Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-mini-gmp/twofish.c
Line
Count
Source (jump to first uncovered line)
1
/* twofish.c
2
3
   The twofish block cipher.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
   Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
7
8
   Modifications for lsh, integrated testing
9
   Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
10
11
   This file is part of GNU Nettle.
12
13
   GNU Nettle is free software: you can redistribute it and/or
14
   modify it under the terms of either:
15
16
     * the GNU Lesser General Public License as published by the Free
17
       Software Foundation; either version 3 of the License, or (at your
18
       option) any later version.
19
20
   or
21
22
     * the GNU General Public License as published by the Free
23
       Software Foundation; either version 2 of the License, or (at your
24
       option) any later version.
25
26
   or both in parallel, as here.
27
28
   GNU Nettle is distributed in the hope that it will be useful,
29
   but WITHOUT ANY WARRANTY; without even the implied warranty of
30
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31
   General Public License for more details.
32
33
   You should have received copies of the GNU General Public License and
34
   the GNU Lesser General Public License along with this program.  If
35
   not, see http://www.gnu.org/licenses/.
36
*/
37
38
#if HAVE_CONFIG_H
39
# include "config.h"
40
#endif
41
42
#include <assert.h>
43
#include <string.h>
44
45
#include "twofish.h"
46
47
#include "macros.h"
48
49
/* Bitwise rotations on 32-bit words.  These are defined as macros that
50
 * evaluate their argument twice, so do not apply to any expressions with
51
 * side effects.
52
 */
53
54
10.7k
#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
55
10.7k
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
56
10.7k
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
57
10.7k
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))
58
59
/* ------------------------------------------------------------------------- */
60
61
/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
62
 * The permutations have been computed using the program twofish-data,
63
 * which is distributed along with this file.
64
 */
65
66
static const uint8_t q0[256] = {
67
  0xA9,0x67,0xB3,0xE8,0x04,0xFD,0xA3,0x76,
68
  0x9A,0x92,0x80,0x78,0xE4,0xDD,0xD1,0x38,
69
  0x0D,0xC6,0x35,0x98,0x18,0xF7,0xEC,0x6C,
70
  0x43,0x75,0x37,0x26,0xFA,0x13,0x94,0x48,
71
  0xF2,0xD0,0x8B,0x30,0x84,0x54,0xDF,0x23,
72
  0x19,0x5B,0x3D,0x59,0xF3,0xAE,0xA2,0x82,
73
  0x63,0x01,0x83,0x2E,0xD9,0x51,0x9B,0x7C,
74
  0xA6,0xEB,0xA5,0xBE,0x16,0x0C,0xE3,0x61,
75
  0xC0,0x8C,0x3A,0xF5,0x73,0x2C,0x25,0x0B,
76
  0xBB,0x4E,0x89,0x6B,0x53,0x6A,0xB4,0xF1,
77
  0xE1,0xE6,0xBD,0x45,0xE2,0xF4,0xB6,0x66,
78
  0xCC,0x95,0x03,0x56,0xD4,0x1C,0x1E,0xD7,
79
  0xFB,0xC3,0x8E,0xB5,0xE9,0xCF,0xBF,0xBA,
80
  0xEA,0x77,0x39,0xAF,0x33,0xC9,0x62,0x71,
81
  0x81,0x79,0x09,0xAD,0x24,0xCD,0xF9,0xD8,
82
  0xE5,0xC5,0xB9,0x4D,0x44,0x08,0x86,0xE7,
83
  0xA1,0x1D,0xAA,0xED,0x06,0x70,0xB2,0xD2,
84
  0x41,0x7B,0xA0,0x11,0x31,0xC2,0x27,0x90,
85
  0x20,0xF6,0x60,0xFF,0x96,0x5C,0xB1,0xAB,
86
  0x9E,0x9C,0x52,0x1B,0x5F,0x93,0x0A,0xEF,
87
  0x91,0x85,0x49,0xEE,0x2D,0x4F,0x8F,0x3B,
88
  0x47,0x87,0x6D,0x46,0xD6,0x3E,0x69,0x64,
89
  0x2A,0xCE,0xCB,0x2F,0xFC,0x97,0x05,0x7A,
90
  0xAC,0x7F,0xD5,0x1A,0x4B,0x0E,0xA7,0x5A,
91
  0x28,0x14,0x3F,0x29,0x88,0x3C,0x4C,0x02,
92
  0xB8,0xDA,0xB0,0x17,0x55,0x1F,0x8A,0x7D,
93
  0x57,0xC7,0x8D,0x74,0xB7,0xC4,0x9F,0x72,
94
  0x7E,0x15,0x22,0x12,0x58,0x07,0x99,0x34,
95
  0x6E,0x50,0xDE,0x68,0x65,0xBC,0xDB,0xF8,
96
  0xC8,0xA8,0x2B,0x40,0xDC,0xFE,0x32,0xA4,
97
  0xCA,0x10,0x21,0xF0,0xD3,0x5D,0x0F,0x00,
98
  0x6F,0x9D,0x36,0x42,0x4A,0x5E,0xC1,0xE0,
99
};
100
101
static const uint8_t q1[256] = {
102
  0x75,0xF3,0xC6,0xF4,0xDB,0x7B,0xFB,0xC8,
103
  0x4A,0xD3,0xE6,0x6B,0x45,0x7D,0xE8,0x4B,
104
  0xD6,0x32,0xD8,0xFD,0x37,0x71,0xF1,0xE1,
105
  0x30,0x0F,0xF8,0x1B,0x87,0xFA,0x06,0x3F,
106
  0x5E,0xBA,0xAE,0x5B,0x8A,0x00,0xBC,0x9D,
107
  0x6D,0xC1,0xB1,0x0E,0x80,0x5D,0xD2,0xD5,
108
  0xA0,0x84,0x07,0x14,0xB5,0x90,0x2C,0xA3,
109
  0xB2,0x73,0x4C,0x54,0x92,0x74,0x36,0x51,
110
  0x38,0xB0,0xBD,0x5A,0xFC,0x60,0x62,0x96,
111
  0x6C,0x42,0xF7,0x10,0x7C,0x28,0x27,0x8C,
112
  0x13,0x95,0x9C,0xC7,0x24,0x46,0x3B,0x70,
113
  0xCA,0xE3,0x85,0xCB,0x11,0xD0,0x93,0xB8,
114
  0xA6,0x83,0x20,0xFF,0x9F,0x77,0xC3,0xCC,
115
  0x03,0x6F,0x08,0xBF,0x40,0xE7,0x2B,0xE2,
116
  0x79,0x0C,0xAA,0x82,0x41,0x3A,0xEA,0xB9,
117
  0xE4,0x9A,0xA4,0x97,0x7E,0xDA,0x7A,0x17,
118
  0x66,0x94,0xA1,0x1D,0x3D,0xF0,0xDE,0xB3,
119
  0x0B,0x72,0xA7,0x1C,0xEF,0xD1,0x53,0x3E,
120
  0x8F,0x33,0x26,0x5F,0xEC,0x76,0x2A,0x49,
121
  0x81,0x88,0xEE,0x21,0xC4,0x1A,0xEB,0xD9,
122
  0xC5,0x39,0x99,0xCD,0xAD,0x31,0x8B,0x01,
123
  0x18,0x23,0xDD,0x1F,0x4E,0x2D,0xF9,0x48,
124
  0x4F,0xF2,0x65,0x8E,0x78,0x5C,0x58,0x19,
125
  0x8D,0xE5,0x98,0x57,0x67,0x7F,0x05,0x64,
126
  0xAF,0x63,0xB6,0xFE,0xF5,0xB7,0x3C,0xA5,
127
  0xCE,0xE9,0x68,0x44,0xE0,0x4D,0x43,0x69,
128
  0x29,0x2E,0xAC,0x15,0x59,0xA8,0x0A,0x9E,
129
  0x6E,0x47,0xDF,0x34,0x35,0x6A,0xCF,0xDC,
130
  0x22,0xC9,0xC0,0x9B,0x89,0xD4,0xED,0xAB,
131
  0x12,0xA2,0x0D,0x52,0xBB,0x02,0x2F,0xA9,
132
  0xD7,0x61,0x1E,0xB4,0x50,0x04,0xF6,0xC2,
133
  0x16,0x25,0x86,0x56,0x55,0x09,0xBE,0x91,
134
};
135
136
/* ------------------------------------------------------------------------- */
137
138
/* uint32_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
139
 *
140
 * Multiplication in GF(2^8). Larger return type, to avoid need for
141
 * type casts when the return value is shifted left.
142
 *
143
 * This function multiplies a times b in the Galois Field GF(2^8) with
144
 * primitive polynomial p.
145
 * The representation of the polynomials a, b, and p uses bits with
146
 * values 2^i to represent the terms x^i.  The polynomial p contains an
147
 * implicit term x^8.
148
 *
149
 * Note that addition and subtraction in GF(2^8) is simply the XOR
150
 * operation.
151
 */
152
153
static uint32_t
154
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
155
2.60M
{
156
2.60M
  uint32_t shift  = b;
157
2.60M
  uint8_t result = 0;
158
17.9M
  while (a)
159
15.3M
    {
160
15.3M
      if (a & 1) result ^= shift;
161
15.3M
      a = a >> 1;
162
15.3M
      shift = shift << 1;
163
15.3M
      if (shift & 0x100) shift ^= p;
164
15.3M
    }
165
2.60M
  return result;
166
2.60M
}
167
168
/* ------------------------------------------------------------------------- */
169
170
/* The matrix RS as specified in section 4.3 the twofish paper. */
171
172
static const uint8_t rs_matrix[4][8] = {
173
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
174
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
175
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
176
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };
177
178
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
179
 *
180
 * Computes the value RS * M, where M is a byte vector composed of the
181
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
182
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
183
 *
184
 * This function is used to compute the sub-keys S which are in turn used
185
 * to generate the S-boxes.
186
 */
187
188
static uint32_t
189
compute_s(uint32_t m1, uint32_t m2)
190
1.96k
{
191
1.96k
  uint32_t s = 0;
192
1.96k
  int i;
193
9.84k
  for (i = 0; i < 4; i++)
194
7.87k
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
195
7.87k
      ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
196
7.87k
      ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
197
7.87k
      ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
198
7.87k
      ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
199
7.87k
      ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
200
7.87k
      ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
201
7.87k
      ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
202
1.96k
  return s;
203
1.96k
}
204
205
/* ------------------------------------------------------------------------- */
206
207
/* This table describes which q S-boxes are used for each byte in each stage
208
 * of the function h, cf. figure 2 of the twofish paper.
209
 */
210
211
static const uint8_t * const q_table[4][5] =
212
  { { q1, q1, q0, q0, q1 },
213
    { q0, q1, q1, q0, q0 },
214
    { q0, q0, q0, q1, q1 },
215
    { q1, q0, q1, q1, q0 } };
216
217
/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */
218
219
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
220
         { 0x5B, 0xEF, 0xEF, 0x01 },
221
         { 0xEF, 0x5B, 0x01, 0xEF },
222
         { 0xEF, 0x01, 0xEF, 0x5B } };
223
224
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
225
 *
226
 * Perform the h function (section 4.3.2) on one byte.  It consists of
227
 * repeated applications of the q permutation, followed by a XOR with
228
 * part of a sub-key.  Finally, the value is multiplied by one column of
229
 * the MDS matrix.  To obtain the result for a full word, the results of
230
 * h for the individual bytes are XORed.
231
 *
232
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
233
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
234
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
235
 */
236
237
static uint32_t
238
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
239
634k
{
240
634k
  uint8_t y = q_table[i][4][l0 ^
241
634k
            q_table[i][3][l1 ^
242
634k
              q_table[i][2][k == 2 ? x : l2 ^
243
562k
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];
244
245
634k
  return ( (gf_multiply(0x69, mds_matrix[0][i], y))
246
634k
     | (gf_multiply(0x69, mds_matrix[1][i], y) << 8)
247
634k
     | (gf_multiply(0x69, mds_matrix[2][i], y) << 16)
248
634k
     | (gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
249
634k
}
250
251
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
252
 *
253
 * Perform the function h on a word.  See the description of h_byte() above.
254
 */
255
256
static uint32_t
257
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
258
21.4k
{
259
21.4k
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
260
21.4k
    ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
261
21.4k
    ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
262
21.4k
    ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
263
21.4k
}
264
265
266
/* ------------------------------------------------------------------------- */
267
268
/* API */
269
270
/* Structure which contains the tables containing the subkeys and the
271
 * key-dependent s-boxes.
272
 */
273
274
275
/* Set up internal tables required for twofish encryption and decryption.
276
 *
277
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
278
 * supported.  Larger key sizes are silently truncated.  
279
 */
280
281
void
282
twofish_set_key(struct twofish_ctx *context,
283
    size_t keysize, const uint8_t *key)
284
536
{
285
536
  uint8_t key_copy[32];
286
536
  uint32_t m[8], s[4], t;
287
536
  int i, j, k;
288
289
  /* Extend key as necessary */
290
291
536
  assert(keysize <= 32);
292
293
  /* We do a little more copying than necessary, but that doesn't
294
   * really matter. */
295
536
  memset(key_copy, 0, 32);
296
536
  memcpy(key_copy, key, keysize);
297
298
4.82k
  for (i = 0; i<8; i++)
299
4.28k
    m[i] = LE_READ_UINT32(key_copy + i*4);
300
  
301
536
  if (keysize <= 16)
302
61
    k = 2;
303
475
  else if (keysize <= 24)
304
54
    k = 3;
305
421
  else
306
421
    k = 4;
307
308
  /* Compute sub-keys */
309
310
11.2k
  for (i = 0; i < 20; i++)
311
10.7k
    {
312
10.7k
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
313
10.7k
      t = rol8(t);
314
10.7k
      t += (context->keys[2*i] =
315
10.7k
      t + h(k, 2*i, m[0], m[2], m[4], m[6]));
316
10.7k
      t = rol9(t);
317
10.7k
      context->keys[2*i+1] = t;
318
10.7k
    }
319
320
  /* Compute key-dependent S-boxes */
321
322
2.50k
  for (i = 0; i < k; i++)
323
1.96k
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
324
325
2.68k
  for (i = 0; i < 4; i++)
326
551k
    for (j = 0; j < 256; j++)
327
548k
      context->s_box[i][j] = h_byte(k, i, j,
328
548k
            s[0] >> (i*8),
329
548k
            s[1] >> (i*8),
330
548k
            s[2] >> (i*8),
331
548k
            s[3] >> (i*8));
332
536
}
333
334
void
335
twofish128_set_key(struct twofish_ctx *context, const uint8_t *key)
336
0
{
337
0
  twofish_set_key (context, TWOFISH128_KEY_SIZE, key);
338
0
}
339
void
340
twofish192_set_key(struct twofish_ctx *context, const uint8_t *key)
341
0
{
342
0
  twofish_set_key (context, TWOFISH192_KEY_SIZE, key);
343
0
}
344
void
345
twofish256_set_key(struct twofish_ctx *context, const uint8_t *key)
346
0
{
347
0
  twofish_set_key (context, TWOFISH256_KEY_SIZE, key);
348
0
}
349
350
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
351
 *
352
 * Before this function can be used, twofish_set_key() must be used in order to
353
 * set up various tables required for the encryption algorithm.
354
 * 
355
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
356
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
357
 * overlap.
358
 */
359
360
void
361
twofish_encrypt(const struct twofish_ctx *context,
362
    size_t length,
363
    uint8_t *ciphertext,
364
    const uint8_t *plaintext)
365
232
{
366
232
  const uint32_t * keys        = context->keys;
367
232
  const uint32_t (*s_box)[256] = context->s_box;
368
369
232
  assert( !(length % TWOFISH_BLOCK_SIZE) );
370
542
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
371
310
    {  
372
310
      uint32_t words[4];
373
310
      uint32_t r0, r1, r2, r3, t0, t1;
374
310
      int i;
375
376
1.55k
      for (i = 0; i<4; i++, plaintext += 4)
377
1.24k
  words[i] = LE_READ_UINT32(plaintext);
378
379
310
      r0 = words[0] ^ keys[0];
380
310
      r1 = words[1] ^ keys[1];
381
310
      r2 = words[2] ^ keys[2];
382
310
      r3 = words[3] ^ keys[3];
383
  
384
2.79k
      for (i = 0; i < 8; i++) {
385
2.48k
  t1 = (  s_box[1][r1 & 0xFF]
386
2.48k
    ^ s_box[2][(r1 >> 8) & 0xFF]
387
2.48k
    ^ s_box[3][(r1 >> 16) & 0xFF]
388
2.48k
    ^ s_box[0][(r1 >> 24) & 0xFF]);
389
2.48k
  t0 = (  s_box[0][r0 & 0xFF]
390
2.48k
    ^ s_box[1][(r0 >> 8) & 0xFF]
391
2.48k
    ^ s_box[2][(r0 >> 16) & 0xFF]
392
2.48k
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
393
2.48k
  r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
394
2.48k
  r2 = (t0 + keys[4*i+8]) ^ r2;
395
2.48k
  r2 = ror1(r2);
396
397
2.48k
  t1 = (  s_box[1][r3 & 0xFF]
398
2.48k
    ^ s_box[2][(r3 >> 8) & 0xFF]
399
2.48k
    ^ s_box[3][(r3 >> 16) & 0xFF]
400
2.48k
    ^ s_box[0][(r3 >> 24) & 0xFF]);
401
2.48k
  t0 = (  s_box[0][r2 & 0xFF]
402
2.48k
    ^ s_box[1][(r2 >> 8) & 0xFF]
403
2.48k
    ^ s_box[2][(r2 >> 16) & 0xFF]
404
2.48k
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
405
2.48k
  r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
406
2.48k
  r0 = (t0 + keys[4*i+10]) ^ r0;
407
2.48k
  r0 = ror1(r0);
408
2.48k
      }
409
410
310
      words[0] = r2 ^ keys[4];
411
310
      words[1] = r3 ^ keys[5];
412
310
      words[2] = r0 ^ keys[6];
413
310
      words[3] = r1 ^ keys[7];
414
415
1.55k
      for (i = 0; i<4; i++, ciphertext += 4)
416
1.24k
  LE_WRITE_UINT32(ciphertext, words[i]);
417
310
    }
418
232
}
419
420
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
421
 *
422
 * Before this function can be used, twofish_set_key() must be used in order to
423
 * set up various tables required for the decryption algorithm.
424
 * 
425
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
426
 * plaintext.  The memory areas of the plaintext and the ciphertext can
427
 * overlap.
428
 */
429
430
void
431
twofish_decrypt(const struct twofish_ctx *context,
432
    size_t length,
433
    uint8_t *plaintext,
434
    const uint8_t *ciphertext)
435
436
304
{
437
304
  const uint32_t *keys  = context->keys;
438
304
  const uint32_t (*s_box)[256] = context->s_box;
439
440
304
  assert( !(length % TWOFISH_BLOCK_SIZE) );
441
667
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
442
363
    {  
443
363
      uint32_t words[4];
444
363
      uint32_t r0, r1, r2, r3, t0, t1;
445
363
      int i;
446
447
1.81k
      for (i = 0; i<4; i++, ciphertext += 4)
448
1.45k
  words[i] = LE_READ_UINT32(ciphertext);
449
450
363
      r0 = words[2] ^ keys[6];
451
363
      r1 = words[3] ^ keys[7];
452
363
      r2 = words[0] ^ keys[4];
453
363
      r3 = words[1] ^ keys[5];
454
455
3.26k
      for (i = 0; i < 8; i++) {
456
2.90k
  t1 = (  s_box[1][r3 & 0xFF]
457
2.90k
    ^ s_box[2][(r3 >> 8) & 0xFF]
458
2.90k
    ^ s_box[3][(r3 >> 16) & 0xFF]
459
2.90k
    ^ s_box[0][(r3 >> 24) & 0xFF]);
460
2.90k
  t0 = (  s_box[0][r2 & 0xFF]
461
2.90k
    ^ s_box[1][(r2 >> 8) & 0xFF]
462
2.90k
    ^ s_box[2][(r2 >> 16) & 0xFF]
463
2.90k
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
464
2.90k
  r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
465
2.90k
  r1 = ror1(r1);
466
2.90k
  r0 = (t0 + keys[38-4*i]) ^ rol1(r0);
467
468
2.90k
  t1 = (  s_box[1][r1 & 0xFF]
469
2.90k
    ^ s_box[2][(r1 >> 8) & 0xFF]
470
2.90k
    ^ s_box[3][(r1 >> 16) & 0xFF]
471
2.90k
    ^ s_box[0][(r1 >> 24) & 0xFF]);
472
2.90k
  t0 = (  s_box[0][r0 & 0xFF]
473
2.90k
    ^ s_box[1][(r0 >> 8) & 0xFF]
474
2.90k
    ^ s_box[2][(r0 >> 16) & 0xFF]
475
2.90k
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
476
2.90k
  r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
477
2.90k
  r3 = ror1(r3);
478
2.90k
  r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
479
2.90k
      }
480
481
363
      words[0] = r0 ^ keys[0];
482
363
      words[1] = r1 ^ keys[1];
483
363
      words[2] = r2 ^ keys[2];
484
363
      words[3] = r3 ^ keys[3];
485
486
1.81k
      for (i = 0; i<4; i++, plaintext += 4)
487
1.45k
  LE_WRITE_UINT32(plaintext, words[i]);
488
363
    }
489
304
}