Coverage Report

Created: 2023-02-22 06:14

/src/nettle-with-mini-gmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
607
#define CAST_SMALL_KEY 10
56
57
65.3k
#define S1 cast_sbox1
58
65.3k
#define S2 cast_sbox2
59
65.3k
#define S3 cast_sbox3
60
65.3k
#define S4 cast_sbox4
61
24.2k
#define S5 cast_sbox5
62
24.2k
#define S6 cast_sbox6
63
24.2k
#define S7 cast_sbox7
64
24.2k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
89.6k
#define B0(x) ( (uint8_t) (x>>24) )
68
89.6k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
89.6k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
89.6k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
23.1k
#define F1(l, r, i) do {         \
76
23.1k
    t = ctx->Km[i] + r;           \
77
23.1k
    t = ROTL32(ctx->Kr[i], t);          \
78
23.1k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
23.1k
  } while (0)
80
21.0k
#define F2(l, r, i) do {         \
81
21.0k
    t = ctx->Km[i] ^ r;           \
82
21.0k
    t = ROTL32( ctx->Kr[i], t);         \
83
21.0k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
21.0k
  } while (0)
85
21.0k
#define F3(l, r, i) do {         \
86
21.0k
    t = ctx->Km[i] - r;           \
87
21.0k
    t = ROTL32(ctx->Kr[i], t);          \
88
21.0k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
21.0k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
305
{
99
305
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
2.27k
    {
101
2.27k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
2.27k
      l = READ_UINT32(src);
105
2.27k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
2.27k
      F1(l, r,  0);
109
2.27k
      F2(r, l,  1);
110
2.27k
      F3(l, r,  2);
111
2.27k
      F1(r, l,  3);
112
2.27k
      F2(l, r,  4);
113
2.27k
      F3(r, l,  5);
114
2.27k
      F1(l, r,  6);
115
2.27k
      F2(r, l,  7);
116
2.27k
      F3(l, r,  8);
117
2.27k
      F1(r, l,  9);
118
2.27k
      F2(l, r, 10);
119
2.27k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
2.27k
      if (ctx->rounds & 16) {
122
959
  F1(l, r, 12);
123
959
  F2(r, l, 13);
124
959
  F3(l, r, 14);
125
959
  F1(r, l, 15);
126
959
      }
127
      /* Put l,r into outblock */
128
2.27k
      WRITE_UINT32(dst, r);
129
2.27k
      WRITE_UINT32(dst + 4, l);
130
2.27k
    }
131
305
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
302
{
141
302
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
2.47k
    {
143
2.47k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
2.47k
      r = READ_UINT32(src);
147
2.47k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
2.47k
      if (ctx->rounds & 16) {
152
1.13k
  F1(r, l, 15);
153
1.13k
  F3(l, r, 14);
154
1.13k
  F2(r, l, 13);
155
1.13k
  F1(l, r, 12);
156
1.13k
      }
157
2.47k
      F3(r, l, 11);
158
2.47k
      F2(l, r, 10);
159
2.47k
      F1(r, l,  9);
160
2.47k
      F3(l, r,  8);
161
2.47k
      F2(r, l,  7);
162
2.47k
      F1(l, r,  6);
163
2.47k
      F3(r, l,  5);
164
2.47k
      F2(l, r,  4);
165
2.47k
      F1(r, l,  3);
166
2.47k
      F3(l, r,  2);
167
2.47k
      F2(r, l,  1);
168
2.47k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
2.47k
      WRITE_UINT32(dst, l);
172
2.47k
      WRITE_UINT32(dst + 4, r);
173
2.47k
    }
174
302
}
175
176
/***** Key Schedule *****/
177
178
8.19k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
8.19k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
1.21k
#define EXPAND(set, full) do {           \
182
1.21k
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
1.21k
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
1.21k
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
1.21k
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
1.21k
                      \
187
1.21k
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
1.21k
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
1.21k
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
1.21k
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
1.21k
                      \
192
1.21k
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
1.21k
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
1.21k
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
1.21k
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
1.21k
                      \
197
1.21k
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
1.21k
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
1.21k
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
1.21k
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
1.21k
                      \
202
1.21k
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
1.21k
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
1.21k
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
1.21k
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
1.21k
                      \
207
1.21k
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
1.21k
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
1.21k
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
1.21k
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
1.21k
                  \
212
1.21k
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
1.21k
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
1.21k
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
1.21k
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
1.21k
    if (full)               \
217
1.21k
      {                 \
218
454
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
454
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
454
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
454
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
454
      }                  \
223
1.21k
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
607
{
229
607
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
607
  uint32_t w;
231
607
  int full;
232
233
607
  assert (length >= CAST5_MIN_KEY_SIZE);
234
607
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
607
  full = (length > CAST_SMALL_KEY);
237
238
607
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
607
  switch (length & 3)
242
607
    {
243
297
    case 0:
244
297
      w = READ_UINT32 (key + length - 4);
245
297
      break;
246
70
    case 3:
247
70
      w = READ_UINT24 (key + length - 3) << 8;
248
70
      break;
249
104
    case 2:
250
104
      w = READ_UINT16 (key + length - 2) << 16;
251
104
      break;
252
136
    case 1:
253
136
      w = (uint32_t) key[length - 1] << 24;
254
136
      break;
255
607
    }
256
257
607
  if (length <= 8)
258
273
    {
259
273
      x1 = w;
260
273
      x2 = x3 = 0;
261
273
    }
262
334
  else
263
334
    {
264
334
      x1 = READ_UINT32 (key + 4);
265
334
      if (length <= 12)
266
183
  {
267
183
    x2 = w;
268
183
    x3 = 0;
269
183
  }
270
151
      else
271
151
  {
272
151
    x2 = READ_UINT32 (key + 8);
273
151
    x3 = w;
274
151
  }
275
334
    }
276
277
8.19k
  EXPAND(SET_KM, full);
278
8.19k
  EXPAND(SET_KR, full);
279
280
607
  ctx->rounds = full ? 16 : 12;
281
607
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}