
  ecc_mod_pow_2k_mul (m, t0, rp, 96, cp, tp);  /* c^(2^160 - 2^128 + 2^96 + 1) */
321
0
  ecc_mod_pow_2k     (m, rp, t0, 94,     tp);  /* c^(2^254 - 2^222 + 2^190 + 2^94) */
322
323
0
  ecc_mod_sqr (m, t0, rp, tp);
324
0
  ecc_mod_sub (m, t0, t0, cp);
325
326
0
  return ecc_mod_zero_p (m, t0);
327
0
#undef t0
328
0
#undef tp
329
330
0
}
331
332
const struct ecc_curve _nettle_secp_256r1 =
333
{
334
  {
335
    256,
336
    ECC_LIMB_SIZE,
337
    ECC_BMODP_SIZE,
338
    ECC_REDC_SIZE,
339
    ECC_SECP256R1_INV_ITCH,
340
    ECC_SECP256R1_SQRT_ITCH,
341
    0,
342
343
    ecc_p,
344
    ecc_Bmodp,
345
    ecc_Bmodp_shifted,
346
    ecc_Bm2p,
347
    ecc_redc_ppm1,
348
    ecc_pp1h,
349
350
    ecc_secp256r1_modp,
351
    USE_REDC ? ecc_secp256r1_redc : ecc_secp256r1_modp,
352
    ecc_secp256r1_inv,
353
    ecc_secp256r1_sqrt,
354
    NULL,
355
  },
356
  {
357
    256,
358
    ECC_LIMB_SIZE,
359
    ECC_BMODQ_SIZE,
360
    0,
361
    ECC_MOD_INV_ITCH (ECC_LIMB_SIZE),
362
    0,
363
    0,
364
365
    ecc_q,
366
    ecc_Bmodq,
367
    ecc_Bmodq_shifted,
368
    ecc_Bm2q,
369
    NULL,
370
    ecc_qp1h,
371
372
    ecc_secp256r1_modq,
373
    ecc_secp256r1_modq,
374
    ecc_mod_inv,
375
    NULL,
376
    NULL,
377
  },
378
379
  USE_REDC,
380
  ECC_PIPPENGER_K,
381
  ECC_PIPPENGER_C,
382
383
  ECC_ADD_JJA_ITCH (ECC_LIMB_SIZE),
384
  ECC_ADD_JJJ_ITCH (ECC_LIMB_SIZE),
385
  ECC_DUP_JJ_ITCH (ECC_LIMB_SIZE),
386
  ECC_MUL_A_ITCH (ECC_LIMB_SIZE),
387
  ECC_MUL_G_ITCH (ECC_LIMB_SIZE),
388
  ECC_J_TO_A_ITCH(ECC_LIMB_SIZE, ECC_SECP256R1_INV_ITCH),
389
390
  ecc_add_jja,
391
  ecc_add_jjj,
392
  ecc_dup_jj,
393
  ecc_mul_a,
394
  ecc_mul_g,
395
  ecc_j_to_a,
396
397
  ecc_b,
398
  ecc_unit,
399
  ecc_table
400
};
401
402
const struct ecc_curve *nettle_get_secp_256r1(void)
403
341
{
404
341
  return &_nettle_secp_256r1;
405
341
}