Coverage Report

Created: 2024-02-25 06:16

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
447
#define CAST_SMALL_KEY 10
56
57
75.9k
#define S1 cast_sbox1
58
75.9k
#define S2 cast_sbox2
59
75.9k
#define S3 cast_sbox3
60
75.9k
#define S4 cast_sbox4
61
17.8k
#define S5 cast_sbox5
62
17.8k
#define S6 cast_sbox6
63
17.8k
#define S7 cast_sbox7
64
17.8k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
93.7k
#define B0(x) ( (uint8_t) (x>>24) )
68
93.7k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
93.7k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
93.7k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
26.1k
#define F1(l, r, i) do {         \
76
26.1k
    t = ctx->Km[i] + r;           \
77
26.1k
    t = ROTL32(ctx->Kr[i], t);          \
78
26.1k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
26.1k
  } while (0)
80
24.8k
#define F2(l, r, i) do {         \
81
24.8k
    t = ctx->Km[i] ^ r;           \
82
24.8k
    t = ROTL32( ctx->Kr[i], t);         \
83
24.8k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
24.8k
  } while (0)
85
24.8k
#define F3(l, r, i) do {         \
86
24.8k
    t = ctx->Km[i] - r;           \
87
24.8k
    t = ROTL32(ctx->Kr[i], t);          \
88
24.8k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
24.8k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
243
{
99
243
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
2.80k
    {
101
2.80k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
2.80k
      l = READ_UINT32(src);
105
2.80k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
2.80k
      F1(l, r,  0);
109
2.80k
      F2(r, l,  1);
110
2.80k
      F3(l, r,  2);
111
2.80k
      F1(r, l,  3);
112
2.80k
      F2(l, r,  4);
113
2.80k
      F3(r, l,  5);
114
2.80k
      F1(l, r,  6);
115
2.80k
      F2(r, l,  7);
116
2.80k
      F3(l, r,  8);
117
2.80k
      F1(r, l,  9);
118
2.80k
      F2(l, r, 10);
119
2.80k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
2.80k
      if (ctx->rounds & 16) {
122
558
  F1(l, r, 12);
123
558
  F2(r, l, 13);
124
558
  F3(l, r, 14);
125
558
  F1(r, l, 15);
126
558
      }
127
      /* Put l,r into outblock */
128
2.80k
      WRITE_UINT32(dst, r);
129
2.80k
      WRITE_UINT32(dst + 4, l);
130
2.80k
    }
131
243
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
204
{
141
204
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
3.10k
    {
143
3.10k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
3.10k
      r = READ_UINT32(src);
147
3.10k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
3.10k
      if (ctx->rounds & 16) {
152
709
  F1(r, l, 15);
153
709
  F3(l, r, 14);
154
709
  F2(r, l, 13);
155
709
  F1(l, r, 12);
156
709
      }
157
3.10k
      F3(r, l, 11);
158
3.10k
      F2(l, r, 10);
159
3.10k
      F1(r, l,  9);
160
3.10k
      F3(l, r,  8);
161
3.10k
      F2(r, l,  7);
162
3.10k
      F1(l, r,  6);
163
3.10k
      F3(r, l,  5);
164
3.10k
      F2(l, r,  4);
165
3.10k
      F1(r, l,  3);
166
3.10k
      F3(l, r,  2);
167
3.10k
      F2(r, l,  1);
168
3.10k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
3.10k
      WRITE_UINT32(dst, l);
172
3.10k
      WRITE_UINT32(dst + 4, r);
173
3.10k
    }
174
204
}
175
176
/***** Key Schedule *****/
177
178
6.38k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
6.38k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
894
#define EXPAND(set, full) do {           \
182
894
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
894
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
894
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
894
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
894
                      \
187
894
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
894
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
894
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
894
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
894
                      \
192
894
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
894
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
894
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
894
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
894
                      \
197
894
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
894
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
894
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
894
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
894
                      \
202
894
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
894
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
894
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
894
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
894
                      \
207
894
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
894
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
894
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
894
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
894
                  \
212
894
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
894
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
894
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
894
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
894
    if (full)               \
217
894
      {                 \
218
508
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
508
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
508
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
508
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
508
      }                  \
223
894
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
447
{
229
447
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
447
  uint32_t w;
231
447
  int full;
232
233
447
  assert (length >= CAST5_MIN_KEY_SIZE);
234
447
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
447
  full = (length > CAST_SMALL_KEY);
237
238
447
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
447
  switch (length & 3)
242
447
    {
243
221
    case 0:
244
221
      w = READ_UINT32 (key + length - 4);
245
221
      break;
246
103
    case 3:
247
103
      w = READ_UINT24 (key + length - 3) << 8;
248
103
      break;
249
91
    case 2:
250
91
      w = READ_UINT16 (key + length - 2) << 16;
251
91
      break;
252
32
    case 1:
253
32
      w = (uint32_t) key[length - 1] << 24;
254
32
      break;
255
447
    }
256
257
447
  if (length <= 8)
258
154
    {
259
154
      x1 = w;
260
154
      x2 = x3 = 0;
261
154
    }
262
293
  else
263
293
    {
264
293
      x1 = READ_UINT32 (key + 4);
265
293
      if (length <= 12)
266
143
  {
267
143
    x2 = w;
268
143
    x3 = 0;
269
143
  }
270
150
      else
271
150
  {
272
150
    x2 = READ_UINT32 (key + 8);
273
150
    x3 = w;
274
150
  }
275
293
    }
276
277
6.38k
  EXPAND(SET_KM, full);
278
6.38k
  EXPAND(SET_KR, full);
279
280
447
  ctx->rounds = full ? 16 : 12;
281
447
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}