Coverage Report

Created: 2023-09-25 06:34

/src/nettle-with-libgmp/twofish.c
Line
Count
Source (jump to first uncovered line)
1
/* twofish.c
2
3
   The twofish block cipher.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
   Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
7
8
   Modifications for lsh, integrated testing
9
   Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
10
11
   This file is part of GNU Nettle.
12
13
   GNU Nettle is free software: you can redistribute it and/or
14
   modify it under the terms of either:
15
16
     * the GNU Lesser General Public License as published by the Free
17
       Software Foundation; either version 3 of the License, or (at your
18
       option) any later version.
19
20
   or
21
22
     * the GNU General Public License as published by the Free
23
       Software Foundation; either version 2 of the License, or (at your
24
       option) any later version.
25
26
   or both in parallel, as here.
27
28
   GNU Nettle is distributed in the hope that it will be useful,
29
   but WITHOUT ANY WARRANTY; without even the implied warranty of
30
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31
   General Public License for more details.
32
33
   You should have received copies of the GNU General Public License and
34
   the GNU Lesser General Public License along with this program.  If
35
   not, see http://www.gnu.org/licenses/.
36
*/
37
38
#if HAVE_CONFIG_H
39
# include "config.h"
40
#endif
41
42
#include <assert.h>
43
#include <string.h>
44
45
#include "twofish.h"
46
47
#include "macros.h"
48
49
/* Bitwise rotations on 32-bit words.  These are defined as macros that
50
 * evaluate their argument twice, so do not apply to any expressions with
51
 * side effects.
52
 */
53
54
20.0k
#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
55
16.6k
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
56
16.6k
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
57
20.0k
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))
58
59
/* ------------------------------------------------------------------------- */
60
61
/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
62
 * The permutations have been computed using the program twofish-data,
63
 * which is distributed along with this file.
64
 */
65
66
static const uint8_t q0[256] = {
67
  0xA9,0x67,0xB3,0xE8,0x04,0xFD,0xA3,0x76,
68
  0x9A,0x92,0x80,0x78,0xE4,0xDD,0xD1,0x38,
69
  0x0D,0xC6,0x35,0x98,0x18,0xF7,0xEC,0x6C,
70
  0x43,0x75,0x37,0x26,0xFA,0x13,0x94,0x48,
71
  0xF2,0xD0,0x8B,0x30,0x84,0x54,0xDF,0x23,
72
  0x19,0x5B,0x3D,0x59,0xF3,0xAE,0xA2,0x82,
73
  0x63,0x01,0x83,0x2E,0xD9,0x51,0x9B,0x7C,
74
  0xA6,0xEB,0xA5,0xBE,0x16,0x0C,0xE3,0x61,
75
  0xC0,0x8C,0x3A,0xF5,0x73,0x2C,0x25,0x0B,
76
  0xBB,0x4E,0x89,0x6B,0x53,0x6A,0xB4,0xF1,
77
  0xE1,0xE6,0xBD,0x45,0xE2,0xF4,0xB6,0x66,
78
  0xCC,0x95,0x03,0x56,0xD4,0x1C,0x1E,0xD7,
79
  0xFB,0xC3,0x8E,0xB5,0xE9,0xCF,0xBF,0xBA,
80
  0xEA,0x77,0x39,0xAF,0x33,0xC9,0x62,0x71,
81
  0x81,0x79,0x09,0xAD,0x24,0xCD,0xF9,0xD8,
82
  0xE5,0xC5,0xB9,0x4D,0x44,0x08,0x86,0xE7,
83
  0xA1,0x1D,0xAA,0xED,0x06,0x70,0xB2,0xD2,
84
  0x41,0x7B,0xA0,0x11,0x31,0xC2,0x27,0x90,
85
  0x20,0xF6,0x60,0xFF,0x96,0x5C,0xB1,0xAB,
86
  0x9E,0x9C,0x52,0x1B,0x5F,0x93,0x0A,0xEF,
87
  0x91,0x85,0x49,0xEE,0x2D,0x4F,0x8F,0x3B,
88
  0x47,0x87,0x6D,0x46,0xD6,0x3E,0x69,0x64,
89
  0x2A,0xCE,0xCB,0x2F,0xFC,0x97,0x05,0x7A,
90
  0xAC,0x7F,0xD5,0x1A,0x4B,0x0E,0xA7,0x5A,
91
  0x28,0x14,0x3F,0x29,0x88,0x3C,0x4C,0x02,
92
  0xB8,0xDA,0xB0,0x17,0x55,0x1F,0x8A,0x7D,
93
  0x57,0xC7,0x8D,0x74,0xB7,0xC4,0x9F,0x72,
94
  0x7E,0x15,0x22,0x12,0x58,0x07,0x99,0x34,
95
  0x6E,0x50,0xDE,0x68,0x65,0xBC,0xDB,0xF8,
96
  0xC8,0xA8,0x2B,0x40,0xDC,0xFE,0x32,0xA4,
97
  0xCA,0x10,0x21,0xF0,0xD3,0x5D,0x0F,0x00,
98
  0x6F,0x9D,0x36,0x42,0x4A,0x5E,0xC1,0xE0,
99
};
100
101
static const uint8_t q1[256] = {
102
  0x75,0xF3,0xC6,0xF4,0xDB,0x7B,0xFB,0xC8,
103
  0x4A,0xD3,0xE6,0x6B,0x45,0x7D,0xE8,0x4B,
104
  0xD6,0x32,0xD8,0xFD,0x37,0x71,0xF1,0xE1,
105
  0x30,0x0F,0xF8,0x1B,0x87,0xFA,0x06,0x3F,
106
  0x5E,0xBA,0xAE,0x5B,0x8A,0x00,0xBC,0x9D,
107
  0x6D,0xC1,0xB1,0x0E,0x80,0x5D,0xD2,0xD5,
108
  0xA0,0x84,0x07,0x14,0xB5,0x90,0x2C,0xA3,
109
  0xB2,0x73,0x4C,0x54,0x92,0x74,0x36,0x51,
110
  0x38,0xB0,0xBD,0x5A,0xFC,0x60,0x62,0x96,
111
  0x6C,0x42,0xF7,0x10,0x7C,0x28,0x27,0x8C,
112
  0x13,0x95,0x9C,0xC7,0x24,0x46,0x3B,0x70,
113
  0xCA,0xE3,0x85,0xCB,0x11,0xD0,0x93,0xB8,
114
  0xA6,0x83,0x20,0xFF,0x9F,0x77,0xC3,0xCC,
115
  0x03,0x6F,0x08,0xBF,0x40,0xE7,0x2B,0xE2,
116
  0x79,0x0C,0xAA,0x82,0x41,0x3A,0xEA,0xB9,
117
  0xE4,0x9A,0xA4,0x97,0x7E,0xDA,0x7A,0x17,
118
  0x66,0x94,0xA1,0x1D,0x3D,0xF0,0xDE,0xB3,
119
  0x0B,0x72,0xA7,0x1C,0xEF,0xD1,0x53,0x3E,
120
  0x8F,0x33,0x26,0x5F,0xEC,0x76,0x2A,0x49,
121
  0x81,0x88,0xEE,0x21,0xC4,0x1A,0xEB,0xD9,
122
  0xC5,0x39,0x99,0xCD,0xAD,0x31,0x8B,0x01,
123
  0x18,0x23,0xDD,0x1F,0x4E,0x2D,0xF9,0x48,
124
  0x4F,0xF2,0x65,0x8E,0x78,0x5C,0x58,0x19,
125
  0x8D,0xE5,0x98,0x57,0x67,0x7F,0x05,0x64,
126
  0xAF,0x63,0xB6,0xFE,0xF5,0xB7,0x3C,0xA5,
127
  0xCE,0xE9,0x68,0x44,0xE0,0x4D,0x43,0x69,
128
  0x29,0x2E,0xAC,0x15,0x59,0xA8,0x0A,0x9E,
129
  0x6E,0x47,0xDF,0x34,0x35,0x6A,0xCF,0xDC,
130
  0x22,0xC9,0xC0,0x9B,0x89,0xD4,0xED,0xAB,
131
  0x12,0xA2,0x0D,0x52,0xBB,0x02,0x2F,0xA9,
132
  0xD7,0x61,0x1E,0xB4,0x50,0x04,0xF6,0xC2,
133
  0x16,0x25,0x86,0x56,0x55,0x09,0xBE,0x91,
134
};
135
136
/* ------------------------------------------------------------------------- */
137
138
/* uint32_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
139
 *
140
 * Multiplication in GF(2^8). Larger return type, to avoid need for
141
 * type casts when the return value is shifted left.
142
 *
143
 * This function multiplies a times b in the Galois Field GF(2^8) with
144
 * primitive polynomial p.
145
 * The representation of the polynomials a, b, and p uses bits with
146
 * values 2^i to represent the terms x^i.  The polynomial p contains an
147
 * implicit term x^8.
148
 *
149
 * Note that addition and subtraction in GF(2^8) is simply the XOR
150
 * operation.
151
 */
152
153
static uint32_t
154
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
155
4.04M
{
156
4.04M
  uint32_t shift  = b;
157
4.04M
  uint8_t result = 0;
158
27.9M
  while (a)
159
23.9M
    {
160
23.9M
      if (a & 1) result ^= shift;
161
23.9M
      a = a >> 1;
162
23.9M
      shift = shift << 1;
163
23.9M
      if (shift & 0x100) shift ^= p;
164
23.9M
    }
165
4.04M
  return result;
166
4.04M
}
167
168
/* ------------------------------------------------------------------------- */
169
170
/* The matrix RS as specified in section 4.3 the twofish paper. */
171
172
static const uint8_t rs_matrix[4][8] = {
173
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
174
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
175
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
176
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };
177
178
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
179
 *
180
 * Computes the value RS * M, where M is a byte vector composed of the
181
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
182
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
183
 *
184
 * This function is used to compute the sub-keys S which are in turn used
185
 * to generate the S-boxes.
186
 */
187
188
static uint32_t
189
compute_s(uint32_t m1, uint32_t m2)
190
2.85k
{
191
2.85k
  uint32_t s = 0;
192
2.85k
  int i;
193
14.2k
  for (i = 0; i < 4; i++)
194
11.4k
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
195
11.4k
      ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
196
11.4k
      ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
197
11.4k
      ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
198
11.4k
      ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
199
11.4k
      ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
200
11.4k
      ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
201
11.4k
      ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
202
2.85k
  return s;
203
2.85k
}
204
205
/* ------------------------------------------------------------------------- */
206
207
/* This table describes which q S-boxes are used for each byte in each stage
208
 * of the function h, cf. figure 2 of the twofish paper.
209
 */
210
211
static const uint8_t * const q_table[4][5] =
212
  { { q1, q1, q0, q0, q1 },
213
    { q0, q1, q1, q0, q0 },
214
    { q0, q0, q0, q1, q1 },
215
    { q1, q0, q1, q1, q0 } };
216
217
/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */
218
219
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
220
         { 0x5B, 0xEF, 0xEF, 0x01 },
221
         { 0xEF, 0x5B, 0x01, 0xEF },
222
         { 0xEF, 0x01, 0xEF, 0x5B } };
223
224
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
225
 *
226
 * Perform the h function (section 4.3.2) on one byte.  It consists of
227
 * repeated applications of the q permutation, followed by a XOR with
228
 * part of a sub-key.  Finally, the value is multiplied by one column of
229
 * the MDS matrix.  To obtain the result for a full word, the results of
230
 * h for the individual bytes are XORed.
231
 *
232
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
233
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
234
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
235
 */
236
237
static uint32_t
238
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
239
987k
{
240
987k
  uint8_t y = q_table[i][4][l0 ^
241
987k
            q_table[i][3][l1 ^
242
987k
              q_table[i][2][k == 2 ? x : l2 ^
243
737k
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];
244
245
987k
  return ( (gf_multiply(0x69, mds_matrix[0][i], y))
246
987k
     | (gf_multiply(0x69, mds_matrix[1][i], y) << 8)
247
987k
     | (gf_multiply(0x69, mds_matrix[2][i], y) << 16)
248
987k
     | (gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
249
987k
}
250
251
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
252
 *
253
 * Perform the function h on a word.  See the description of h_byte() above.
254
 */
255
256
static uint32_t
257
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
258
33.3k
{
259
33.3k
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
260
33.3k
    ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
261
33.3k
    ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
262
33.3k
    ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
263
33.3k
}
264
265
266
/* ------------------------------------------------------------------------- */
267
268
/* API */
269
270
/* Structure which contains the tables containing the subkeys and the
271
 * key-dependent s-boxes.
272
 */
273
274
275
/* Set up internal tables required for twofish encryption and decryption.
276
 *
277
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
278
 * supported.  Larger key sizes are silently truncated.  
279
 */
280
281
void
282
twofish_set_key(struct twofish_ctx *context,
283
    size_t keysize, const uint8_t *key)
284
834
{
285
834
  uint8_t key_copy[32];
286
834
  uint32_t m[8], s[4], t;
287
834
  int i, j, k;
288
289
  /* Extend key as necessary */
290
291
834
  assert(keysize <= 32);
292
293
  /* We do a little more copying than necessary, but that doesn't
294
   * really matter. */
295
834
  memset(key_copy, 0, 32);
296
834
  memcpy(key_copy, key, keysize);
297
298
7.50k
  for (i = 0; i<8; i++)
299
6.67k
    m[i] = LE_READ_UINT32(key_copy + i*4);
300
  
301
834
  if (keysize <= 16)
302
211
    k = 2;
303
623
  else if (keysize <= 24)
304
61
    k = 3;
305
562
  else
306
562
    k = 4;
307
308
  /* Compute sub-keys */
309
310
17.5k
  for (i = 0; i < 20; i++)
311
16.6k
    {
312
16.6k
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
313
16.6k
      t = rol8(t);
314
16.6k
      t += (context->keys[2*i] =
315
16.6k
      t + h(k, 2*i, m[0], m[2], m[4], m[6]));
316
16.6k
      t = rol9(t);
317
16.6k
      context->keys[2*i+1] = t;
318
16.6k
    }
319
320
  /* Compute key-dependent S-boxes */
321
322
3.68k
  for (i = 0; i < k; i++)
323
2.85k
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
324
325
4.17k
  for (i = 0; i < 4; i++)
326
857k
    for (j = 0; j < 256; j++)
327
854k
      context->s_box[i][j] = h_byte(k, i, j,
328
854k
            s[0] >> (i*8),
329
854k
            s[1] >> (i*8),
330
854k
            s[2] >> (i*8),
331
854k
            s[3] >> (i*8));
332
834
}
333
334
void
335
twofish128_set_key(struct twofish_ctx *context, const uint8_t *key)
336
0
{
337
0
  twofish_set_key (context, TWOFISH128_KEY_SIZE, key);
338
0
}
339
void
340
twofish192_set_key(struct twofish_ctx *context, const uint8_t *key)
341
0
{
342
0
  twofish_set_key (context, TWOFISH192_KEY_SIZE, key);
343
0
}
344
void
345
twofish256_set_key(struct twofish_ctx *context, const uint8_t *key)
346
0
{
347
0
  twofish_set_key (context, TWOFISH256_KEY_SIZE, key);
348
0
}
349
350
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
351
 *
352
 * Before this function can be used, twofish_set_key() must be used in order to
353
 * set up various tables required for the encryption algorithm.
354
 * 
355
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
356
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
357
 * overlap.
358
 */
359
360
void
361
twofish_encrypt(const struct twofish_ctx *context,
362
    size_t length,
363
    uint8_t *ciphertext,
364
    const uint8_t *plaintext)
365
417
{
366
417
  const uint32_t * keys        = context->keys;
367
417
  const uint32_t (*s_box)[256] = context->s_box;
368
369
417
  assert( !(length % TWOFISH_BLOCK_SIZE) );
370
919
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
371
502
    {  
372
502
      uint32_t words[4];
373
502
      uint32_t r0, r1, r2, r3, t0, t1;
374
502
      int i;
375
376
2.51k
      for (i = 0; i<4; i++, plaintext += 4)
377
2.00k
  words[i] = LE_READ_UINT32(plaintext);
378
379
502
      r0 = words[0] ^ keys[0];
380
502
      r1 = words[1] ^ keys[1];
381
502
      r2 = words[2] ^ keys[2];
382
502
      r3 = words[3] ^ keys[3];
383
  
384
4.51k
      for (i = 0; i < 8; i++) {
385
4.01k
  t1 = (  s_box[1][r1 & 0xFF]
386
4.01k
    ^ s_box[2][(r1 >> 8) & 0xFF]
387
4.01k
    ^ s_box[3][(r1 >> 16) & 0xFF]
388
4.01k
    ^ s_box[0][(r1 >> 24) & 0xFF]);
389
4.01k
  t0 = (  s_box[0][r0 & 0xFF]
390
4.01k
    ^ s_box[1][(r0 >> 8) & 0xFF]
391
4.01k
    ^ s_box[2][(r0 >> 16) & 0xFF]
392
4.01k
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
393
4.01k
  r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
394
4.01k
  r2 = (t0 + keys[4*i+8]) ^ r2;
395
4.01k
  r2 = ror1(r2);
396
397
4.01k
  t1 = (  s_box[1][r3 & 0xFF]
398
4.01k
    ^ s_box[2][(r3 >> 8) & 0xFF]
399
4.01k
    ^ s_box[3][(r3 >> 16) & 0xFF]
400
4.01k
    ^ s_box[0][(r3 >> 24) & 0xFF]);
401
4.01k
  t0 = (  s_box[0][r2 & 0xFF]
402
4.01k
    ^ s_box[1][(r2 >> 8) & 0xFF]
403
4.01k
    ^ s_box[2][(r2 >> 16) & 0xFF]
404
4.01k
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
405
4.01k
  r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
406
4.01k
  r0 = (t0 + keys[4*i+10]) ^ r0;
407
4.01k
  r0 = ror1(r0);
408
4.01k
      }
409
410
502
      words[0] = r2 ^ keys[4];
411
502
      words[1] = r3 ^ keys[5];
412
502
      words[2] = r0 ^ keys[6];
413
502
      words[3] = r1 ^ keys[7];
414
415
2.51k
      for (i = 0; i<4; i++, ciphertext += 4)
416
2.00k
  LE_WRITE_UINT32(ciphertext, words[i]);
417
502
    }
418
417
}
419
420
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
421
 *
422
 * Before this function can be used, twofish_set_key() must be used in order to
423
 * set up various tables required for the decryption algorithm.
424
 * 
425
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
426
 * plaintext.  The memory areas of the plaintext and the ciphertext can
427
 * overlap.
428
 */
429
430
void
431
twofish_decrypt(const struct twofish_ctx *context,
432
    size_t length,
433
    uint8_t *plaintext,
434
    const uint8_t *ciphertext)
435
436
417
{
437
417
  const uint32_t *keys  = context->keys;
438
417
  const uint32_t (*s_box)[256] = context->s_box;
439
440
417
  assert( !(length % TWOFISH_BLOCK_SIZE) );
441
1.17k
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
442
754
    {  
443
754
      uint32_t words[4];
444
754
      uint32_t r0, r1, r2, r3, t0, t1;
445
754
      int i;
446
447
3.77k
      for (i = 0; i<4; i++, ciphertext += 4)
448
3.01k
  words[i] = LE_READ_UINT32(ciphertext);
449
450
754
      r0 = words[2] ^ keys[6];
451
754
      r1 = words[3] ^ keys[7];
452
754
      r2 = words[0] ^ keys[4];
453
754
      r3 = words[1] ^ keys[5];
454
455
6.78k
      for (i = 0; i < 8; i++) {
456
6.03k
  t1 = (  s_box[1][r3 & 0xFF]
457
6.03k
    ^ s_box[2][(r3 >> 8) & 0xFF]
458
6.03k
    ^ s_box[3][(r3 >> 16) & 0xFF]
459
6.03k
    ^ s_box[0][(r3 >> 24) & 0xFF]);
460
6.03k
  t0 = (  s_box[0][r2 & 0xFF]
461
6.03k
    ^ s_box[1][(r2 >> 8) & 0xFF]
462
6.03k
    ^ s_box[2][(r2 >> 16) & 0xFF]
463
6.03k
    ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
464
6.03k
  r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
465
6.03k
  r1 = ror1(r1);
466
6.03k
  r0 = (t0 + keys[38-4*i]) ^ rol1(r0);
467
468
6.03k
  t1 = (  s_box[1][r1 & 0xFF]
469
6.03k
    ^ s_box[2][(r1 >> 8) & 0xFF]
470
6.03k
    ^ s_box[3][(r1 >> 16) & 0xFF]
471
6.03k
    ^ s_box[0][(r1 >> 24) & 0xFF]);
472
6.03k
  t0 = (  s_box[0][r0 & 0xFF]
473
6.03k
    ^ s_box[1][(r0 >> 8) & 0xFF]
474
6.03k
    ^ s_box[2][(r0 >> 16) & 0xFF]
475
6.03k
    ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
476
6.03k
  r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
477
6.03k
  r3 = ror1(r3);
478
6.03k
  r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
479
6.03k
      }
480
481
754
      words[0] = r0 ^ keys[0];
482
754
      words[1] = r1 ^ keys[1];
483
754
      words[2] = r2 ^ keys[2];
484
754
      words[3] = r3 ^ keys[3];
485
486
3.77k
      for (i = 0; i<4; i++, plaintext += 4)
487
3.01k
  LE_WRITE_UINT32(plaintext, words[i]);
488
754
    }
489
417
}