/src/cryptofuzz/crypto.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | #include <cryptofuzz/crypto.h>  | 
2  |  | #include <stdint.h>  | 
3  |  | #include <stdlib.h>  | 
4  |  | #include <string.h>  | 
5  |  | #include <climits>  | 
6  |  |  | 
7  |  | namespace cryptofuzz { | 
8  |  | namespace crypto { | 
9  |  | namespace impl { | 
10  |  |  | 
11  |  | #if defined(__clang__)  | 
12  | 0  | #define rotate_right_32 __builtin_rotateright32  | 
13  | 0  | #define rotate_left_32 __builtin_rotateleft32  | 
14  |  | #else  | 
15  |  | static uint32_t rotate_right_32(uint32_t value, unsigned int count) { | 
16  |  |     const unsigned int mask = (CHAR_BIT * sizeof(value)) - 1;  | 
17  |  |     count &= mask;  | 
18  |  |     return (value >> count) | (value << ((-count) & mask));  | 
19  |  | }  | 
20  |  | static uint32_t rotate_left_32(uint32_t value, unsigned int count) { | 
21  |  |     const unsigned int mask = (CHAR_BIT * sizeof(value)) - 1;  | 
22  |  |     count &= mask;  | 
23  |  |     return (value << count) | (value >> ((-count) & mask));  | 
24  |  | }  | 
25  |  | #endif  | 
26  |  |  | 
27  |  | /* LibTomCrypt, modular cryptographic library -- Tom St Denis */  | 
28  |  | /* SPDX-License-Identifier: Unlicense */  | 
29  |  |  | 
30  | 0  | #define ROR(x,n) rotate_right_32(x,n)  | 
31  | 0  | #define ROL(x,n) rotate_left_32(x,n)  | 
32  | 0  | #define ROLc(x,n) ROL(x,n)  | 
33  | 0  | #define RORc(x,n) ROR(x,n)  | 
34  |  |  | 
35  | 0  | #define XMEMCPY memcpy  | 
36  |  |  | 
37  |  | #define LTC_ARGCHK(...)  | 
38  |  |  | 
39  | 0  | #define MIN(x, y) ( ((x)<(y))?(x):(y) )  | 
40  |  |  | 
41  | 0  | #define STORE32H(x, y)                          \  | 
42  | 0  | do { ulong32 ttt = __builtin_bswap32 ((x));     \ | 
43  | 0  |       XMEMCPY ((y), &ttt, 4); } while(0)  | 
44  |  |  | 
45  | 0  | #define LOAD32H(x, y)                           \  | 
46  | 0  | do { XMEMCPY (&(x), (y), 4);                    \ | 
47  | 0  |       (x) = __builtin_bswap32 ((x)); } while(0)  | 
48  |  |  | 
49  | 0  | #define STORE64H(x, y)                          \  | 
50  | 0  | do { ulong64 ttt = __builtin_bswap64 ((x));     \ | 
51  | 0  |       XMEMCPY ((y), &ttt, 8); } while(0)  | 
52  |  |  | 
53  |  | #define LOAD64H(x, y)                           \  | 
54  |  | do { XMEMCPY (&(x), (y), 8);                    \ | 
55  |  |       (x) = __builtin_bswap64 ((x)); } while(0)  | 
56  |  |  | 
57  |  | typedef uint64_t ulong64;  | 
58  |  | typedef uint32_t ulong32;  | 
59  |  |  | 
60  |  | /* error codes [will be expanded in future releases] */  | 
61  |  | enum { | 
62  |  |    CRYPT_OK=0,             /* Result OK */  | 
63  |  |    CRYPT_ERROR,            /* Generic Error */  | 
64  |  |    CRYPT_NOP,              /* Not a failure but no operation was performed */  | 
65  |  |  | 
66  |  |    CRYPT_INVALID_KEYSIZE,  /* Invalid key size given */  | 
67  |  |    CRYPT_INVALID_ROUNDS,   /* Invalid number of rounds */  | 
68  |  |    CRYPT_FAIL_TESTVECTOR,  /* Algorithm failed test vectors */  | 
69  |  |  | 
70  |  |    CRYPT_BUFFER_OVERFLOW,  /* Not enough space for output */  | 
71  |  |    CRYPT_INVALID_PACKET,   /* Invalid input packet given */  | 
72  |  |  | 
73  |  |    CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */  | 
74  |  |    CRYPT_ERROR_READPRNG,   /* Could not read enough from PRNG */  | 
75  |  |  | 
76  |  |    CRYPT_INVALID_CIPHER,   /* Invalid cipher specified */  | 
77  |  |    CRYPT_INVALID_HASH,     /* Invalid hash specified */  | 
78  |  |    CRYPT_INVALID_PRNG,     /* Invalid PRNG specified */  | 
79  |  |  | 
80  |  |    CRYPT_MEM,              /* Out of memory */  | 
81  |  |  | 
82  |  |    CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */  | 
83  |  |    CRYPT_PK_NOT_PRIVATE,   /* Requires a private PK key */  | 
84  |  |  | 
85  |  |    CRYPT_INVALID_ARG,      /* Generic invalid argument */  | 
86  |  |    CRYPT_FILE_NOTFOUND,    /* File Not Found */  | 
87  |  |  | 
88  |  |    CRYPT_PK_INVALID_TYPE,  /* Invalid type of PK key */  | 
89  |  |  | 
90  |  |    CRYPT_OVERFLOW,         /* An overflow of a value was detected/prevented */  | 
91  |  |  | 
92  |  |    CRYPT_PK_ASN1_ERROR,    /* An error occurred while en- or decoding ASN.1 data */  | 
93  |  |  | 
94  |  |    CRYPT_INPUT_TOO_LONG,   /* The input was longer than expected. */  | 
95  |  |  | 
96  |  |    CRYPT_PK_INVALID_SIZE,  /* Invalid size input for PK parameters */  | 
97  |  |  | 
98  |  |    CRYPT_INVALID_PRIME_SIZE,/* Invalid size of prime requested */  | 
99  |  |    CRYPT_PK_INVALID_PADDING, /* Invalid padding on input */  | 
100  |  |  | 
101  |  |    CRYPT_HASH_OVERFLOW      /* Hash applied to too many bits */  | 
102  |  | };  | 
103  |  |  | 
104  |  | #define HASH_PROCESS(func_name, compress_name, state_var, block_size)                       \  | 
105  | 0  | int func_name (hash_state * md, const unsigned char *in, unsigned long inlen)               \  | 
106  | 0  | {                                                                                           \ | 
107  | 0  |     unsigned long n;                                                                        \  | 
108  | 0  |     int           err;                                                                      \  | 
109  | 0  |     LTC_ARGCHK(md != NULL);                                                                 \  | 
110  | 0  |     LTC_ARGCHK(in != NULL);                                                                 \  | 
111  | 0  |     if (md-> state_var .curlen > sizeof(md-> state_var .buf)) {                             \ | 
112  | 0  |        return CRYPT_INVALID_ARG;                                                            \  | 
113  | 0  |     }                                                                                       \  | 
114  | 0  |     if ((md-> state_var .length + inlen * 8) < md-> state_var .length) {                        \ | 
115  | 0  |       return CRYPT_HASH_OVERFLOW;                                                           \  | 
116  | 0  |     }                                                                                       \  | 
117  | 0  |     while (inlen > 0) {                                                                     \ | 
118  | 0  |         if (md-> state_var .curlen == 0 && inlen >= block_size) {                           \ | 
119  | 0  |            if ((err = compress_name (md, in)) != CRYPT_OK) {                                \ | 
120  | 0  |               return err;                                                                   \  | 
121  | 0  |            }                                                                                \  | 
122  | 0  |            md-> state_var .length += block_size * 8;                                        \  | 
123  | 0  |            in             += block_size;                                                    \  | 
124  | 0  |            inlen          -= block_size;                                                    \  | 
125  | 0  |         } else {                                                                            \ | 
126  | 0  |            n = MIN(inlen, (block_size - md-> state_var .curlen));                           \  | 
127  | 0  |            XMEMCPY(md-> state_var .buf + md-> state_var.curlen, in, (size_t)n);             \  | 
128  | 0  |            md-> state_var .curlen += n;                                                     \  | 
129  | 0  |            in             += n;                                                             \  | 
130  | 0  |            inlen          -= n;                                                             \  | 
131  | 0  |            if (md-> state_var .curlen == block_size) {                                      \ | 
132  | 0  |               if ((err = compress_name (md, md-> state_var .buf)) != CRYPT_OK) {            \ | 
133  | 0  |                  return err;                                                                \  | 
134  | 0  |               }                                                                             \  | 
135  | 0  |               md-> state_var .length += 8*block_size;                                       \  | 
136  | 0  |               md-> state_var .curlen = 0;                                                   \  | 
137  | 0  |            }                                                                                \  | 
138  | 0  |        }                                                                                    \  | 
139  | 0  |     }                                                                                       \  | 
140  | 0  |     return CRYPT_OK;                                                                        \  | 
141  | 0  | } Unexecuted instantiation: cryptofuzz::crypto::impl::sha1_process(cryptofuzz::crypto::impl::Hash_state*, unsigned char const*, unsigned long) Unexecuted instantiation: cryptofuzz::crypto::impl::sha256_process(cryptofuzz::crypto::impl::Hash_state*, unsigned char const*, unsigned long)  | 
142  |  |  | 
143  |  | struct sha1_state { | 
144  |  |     ulong64 length;  | 
145  |  |     ulong32 state[5], curlen;  | 
146  |  |     unsigned char buf[64];  | 
147  |  | };  | 
148  |  |  | 
149  |  | struct sha256_state { | 
150  |  |     ulong64 length;  | 
151  |  |     ulong32 state[8], curlen;  | 
152  |  |     unsigned char buf[64];  | 
153  |  | };  | 
154  |  |  | 
155  |  | typedef union Hash_state { | 
156  |  |     char dummy[1];  | 
157  |  |     struct sha1_state   sha1;  | 
158  |  |     struct sha256_state sha256;  | 
159  |  |     void *data;  | 
160  |  | } hash_state;  | 
161  |  |  | 
162  |  | /**  | 
163  |  |   @file sha1.c  | 
164  |  |   LTC_SHA1 code by Tom St Denis  | 
165  |  | */  | 
166  |  |  | 
167  |  |  | 
168  | 0  | #define F0(x,y,z)  (z ^ (x & (y ^ z)))  | 
169  | 0  | #define F1(x,y,z)  (x ^ y ^ z)  | 
170  | 0  | #define F2(x,y,z)  ((x & y) | (z & (x | y)))  | 
171  | 0  | #define F3(x,y,z)  (x ^ y ^ z)  | 
172  |  |  | 
173  |  | #ifdef LTC_CLEAN_STACK  | 
174  |  | static int ss_sha1_compress(hash_state *md, const unsigned char *buf)  | 
175  |  | #else  | 
176  |  | static int  s_sha1_compress(hash_state *md, const unsigned char *buf)  | 
177  |  | #endif  | 
178  | 0  | { | 
179  | 0  |     ulong32 a,b,c,d,e,W[80],i;  | 
180  |  | #ifdef LTC_SMALL_CODE  | 
181  |  |     ulong32 t;  | 
182  |  | #endif  | 
183  |  |  | 
184  |  |     /* copy the state into 512-bits into W[0..15] */  | 
185  | 0  |     for (i = 0; i < 16; i++) { | 
186  | 0  |         LOAD32H(W[i], buf + (4*i));  | 
187  | 0  |     }  | 
188  |  |  | 
189  |  |     /* copy state */  | 
190  | 0  |     a = md->sha1.state[0];  | 
191  | 0  |     b = md->sha1.state[1];  | 
192  | 0  |     c = md->sha1.state[2];  | 
193  | 0  |     d = md->sha1.state[3];  | 
194  | 0  |     e = md->sha1.state[4];  | 
195  |  |  | 
196  |  |     /* expand it */  | 
197  | 0  |     for (i = 16; i < 80; i++) { | 
198  | 0  |         W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);  | 
199  | 0  |     }  | 
200  |  |  | 
201  |  |     /* compress */  | 
202  |  |     /* round one */  | 
203  | 0  |     #define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30);  | 
204  | 0  |     #define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30);  | 
205  | 0  |     #define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30);  | 
206  | 0  |     #define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30);  | 
207  |  | 
  | 
208  |  | #ifdef LTC_SMALL_CODE  | 
209  |  |  | 
210  |  |     for (i = 0; i < 20; ) { | 
211  |  |        FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;  | 
212  |  |     }  | 
213  |  |  | 
214  |  |     for (; i < 40; ) { | 
215  |  |        FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;  | 
216  |  |     }  | 
217  |  |  | 
218  |  |     for (; i < 60; ) { | 
219  |  |        FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;  | 
220  |  |     }  | 
221  |  |  | 
222  |  |     for (; i < 80; ) { | 
223  |  |        FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t;  | 
224  |  |     }  | 
225  |  |  | 
226  |  | #else  | 
227  |  | 
  | 
228  | 0  |     for (i = 0; i < 20; ) { | 
229  | 0  |        FF0(a,b,c,d,e,i++);  | 
230  | 0  |        FF0(e,a,b,c,d,i++);  | 
231  | 0  |        FF0(d,e,a,b,c,i++);  | 
232  | 0  |        FF0(c,d,e,a,b,i++);  | 
233  | 0  |        FF0(b,c,d,e,a,i++);  | 
234  | 0  |     }  | 
235  |  |  | 
236  |  |     /* round two */  | 
237  | 0  |     for (; i < 40; )  { | 
238  | 0  |        FF1(a,b,c,d,e,i++);  | 
239  | 0  |        FF1(e,a,b,c,d,i++);  | 
240  | 0  |        FF1(d,e,a,b,c,i++);  | 
241  | 0  |        FF1(c,d,e,a,b,i++);  | 
242  | 0  |        FF1(b,c,d,e,a,i++);  | 
243  | 0  |     }  | 
244  |  |  | 
245  |  |     /* round three */  | 
246  | 0  |     for (; i < 60; )  { | 
247  | 0  |        FF2(a,b,c,d,e,i++);  | 
248  | 0  |        FF2(e,a,b,c,d,i++);  | 
249  | 0  |        FF2(d,e,a,b,c,i++);  | 
250  | 0  |        FF2(c,d,e,a,b,i++);  | 
251  | 0  |        FF2(b,c,d,e,a,i++);  | 
252  | 0  |     }  | 
253  |  |  | 
254  |  |     /* round four */  | 
255  | 0  |     for (; i < 80; )  { | 
256  | 0  |        FF3(a,b,c,d,e,i++);  | 
257  | 0  |        FF3(e,a,b,c,d,i++);  | 
258  | 0  |        FF3(d,e,a,b,c,i++);  | 
259  | 0  |        FF3(c,d,e,a,b,i++);  | 
260  | 0  |        FF3(b,c,d,e,a,i++);  | 
261  | 0  |     }  | 
262  | 0  | #endif  | 
263  |  | 
  | 
264  | 0  |     #undef FF0  | 
265  | 0  |     #undef FF1  | 
266  | 0  |     #undef FF2  | 
267  | 0  |     #undef FF3  | 
268  |  |  | 
269  |  |     /* store */  | 
270  | 0  |     md->sha1.state[0] = md->sha1.state[0] + a;  | 
271  | 0  |     md->sha1.state[1] = md->sha1.state[1] + b;  | 
272  | 0  |     md->sha1.state[2] = md->sha1.state[2] + c;  | 
273  | 0  |     md->sha1.state[3] = md->sha1.state[3] + d;  | 
274  | 0  |     md->sha1.state[4] = md->sha1.state[4] + e;  | 
275  |  | 
  | 
276  | 0  |     return CRYPT_OK;  | 
277  | 0  | }  | 
278  |  |  | 
279  |  | #ifdef LTC_CLEAN_STACK  | 
280  |  | static int s_sha1_compress(hash_state *md, const unsigned char *buf)  | 
281  |  | { | 
282  |  |    int err;  | 
283  |  |    err = ss_sha1_compress(md, buf);  | 
284  |  |    burn_stack(sizeof(ulong32) * 87);  | 
285  |  |    return err;  | 
286  |  | }  | 
287  |  | #endif  | 
288  |  |  | 
289  |  | /**  | 
290  |  |    Initialize the hash state  | 
291  |  |    @param md   The hash state you wish to initialize  | 
292  |  |    @return CRYPT_OK if successful  | 
293  |  | */  | 
294  |  | int sha1_init(hash_state * md)  | 
295  | 0  | { | 
296  | 0  |    LTC_ARGCHK(md != NULL);  | 
297  | 0  |    md->sha1.state[0] = 0x67452301UL;  | 
298  | 0  |    md->sha1.state[1] = 0xefcdab89UL;  | 
299  | 0  |    md->sha1.state[2] = 0x98badcfeUL;  | 
300  | 0  |    md->sha1.state[3] = 0x10325476UL;  | 
301  | 0  |    md->sha1.state[4] = 0xc3d2e1f0UL;  | 
302  | 0  |    md->sha1.curlen = 0;  | 
303  | 0  |    md->sha1.length = 0;  | 
304  | 0  |    return CRYPT_OK;  | 
305  | 0  | }  | 
306  |  |  | 
307  |  | /**  | 
308  |  |    Process a block of memory though the hash  | 
309  |  |    @param md     The hash state  | 
310  |  |    @param in     The data to hash  | 
311  |  |    @param inlen  The length of the data (octets)  | 
312  |  |    @return CRYPT_OK if successful  | 
313  |  | */  | 
314  |  | HASH_PROCESS(sha1_process, s_sha1_compress, sha1, 64)  | 
315  |  |  | 
316  |  | /**  | 
317  |  |    Terminate the hash to get the digest  | 
318  |  |    @param md  The hash state  | 
319  |  |    @param out [out] The destination of the hash (20 bytes)  | 
320  |  |    @return CRYPT_OK if successful  | 
321  |  | */  | 
322  |  | int sha1_done(hash_state * md, unsigned char *out)  | 
323  | 0  | { | 
324  | 0  |     int i;  | 
325  |  | 
  | 
326  | 0  |     LTC_ARGCHK(md  != NULL);  | 
327  | 0  |     LTC_ARGCHK(out != NULL);  | 
328  |  | 
  | 
329  | 0  |     if (md->sha1.curlen >= sizeof(md->sha1.buf)) { | 
330  | 0  |        return CRYPT_INVALID_ARG;  | 
331  | 0  |     }  | 
332  |  |  | 
333  |  |     /* increase the length of the message */  | 
334  | 0  |     md->sha1.length += md->sha1.curlen * 8;  | 
335  |  |  | 
336  |  |     /* append the '1' bit */  | 
337  | 0  |     md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;  | 
338  |  |  | 
339  |  |     /* if the length is currently above 56 bytes we append zeros  | 
340  |  |      * then compress.  Then we can fall back to padding zeros and length  | 
341  |  |      * encoding like normal.  | 
342  |  |      */  | 
343  | 0  |     if (md->sha1.curlen > 56) { | 
344  | 0  |         while (md->sha1.curlen < 64) { | 
345  | 0  |             md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;  | 
346  | 0  |         }  | 
347  | 0  |         s_sha1_compress(md, md->sha1.buf);  | 
348  | 0  |         md->sha1.curlen = 0;  | 
349  | 0  |     }  | 
350  |  |  | 
351  |  |     /* pad upto 56 bytes of zeroes */  | 
352  | 0  |     while (md->sha1.curlen < 56) { | 
353  | 0  |         md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;  | 
354  | 0  |     }  | 
355  |  |  | 
356  |  |     /* store length */  | 
357  | 0  |     STORE64H(md->sha1.length, md->sha1.buf+56);  | 
358  | 0  |     s_sha1_compress(md, md->sha1.buf);  | 
359  |  |  | 
360  |  |     /* copy output */  | 
361  | 0  |     for (i = 0; i < 5; i++) { | 
362  | 0  |         STORE32H(md->sha1.state[i], out+(4*i));  | 
363  | 0  |     }  | 
364  |  | #ifdef LTC_CLEAN_STACK  | 
365  |  |     zeromem(md, sizeof(hash_state));  | 
366  |  | #endif  | 
367  | 0  |     return CRYPT_OK;  | 
368  | 0  | }  | 
369  |  |  | 
370  |  | #ifdef LTC_SMALL_CODE  | 
371  |  | /* the K array */  | 
372  |  | static const ulong32 K[64] = { | 
373  |  |     0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,  | 
374  |  |     0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,  | 
375  |  |     0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,  | 
376  |  |     0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,  | 
377  |  |     0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,  | 
378  |  |     0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,  | 
379  |  |     0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,  | 
380  |  |     0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,  | 
381  |  |     0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,  | 
382  |  |     0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,  | 
383  |  |     0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,  | 
384  |  |     0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,  | 
385  |  |     0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL  | 
386  |  | };  | 
387  |  | #endif  | 
388  |  |  | 
389  |  | /* Various logical functions */  | 
390  | 0  | #define Ch(x,y,z)       (z ^ (x & (y ^ z)))  | 
391  | 0  | #define Maj(x,y,z)      (((x | y) & z) | (x & y))  | 
392  | 0  | #define S(x, n)         RORc((x),(n))  | 
393  | 0  | #define R(x, n)         (((x)&0xFFFFFFFFUL)>>(n))  | 
394  | 0  | #define Sigma0(x)       (S(x, 2) ^ S(x, 13) ^ S(x, 22))  | 
395  | 0  | #define Sigma1(x)       (S(x, 6) ^ S(x, 11) ^ S(x, 25))  | 
396  | 0  | #define Gamma0(x)       (S(x, 7) ^ S(x, 18) ^ R(x, 3))  | 
397  | 0  | #define Gamma1(x)       (S(x, 17) ^ S(x, 19) ^ R(x, 10))  | 
398  |  |  | 
399  |  | /* compress 512-bits */  | 
400  |  | #ifdef LTC_CLEAN_STACK  | 
401  |  | static int ss_sha256_compress(hash_state * md, const unsigned char *buf)  | 
402  |  | #else  | 
403  |  | static int s_sha256_compress(hash_state * md, const unsigned char *buf)  | 
404  |  | #endif  | 
405  | 0  | { | 
406  | 0  |     ulong32 S[8], W[64], t0, t1;  | 
407  |  | #ifdef LTC_SMALL_CODE  | 
408  |  |     ulong32 t;  | 
409  |  | #endif  | 
410  | 0  |     int i;  | 
411  |  |  | 
412  |  |     /* copy state into S */  | 
413  | 0  |     for (i = 0; i < 8; i++) { | 
414  | 0  |         S[i] = md->sha256.state[i];  | 
415  | 0  |     }  | 
416  |  |  | 
417  |  |     /* copy the state into 512-bits into W[0..15] */  | 
418  | 0  |     for (i = 0; i < 16; i++) { | 
419  | 0  |         LOAD32H(W[i], buf + (4*i));  | 
420  | 0  |     }  | 
421  |  |  | 
422  |  |     /* fill W[16..63] */  | 
423  | 0  |     for (i = 16; i < 64; i++) { | 
424  | 0  |         W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];  | 
425  | 0  |     }  | 
426  |  |  | 
427  |  |     /* Compress */  | 
428  |  | #ifdef LTC_SMALL_CODE  | 
429  |  | #define RND(a,b,c,d,e,f,g,h,i)                         \  | 
430  |  |      t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i];   \  | 
431  |  |      t1 = Sigma0(a) + Maj(a, b, c);                    \  | 
432  |  |      d += t0;                                          \  | 
433  |  |      h  = t0 + t1;  | 
434  |  |  | 
435  |  |      for (i = 0; i < 64; ++i) { | 
436  |  |          RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);  | 
437  |  |          t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];  | 
438  |  |          S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;  | 
439  |  |      }  | 
440  |  | #else  | 
441  | 0  | #define RND(a,b,c,d,e,f,g,h,i,ki)                    \  | 
442  | 0  |      t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];   \  | 
443  | 0  |      t1 = Sigma0(a) + Maj(a, b, c);                  \  | 
444  | 0  |      d += t0;                                        \  | 
445  | 0  |      h  = t0 + t1;  | 
446  |  | 
  | 
447  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);  | 
448  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);  | 
449  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);  | 
450  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);  | 
451  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);  | 
452  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);  | 
453  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);  | 
454  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);  | 
455  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);  | 
456  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);  | 
457  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);  | 
458  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);  | 
459  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);  | 
460  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);  | 
461  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);  | 
462  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);  | 
463  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);  | 
464  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);  | 
465  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);  | 
466  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);  | 
467  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);  | 
468  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);  | 
469  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);  | 
470  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);  | 
471  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);  | 
472  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);  | 
473  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);  | 
474  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);  | 
475  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);  | 
476  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);  | 
477  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);  | 
478  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);  | 
479  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);  | 
480  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);  | 
481  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);  | 
482  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);  | 
483  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);  | 
484  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);  | 
485  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);  | 
486  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);  | 
487  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);  | 
488  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);  | 
489  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);  | 
490  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);  | 
491  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);  | 
492  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);  | 
493  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);  | 
494  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);  | 
495  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);  | 
496  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);  | 
497  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);  | 
498  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);  | 
499  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);  | 
500  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);  | 
501  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);  | 
502  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);  | 
503  | 0  |     RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);  | 
504  | 0  |     RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);  | 
505  | 0  |     RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);  | 
506  | 0  |     RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);  | 
507  | 0  |     RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);  | 
508  | 0  |     RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);  | 
509  | 0  |     RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);  | 
510  | 0  |     RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);  | 
511  | 0  | #endif  | 
512  | 0  | #undef RND  | 
513  |  |  | 
514  |  |     /* feedback */  | 
515  | 0  |     for (i = 0; i < 8; i++) { | 
516  | 0  |         md->sha256.state[i] = md->sha256.state[i] + S[i];  | 
517  | 0  |     }  | 
518  | 0  |     return CRYPT_OK;  | 
519  | 0  | }  | 
520  |  |  | 
521  |  | #ifdef LTC_CLEAN_STACK  | 
522  |  | static int s_sha256_compress(hash_state * md, const unsigned char *buf)  | 
523  |  | { | 
524  |  |     int err;  | 
525  |  |     err = ss_sha256_compress(md, buf);  | 
526  |  |     burn_stack(sizeof(ulong32) * 74);  | 
527  |  |     return err;  | 
528  |  | }  | 
529  |  | #endif  | 
530  |  |  | 
531  |  | /**  | 
532  |  |    Initialize the hash state  | 
533  |  |    @param md   The hash state you wish to initialize  | 
534  |  |    @return CRYPT_OK if successful  | 
535  |  | */  | 
536  |  | int sha256_init(hash_state * md)  | 
537  | 0  | { | 
538  | 0  |     LTC_ARGCHK(md != NULL);  | 
539  |  | 
  | 
540  | 0  |     md->sha256.curlen = 0;  | 
541  | 0  |     md->sha256.length = 0;  | 
542  | 0  |     md->sha256.state[0] = 0x6A09E667UL;  | 
543  | 0  |     md->sha256.state[1] = 0xBB67AE85UL;  | 
544  | 0  |     md->sha256.state[2] = 0x3C6EF372UL;  | 
545  | 0  |     md->sha256.state[3] = 0xA54FF53AUL;  | 
546  | 0  |     md->sha256.state[4] = 0x510E527FUL;  | 
547  | 0  |     md->sha256.state[5] = 0x9B05688CUL;  | 
548  | 0  |     md->sha256.state[6] = 0x1F83D9ABUL;  | 
549  | 0  |     md->sha256.state[7] = 0x5BE0CD19UL;  | 
550  | 0  |     return CRYPT_OK;  | 
551  | 0  | }  | 
552  |  |  | 
553  |  | /**  | 
554  |  |    Process a block of memory though the hash  | 
555  |  |    @param md     The hash state  | 
556  |  |    @param in     The data to hash  | 
557  |  |    @param inlen  The length of the data (octets)  | 
558  |  |    @return CRYPT_OK if successful  | 
559  |  | */  | 
560  |  | HASH_PROCESS(sha256_process,s_sha256_compress, sha256, 64)  | 
561  |  |  | 
562  |  | /**  | 
563  |  |    Terminate the hash to get the digest  | 
564  |  |    @param md  The hash state  | 
565  |  |    @param out [out] The destination of the hash (32 bytes)  | 
566  |  |    @return CRYPT_OK if successful  | 
567  |  | */  | 
568  |  | int sha256_done(hash_state * md, unsigned char *out)  | 
569  | 0  | { | 
570  | 0  |     int i;  | 
571  |  | 
  | 
572  | 0  |     LTC_ARGCHK(md  != NULL);  | 
573  | 0  |     LTC_ARGCHK(out != NULL);  | 
574  |  | 
  | 
575  | 0  |     if (md->sha256.curlen >= sizeof(md->sha256.buf)) { | 
576  | 0  |        return CRYPT_INVALID_ARG;  | 
577  | 0  |     }  | 
578  |  |  | 
579  |  |  | 
580  |  |     /* increase the length of the message */  | 
581  | 0  |     md->sha256.length += md->sha256.curlen * 8;  | 
582  |  |  | 
583  |  |     /* append the '1' bit */  | 
584  | 0  |     md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;  | 
585  |  |  | 
586  |  |     /* if the length is currently above 56 bytes we append zeros  | 
587  |  |      * then compress.  Then we can fall back to padding zeros and length  | 
588  |  |      * encoding like normal.  | 
589  |  |      */  | 
590  | 0  |     if (md->sha256.curlen > 56) { | 
591  | 0  |         while (md->sha256.curlen < 64) { | 
592  | 0  |             md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;  | 
593  | 0  |         }  | 
594  | 0  |         s_sha256_compress(md, md->sha256.buf);  | 
595  | 0  |         md->sha256.curlen = 0;  | 
596  | 0  |     }  | 
597  |  |  | 
598  |  |     /* pad upto 56 bytes of zeroes */  | 
599  | 0  |     while (md->sha256.curlen < 56) { | 
600  | 0  |         md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;  | 
601  | 0  |     }  | 
602  |  |  | 
603  |  |     /* store length */  | 
604  | 0  |     STORE64H(md->sha256.length, md->sha256.buf+56);  | 
605  | 0  |     s_sha256_compress(md, md->sha256.buf);  | 
606  |  |  | 
607  |  |     /* copy output */  | 
608  | 0  |     for (i = 0; i < 8; i++) { | 
609  | 0  |         STORE32H(md->sha256.state[i], out+(4*i));  | 
610  | 0  |     }  | 
611  |  | #ifdef LTC_CLEAN_STACK  | 
612  |  |     zeromem(md, sizeof(hash_state));  | 
613  |  | #endif  | 
614  | 0  |     return CRYPT_OK;  | 
615  | 0  | }  | 
616  |  |  | 
617  |  | } /* namespace impl */  | 
618  |  |  | 
619  | 0  | std::vector<uint8_t> sha1(const uint8_t* data, const size_t size) { | 
620  | 0  |     uint8_t out[20];  | 
621  |  | 
  | 
622  | 0  |     impl::hash_state md;  | 
623  | 0  |     impl::sha1_init(&md);  | 
624  | 0  |     impl::sha1_process(&md, data, size);  | 
625  | 0  |     impl::sha1_done(&md, out);  | 
626  |  | 
  | 
627  | 0  |     return std::vector<uint8_t>(out, out + sizeof(out));  | 
628  | 0  | }  | 
629  |  |  | 
630  | 0  | std::vector<uint8_t> sha1(const std::vector<uint8_t> data) { | 
631  | 0  |     return sha1(data.data(), data.size());  | 
632  | 0  | }  | 
633  |  |  | 
634  | 0  | std::vector<uint8_t> sha256(const uint8_t* data, const size_t size) { | 
635  | 0  |     uint8_t out[32];  | 
636  |  | 
  | 
637  | 0  |     impl::hash_state md;  | 
638  | 0  |     impl::sha256_init(&md);  | 
639  | 0  |     impl::sha256_process(&md, data, size);  | 
640  | 0  |     impl::sha256_done(&md, out);  | 
641  |  | 
  | 
642  | 0  |     return std::vector<uint8_t>(out, out + sizeof(out));  | 
643  | 0  | }  | 
644  |  |  | 
645  | 0  | std::vector<uint8_t> sha256(const std::vector<uint8_t> data) { | 
646  | 0  |     return sha256(data.data(), data.size());  | 
647  | 0  | }  | 
648  |  |  | 
649  | 0  | std::vector<uint8_t> hmac_sha256(const uint8_t* data, const size_t size, const uint8_t* key, const size_t key_size) { | 
650  | 0  |     uint8_t _key[64];  | 
651  | 0  |     uint8_t out[32];  | 
652  | 0  |     impl::hash_state inner, outer;  | 
653  |  | 
  | 
654  | 0  |     impl::sha256_init(&inner);  | 
655  | 0  |     impl::sha256_init(&outer);  | 
656  |  | 
  | 
657  | 0  |     if ( key_size <= 64 ) { | 
658  | 0  |         if ( key_size ) { | 
659  | 0  |             memcpy(_key, key, key_size);  | 
660  | 0  |         }  | 
661  | 0  |         memset(_key + key_size, 0, 64 - key_size);  | 
662  | 0  |     } else { | 
663  | 0  |         const auto key_hash = sha256(key, key_size);  | 
664  | 0  |         memcpy(_key, key_hash.data(), key_hash.size());  | 
665  | 0  |         memset(_key + 32, 0, 32);  | 
666  | 0  |     }  | 
667  |  | 
  | 
668  | 0  |     for (size_t i = 0; i < 64; i++) { | 
669  | 0  |         _key[i] ^= 0x5C;  | 
670  | 0  |     }  | 
671  | 0  |     impl::sha256_process(&outer, _key, 64);  | 
672  |  | 
  | 
673  | 0  |     for (int i = 0; i < 64; i++) { | 
674  | 0  |         _key[i] ^= 0x5C ^ 0x36;  | 
675  | 0  |     }  | 
676  | 0  |     impl::sha256_process(&inner, _key, 64);  | 
677  |  | 
  | 
678  | 0  |     impl::sha256_process(&inner, data, size);  | 
679  |  | 
  | 
680  | 0  |     impl::sha256_done(&inner, out);  | 
681  | 0  |     impl::sha256_process(&outer, out, 32);  | 
682  | 0  |     impl::sha256_done(&outer, out);  | 
683  |  | 
  | 
684  | 0  |     return {out, out + 32}; | 
685  | 0  | }  | 
686  |  |  | 
687  | 0  | std::vector<uint8_t> hmac_sha256(const std::vector<uint8_t> data, const std::vector<uint8_t> key) { | 
688  | 0  |     return hmac_sha256(data.data(), data.size(), key.data(), key.size());  | 
689  | 0  | }  | 
690  |  |  | 
691  |  |  | 
692  |  | } /* namespace crypto */  | 
693  |  | } /* namespace cryptofuzz */  |