Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-libgmp/ocb.c
Line
Count
Source (jump to first uncovered line)
1
/* ocb.c
2
3
   OCB AEAD mode, RFC 7253
4
5
   Copyright (C) 2021 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
#if HAVE_CONFIG_H
35
# include "config.h"
36
#endif
37
38
#include <string.h>
39
40
#include "ocb.h"
41
#include "block-internal.h"
42
#include "bswap-internal.h"
43
#include "memops.h"
44
45
985
#define OCB_MAX_BLOCKS 16
46
47
/* Returns 64 bits from the concatenation (u0, u1), starting from bit offset. */
48
static inline uint64_t
49
extract(uint64_t u0, uint64_t u1, unsigned offset)
50
934
{
51
934
  if (offset == 0)
52
220
    return u0;
53
714
  u0 = bswap64_if_le(u0);
54
714
  u1 = bswap64_if_le(u1);
55
714
  return bswap64_if_le((u0 << offset) | (u1 >> (64 - offset)));
56
934
}
57
58
void
59
ocb_set_key (struct ocb_key *key, const void *cipher, nettle_cipher_func *f)
60
467
{
61
467
  static const union nettle_block16 zero_block;
62
467
  f (cipher, OCB_BLOCK_SIZE, key->L[0].b, zero_block.b);
63
467
  block16_mulx_be (&key->L[1], &key->L[0]);
64
467
  block16_mulx_be (&key->L[2], &key->L[1]);
65
467
}
66
67
/* Add x^k L[2], where k is the number of trailing zero bits in i. */
68
static void
69
update_offset(const struct ocb_key *key,
70
        union nettle_block16 *offset, size_t i)
71
339
{
72
339
  if (i & 1)
73
0
    block16_xor (offset, &key->L[2]);
74
339
  else
75
339
    {
76
339
      assert (i > 0);
77
339
      union nettle_block16 diff;
78
339
      block16_mulx_be (&diff, &key->L[2]);
79
516
      for (i >>= 1; !(i&1); i >>= 1)
80
177
  block16_mulx_be (&diff, &diff);
81
82
339
      block16_xor (offset, &diff);
83
339
    }
84
339
}
85
86
static void
87
pad_block (union nettle_block16 *block, size_t length, const uint8_t *data)
88
487
{
89
487
  memcpy (block->b, data, length);
90
487
  block->b[length] = 0x80;
91
487
  memset (block->b + length + 1, 0, OCB_BLOCK_SIZE - 1 - length);
92
487
}
93
94
void
95
ocb_set_nonce (struct ocb_ctx *ctx,
96
         const void *cipher, nettle_cipher_func *f,
97
         size_t tag_length,
98
         size_t nonce_length, const uint8_t *nonce)
99
467
{
100
467
  union nettle_block16 top;
101
467
  uint64_t stretch;
102
103
467
  unsigned bottom;
104
467
  assert (nonce_length < 16);
105
467
  assert (tag_length > 0);
106
467
  assert (tag_length <= 16);
107
108
  /* Bit size, or zero for tag_length == 16 */
109
467
  top.b[0] = (tag_length & 15) << 4;
110
467
  memset (top.b + 1, 0, 15 - nonce_length);
111
467
  top.b[15 - nonce_length] |= 1;
112
467
  memcpy (top.b + 16 - nonce_length, nonce, nonce_length);
113
467
  bottom = top.b[15] & 0x3f;
114
467
  top.b[15] &= 0xc0;
115
116
467
  f (cipher, OCB_BLOCK_SIZE, top.b, top.b);
117
118
467
  stretch = top.u64[0];
119
#if WORDS_BIGENDIAN
120
  stretch ^= (top.u64[0] << 8) | (top.u64[1] >> 56);
121
#else
122
467
  stretch ^= (top.u64[0] >> 8) | (top.u64[1] << 56);
123
467
#endif
124
125
467
  ctx->initial.u64[0] = extract(top.u64[0], top.u64[1], bottom);
126
467
  ctx->initial.u64[1] = extract(top.u64[1], stretch, bottom);
127
467
  ctx->sum.u64[0] = ctx->sum.u64[1] = 0;
128
467
  ctx->checksum.u64[0] = ctx->checksum.u64[1] = 0;
129
130
467
  ctx->data_count = ctx->message_count = 0;
131
467
}
132
133
static void
134
ocb_fill_n (const struct ocb_key *key,
135
      union nettle_block16 *offset, size_t count,
136
      size_t n, union nettle_block16 *o)
137
939
{
138
939
  assert (n > 0);
139
939
  union nettle_block16 *prev;
140
939
  if (count & 1)
141
353
    prev = offset;
142
586
  else
143
586
    {
144
      /* Do a single block to align block count. */
145
586
      count++; /* Always odd. */
146
586
      block16_xor (offset, &key->L[2]);
147
586
      block16_set (&o[0], offset);
148
586
      prev = o;
149
586
      n--; o++;
150
586
    }
151
152
2.02k
  for (; n >= 2; n -= 2, o += 2)
153
1.08k
    {
154
1.08k
      size_t i;
155
1.08k
      count += 2; /* Always odd. */
156
157
      /* Based on trailing zeros of ctx->message_count - 1, the
158
         initial shift below discards a one bit. */
159
1.08k
      block16_mulx_be (&o[0], &key->L[2]);
160
1.86k
      for (i = count >> 1; !(i&1); i >>= 1)
161
785
  block16_mulx_be (&o[0], &o[0]);
162
163
1.08k
      block16_xor (&o[0], prev);
164
1.08k
      block16_xor3 (&o[1], &o[0], &key->L[2]);
165
1.08k
      prev = &o[1];
166
1.08k
    }
167
939
  block16_set(offset, prev);
168
169
939
  if (n > 0)
170
339
    {
171
339
      update_offset (key, offset, ++count);
172
339
      block16_set (o, offset);
173
339
    }
174
939
}
175
176
void
177
ocb_update (struct ocb_ctx *ctx, const struct ocb_key *key,
178
      const void *cipher, nettle_cipher_func *f,
179
      size_t length, const uint8_t *data)
180
5.10k
{
181
5.10k
  union nettle_block16 block[OCB_MAX_BLOCKS];
182
5.10k
  size_t n = length / OCB_BLOCK_SIZE;
183
5.10k
  assert (ctx->message_count == 0);
184
185
5.10k
  if (ctx->data_count == 0)
186
406
    ctx->offset.u64[0] = ctx->offset.u64[1] = 0;
187
188
5.71k
  while (n > 0)
189
604
    {
190
604
      size_t size, i;
191
604
      size_t blocks = (n <= OCB_MAX_BLOCKS) ? n
192
604
  : OCB_MAX_BLOCKS - 1 + (ctx->data_count & 1);
193
194
604
      ocb_fill_n (key, &ctx->offset, ctx->data_count, blocks, block);
195
604
      ctx->data_count += blocks;
196
197
604
      size = blocks * OCB_BLOCK_SIZE;
198
604
      memxor (block[0].b, data, size);
199
604
      f (cipher, size, block[0].b, block[0].b);
200
2.85k
      for (i = 0; i < blocks; i++)
201
2.24k
  block16_xor(&ctx->sum, &block[i]);
202
203
604
      n -= blocks; data += size;
204
604
    }
205
206
5.10k
  length &= 15;
207
5.10k
  if (length > 0)
208
221
    {
209
221
      union nettle_block16 block;
210
221
      pad_block (&block, length, data);
211
221
      block16_xor (&ctx->offset, &key->L[0]);
212
221
      block16_xor (&block, &ctx->offset);
213
214
221
      f (cipher, OCB_BLOCK_SIZE, block.b, block.b);
215
221
      block16_xor (&ctx->sum, &block);
216
221
    }
217
5.10k
}
218
219
static void
220
ocb_crypt_n (struct ocb_ctx *ctx, const struct ocb_key *key,
221
       const void *cipher, nettle_cipher_func *f,
222
       size_t n, uint8_t *dst, const uint8_t *src)
223
310
{
224
310
  union nettle_block16 o[OCB_MAX_BLOCKS], block[OCB_MAX_BLOCKS];
225
310
  size_t size;
226
227
645
  while (n > 0)
228
335
    {
229
335
      size_t blocks = (n <= OCB_MAX_BLOCKS) ? n
230
335
  : OCB_MAX_BLOCKS - 1 + (ctx->message_count & 1);
231
232
335
      ocb_fill_n (key, &ctx->offset, ctx->message_count, blocks, o);
233
335
      ctx->message_count += blocks;
234
235
335
      size = blocks * OCB_BLOCK_SIZE;
236
335
      memxor3 (block[0].b, o[0].b, src, size);
237
335
      f (cipher, size, block[0].b, block[0].b);
238
335
      memxor3 (dst, block[0].b, o[0].b, size);
239
240
335
      n -= blocks; src += size; dst += size;
241
335
    }
242
310
}
243
244
/* Rotate bytes c positions to the right, in memory order. */
245
#if WORDS_BIGENDIAN
246
# define MEM_ROTATE_RIGHT(c, s0, s1) do {       \
247
    uint64_t __rotate_t = ((s0) >> (8*(c))) | ((s1) << (64-8*(c))); \
248
    (s1) = ((s1) >> (8*(c))) | ((s0) << (64-8*(c)));      \
249
    (s0) = __rotate_t;              \
250
  } while (0)
251
#else
252
0
# define MEM_ROTATE_RIGHT(c, s0, s1) do {       \
253
0
    uint64_t __rotate_t = ((s0) << (8*(c))) | ((s1) >> (64-8*(c))); \
254
0
    (s1) = ((s1) << (8*(c))) | ((s0) >> (64-8*(c)));      \
255
0
    (s0) = __rotate_t;              \
256
0
  } while (0)
257
#endif
258
259
/* Mask for the first c bytes in memory */
260
#if WORDS_BIGENDIAN
261
# define MEM_MASK(c) (-((uint64_t) 1 << (64 - 8*(c))))
262
#else
263
0
# define MEM_MASK(c) (((uint64_t) 1 << (8*(c))) - 1)
264
#endif
265
266
/* Checksum of n complete blocks. */
267
static void
268
ocb_checksum_n (union nettle_block16 *checksum,
269
    size_t n, const uint8_t *src)
270
310
{
271
310
  unsigned initial;
272
310
  uint64_t edge_word = 0;
273
310
  uint64_t s0, s1;
274
275
310
  if (n == 1)
276
258
    {
277
258
      memxor (checksum->b, src, OCB_BLOCK_SIZE);
278
258
      return;
279
258
    }
280
281
  /* Initial unaligned bytes. */
282
52
  initial = -(uintptr_t) src & 7;
283
284
52
  if (initial > 0)
285
0
    {
286
      /* Input not 64-bit aligned. Read initial bytes. */
287
0
      unsigned i;
288
      /* Edge word is read in big-endian order */
289
0
      for (i = initial; i > 0; i--)
290
0
  edge_word = (edge_word << 8) + *src++;
291
0
      n--;
292
0
    }
293
294
  /* Now src is 64-bit aligned, so do 64-bit reads. */
295
637
  for (s0 = s1 = 0 ; n > 0; n--, src += OCB_BLOCK_SIZE)
296
585
    {
297
585
      s0 ^= ((const uint64_t *) src)[0];
298
585
      s1 ^= ((const uint64_t *) src)[1];
299
585
    }
300
52
  if (initial > 0)
301
0
    {
302
0
      unsigned i;
303
0
      uint64_t mask;
304
0
      s0 ^= ((const uint64_t *) src)[0];
305
0
      for (i = 8 - initial, src += 8; i > 0; i--)
306
0
  edge_word = (edge_word << 8) + *src++;
307
308
      /* Rotate [s0, s1] right initial bytes. */
309
0
      MEM_ROTATE_RIGHT(initial, s0, s1);
310
      /* Add in the edge bytes.  */
311
0
      mask = MEM_MASK(initial);
312
0
      edge_word = bswap64_if_le (edge_word);
313
0
      s0 ^= (edge_word & mask);
314
0
      s1 ^= (edge_word & ~mask);
315
0
    }
316
52
  checksum->u64[0] ^= s0;
317
52
  checksum->u64[1] ^= s1;
318
52
}
319
320
void
321
ocb_encrypt (struct ocb_ctx *ctx, const struct ocb_key *key,
322
       const void *cipher, nettle_cipher_func *f,
323
       size_t length, uint8_t *dst, const uint8_t *src)
324
3.11k
{
325
3.11k
  size_t n = length / OCB_BLOCK_SIZE;
326
327
3.11k
  if (ctx->message_count == 0)
328
2.92k
    ctx->offset = ctx->initial;
329
330
3.11k
  if (n > 0)
331
120
    {
332
120
      ocb_checksum_n (&ctx->checksum, n, src);
333
120
      ocb_crypt_n (ctx, key, cipher, f, n, dst, src);
334
120
      length &= 15;
335
120
    }
336
3.11k
  if (length > 0)
337
102
    {
338
102
      union nettle_block16 block;
339
340
102
      src += n*OCB_BLOCK_SIZE; dst += n*OCB_BLOCK_SIZE;
341
342
102
      pad_block (&block, length, src);
343
102
      block16_xor (&ctx->checksum, &block);
344
345
102
      block16_xor (&ctx->offset, &key->L[0]);
346
102
      f (cipher, OCB_BLOCK_SIZE, block.b, ctx->offset.b);
347
102
      memxor3 (dst, block.b, src, length);
348
102
      ctx->message_count++;
349
102
    }
350
3.11k
}
351
352
void
353
ocb_decrypt (struct ocb_ctx *ctx, const struct ocb_key *key,
354
       const void *encrypt_ctx, nettle_cipher_func *encrypt,
355
       const void *decrypt_ctx, nettle_cipher_func *decrypt,
356
       size_t length, uint8_t *dst, const uint8_t *src)
357
1.59k
{
358
1.59k
  size_t n = length / OCB_BLOCK_SIZE;
359
360
1.59k
  if (ctx->message_count == 0)
361
1.04k
    ctx->offset = ctx->initial;
362
363
1.59k
  if (n > 0)
364
190
    {
365
190
      ocb_crypt_n (ctx, key, decrypt_ctx, decrypt, n, dst, src);
366
190
      ocb_checksum_n (&ctx->checksum, n, dst);
367
190
      length &= 15;
368
190
    }
369
1.59k
  if (length > 0)
370
164
    {
371
164
      union nettle_block16 block;
372
373
164
      src += n*OCB_BLOCK_SIZE; dst += n*OCB_BLOCK_SIZE;
374
375
164
      block16_xor (&ctx->offset, &key->L[0]);
376
164
      encrypt (encrypt_ctx, OCB_BLOCK_SIZE, block.b, ctx->offset.b);
377
164
      memxor3 (dst, block.b, src, length);
378
379
164
      pad_block (&block, length, dst);
380
164
      block16_xor (&ctx->checksum, &block);
381
164
      ctx->message_count++;
382
164
    }
383
1.59k
}
384
385
void
386
ocb_digest (const struct ocb_ctx *ctx, const struct ocb_key *key,
387
      const void *cipher, nettle_cipher_func *f,
388
      size_t length, uint8_t *digest)
389
467
{
390
467
  union nettle_block16 block;
391
467
  assert (length <= OCB_DIGEST_SIZE);
392
467
  block16_xor3 (&block,  &key->L[1],
393
467
    (ctx->message_count > 0) ? &ctx->offset : &ctx->initial);
394
467
  block16_xor (&block, &ctx->checksum);
395
467
  f (cipher, OCB_BLOCK_SIZE, block.b, block.b);
396
467
  memxor3 (digest, block.b, ctx->sum.b, length);
397
467
}
398
399
void
400
ocb_encrypt_message (const struct ocb_key *key,
401
         const void *cipher, nettle_cipher_func *f,
402
         size_t nlength, const uint8_t *nonce,
403
         size_t alength, const uint8_t *adata,
404
         size_t tlength,
405
         size_t clength, uint8_t *dst, const uint8_t *src)
406
0
{
407
0
  struct ocb_ctx ctx;
408
0
  assert (clength >= tlength);
409
0
  ocb_set_nonce (&ctx, cipher, f, tlength, nlength, nonce);
410
0
  ocb_update (&ctx, key, cipher, f, alength, adata);
411
0
  ocb_encrypt (&ctx, key, cipher, f,  clength - tlength, dst, src);
412
0
  ocb_digest (&ctx, key, cipher, f, tlength, dst + clength - tlength);
413
0
}
414
415
int
416
ocb_decrypt_message (const struct ocb_key *key,
417
         const void *encrypt_ctx, nettle_cipher_func *encrypt,
418
         const void *decrypt_ctx, nettle_cipher_func *decrypt,
419
         size_t nlength, const uint8_t *nonce,
420
         size_t alength, const uint8_t *adata,
421
         size_t tlength,
422
         size_t mlength, uint8_t *dst, const uint8_t *src)
423
0
{
424
0
  struct ocb_ctx ctx;
425
0
  union nettle_block16 digest;
426
0
  ocb_set_nonce (&ctx, encrypt_ctx, encrypt, tlength, nlength, nonce);
427
0
  ocb_update (&ctx, key, encrypt_ctx, encrypt, alength, adata);
428
0
  ocb_decrypt (&ctx, key, encrypt_ctx, encrypt, decrypt_ctx, decrypt,
429
0
         mlength, dst, src);
430
0
  ocb_digest (&ctx, key, encrypt_ctx, encrypt, tlength, digest.b);
431
0
  return memeql_sec(digest.b, src + mlength, tlength);
432
0
}