Coverage Report

Created: 2023-09-25 06:34

/src/nettle-with-mini-gmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
401
#define CAST_SMALL_KEY 10
56
57
20.2k
#define S1 cast_sbox1
58
20.2k
#define S2 cast_sbox2
59
20.2k
#define S3 cast_sbox3
60
20.2k
#define S4 cast_sbox4
61
16.0k
#define S5 cast_sbox5
62
16.0k
#define S6 cast_sbox6
63
16.0k
#define S7 cast_sbox7
64
16.0k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
36.2k
#define B0(x) ( (uint8_t) (x>>24) )
68
36.2k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
36.2k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
36.2k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
7.24k
#define F1(l, r, i) do {         \
76
7.24k
    t = ctx->Km[i] + r;           \
77
7.24k
    t = ROTL32(ctx->Kr[i], t);          \
78
7.24k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
7.24k
  } while (0)
80
6.48k
#define F2(l, r, i) do {         \
81
6.48k
    t = ctx->Km[i] ^ r;           \
82
6.48k
    t = ROTL32( ctx->Kr[i], t);         \
83
6.48k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
6.48k
  } while (0)
85
6.48k
#define F3(l, r, i) do {         \
86
6.48k
    t = ctx->Km[i] - r;           \
87
6.48k
    t = ROTL32(ctx->Kr[i], t);          \
88
6.48k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
6.48k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
182
{
99
182
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
637
    {
101
637
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
637
      l = READ_UINT32(src);
105
637
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
637
      F1(l, r,  0);
109
637
      F2(r, l,  1);
110
637
      F3(l, r,  2);
111
637
      F1(r, l,  3);
112
637
      F2(l, r,  4);
113
637
      F3(r, l,  5);
114
637
      F1(l, r,  6);
115
637
      F2(r, l,  7);
116
637
      F3(l, r,  8);
117
637
      F1(r, l,  9);
118
637
      F2(l, r, 10);
119
637
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
637
      if (ctx->rounds & 16) {
122
335
  F1(l, r, 12);
123
335
  F2(r, l, 13);
124
335
  F3(l, r, 14);
125
335
  F1(r, l, 15);
126
335
      }
127
      /* Put l,r into outblock */
128
637
      WRITE_UINT32(dst, r);
129
637
      WRITE_UINT32(dst + 4, l);
130
637
    }
131
182
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
219
{
141
219
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
797
    {
143
797
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
797
      r = READ_UINT32(src);
147
797
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
797
      if (ctx->rounds & 16) {
152
418
  F1(r, l, 15);
153
418
  F3(l, r, 14);
154
418
  F2(r, l, 13);
155
418
  F1(l, r, 12);
156
418
      }
157
797
      F3(r, l, 11);
158
797
      F2(l, r, 10);
159
797
      F1(r, l,  9);
160
797
      F3(l, r,  8);
161
797
      F2(r, l,  7);
162
797
      F1(l, r,  6);
163
797
      F3(r, l,  5);
164
797
      F2(l, r,  4);
165
797
      F1(r, l,  3);
166
797
      F3(l, r,  2);
167
797
      F2(r, l,  1);
168
797
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
797
      WRITE_UINT32(dst, l);
172
797
      WRITE_UINT32(dst + 4, r);
173
797
    }
174
219
}
175
176
/***** Key Schedule *****/
177
178
5.68k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
5.68k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
802
#define EXPAND(set, full) do {           \
182
802
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
802
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
802
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
802
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
802
                      \
187
802
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
802
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
802
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
802
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
802
                      \
192
802
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
802
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
802
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
802
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
802
                      \
197
802
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
802
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
802
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
802
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
802
                      \
202
802
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
802
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
802
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
802
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
802
                      \
207
802
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
802
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
802
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
802
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
802
                  \
212
802
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
802
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
802
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
802
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
802
    if (full)               \
217
802
      {                 \
218
434
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
434
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
434
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
434
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
434
      }                  \
223
802
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
401
{
229
401
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
401
  uint32_t w;
231
401
  int full;
232
233
401
  assert (length >= CAST5_MIN_KEY_SIZE);
234
401
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
401
  full = (length > CAST_SMALL_KEY);
237
238
401
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
401
  switch (length & 3)
242
401
    {
243
220
    case 0:
244
220
      w = READ_UINT32 (key + length - 4);
245
220
      break;
246
62
    case 3:
247
62
      w = READ_UINT24 (key + length - 3) << 8;
248
62
      break;
249
81
    case 2:
250
81
      w = READ_UINT16 (key + length - 2) << 16;
251
81
      break;
252
38
    case 1:
253
38
      w = (uint32_t) key[length - 1] << 24;
254
38
      break;
255
401
    }
256
257
401
  if (length <= 8)
258
151
    {
259
151
      x1 = w;
260
151
      x2 = x3 = 0;
261
151
    }
262
250
  else
263
250
    {
264
250
      x1 = READ_UINT32 (key + 4);
265
250
      if (length <= 12)
266
164
  {
267
164
    x2 = w;
268
164
    x3 = 0;
269
164
  }
270
86
      else
271
86
  {
272
86
    x2 = READ_UINT32 (key + 8);
273
86
    x3 = w;
274
86
  }
275
250
    }
276
277
5.68k
  EXPAND(SET_KM, full);
278
5.68k
  EXPAND(SET_KR, full);
279
280
401
  ctx->rounds = full ? 16 : 12;
281
401
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}