/src/botan/src/lib/block/twofish/twofish.cpp
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  | * Twofish  | 
3  |  | * (C) 1999-2007,2017 Jack Lloyd  | 
4  |  | *  | 
5  |  | * The key schedule implemenation is based on a public domain  | 
6  |  | * implementation by Matthew Skala  | 
7  |  | *  | 
8  |  | * Botan is released under the Simplified BSD License (see license.txt)  | 
9  |  | */  | 
10  |  |  | 
11  |  | #include <botan/internal/twofish.h>  | 
12  |  |  | 
13  |  | #include <botan/internal/loadstor.h>  | 
14  |  | #include <botan/internal/rotate.h>  | 
15  |  |  | 
16  |  | namespace Botan { | 
17  |  |  | 
18  |  | namespace { | 
19  |  |  | 
20  |  | inline void TF_E(  | 
21  | 96.5k  |    uint32_t A, uint32_t B, uint32_t& C, uint32_t& D, uint32_t RK1, uint32_t RK2, const secure_vector<uint32_t>& SB) { | 
22  | 96.5k  |    uint32_t X = SB[get_byte<3>(A)] ^ SB[256 + get_byte<2>(A)] ^ SB[512 + get_byte<1>(A)] ^ SB[768 + get_byte<0>(A)];  | 
23  | 96.5k  |    uint32_t Y = SB[get_byte<0>(B)] ^ SB[256 + get_byte<3>(B)] ^ SB[512 + get_byte<2>(B)] ^ SB[768 + get_byte<1>(B)];  | 
24  |  |  | 
25  | 96.5k  |    X += Y;  | 
26  | 96.5k  |    Y += X;  | 
27  |  |  | 
28  | 96.5k  |    X += RK1;  | 
29  | 96.5k  |    Y += RK2;  | 
30  |  |  | 
31  | 96.5k  |    C = rotr<1>(C ^ X);  | 
32  | 96.5k  |    D = rotl<1>(D) ^ Y;  | 
33  | 96.5k  | }  | 
34  |  |  | 
35  |  | inline void TF_D(  | 
36  | 69.1k  |    uint32_t A, uint32_t B, uint32_t& C, uint32_t& D, uint32_t RK1, uint32_t RK2, const secure_vector<uint32_t>& SB) { | 
37  | 69.1k  |    uint32_t X = SB[get_byte<3>(A)] ^ SB[256 + get_byte<2>(A)] ^ SB[512 + get_byte<1>(A)] ^ SB[768 + get_byte<0>(A)];  | 
38  | 69.1k  |    uint32_t Y = SB[get_byte<0>(B)] ^ SB[256 + get_byte<3>(B)] ^ SB[512 + get_byte<2>(B)] ^ SB[768 + get_byte<1>(B)];  | 
39  |  |  | 
40  | 69.1k  |    X += Y;  | 
41  | 69.1k  |    Y += X;  | 
42  |  |  | 
43  | 69.1k  |    X += RK1;  | 
44  | 69.1k  |    Y += RK2;  | 
45  |  |  | 
46  | 69.1k  |    C = rotl<1>(C) ^ X;  | 
47  | 69.1k  |    D = rotr<1>(D ^ Y);  | 
48  | 69.1k  | }  | 
49  |  |  | 
50  |  | }  // namespace  | 
51  |  |  | 
52  |  | /*  | 
53  |  | * Twofish Encryption  | 
54  |  | */  | 
55  | 3.14k  | void Twofish::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { | 
56  | 3.14k  |    assert_key_material_set();  | 
57  |  |  | 
58  | 5.10k  |    while(blocks >= 2) { | 
59  | 1.95k  |       uint32_t A0, B0, C0, D0;  | 
60  | 1.95k  |       uint32_t A1, B1, C1, D1;  | 
61  | 1.95k  |       load_le(in, A0, B0, C0, D0, A1, B1, C1, D1);  | 
62  |  |  | 
63  | 1.95k  |       A0 ^= m_RK[0];  | 
64  | 1.95k  |       A1 ^= m_RK[0];  | 
65  | 1.95k  |       B0 ^= m_RK[1];  | 
66  | 1.95k  |       B1 ^= m_RK[1];  | 
67  | 1.95k  |       C0 ^= m_RK[2];  | 
68  | 1.95k  |       C1 ^= m_RK[2];  | 
69  | 1.95k  |       D0 ^= m_RK[3];  | 
70  | 1.95k  |       D1 ^= m_RK[3];  | 
71  |  |  | 
72  | 17.6k  |       for(size_t k = 8; k != 40; k += 4) { | 
73  | 15.6k  |          TF_E(A0, B0, C0, D0, m_RK[k + 0], m_RK[k + 1], m_SB);  | 
74  | 15.6k  |          TF_E(A1, B1, C1, D1, m_RK[k + 0], m_RK[k + 1], m_SB);  | 
75  |  |  | 
76  | 15.6k  |          TF_E(C0, D0, A0, B0, m_RK[k + 2], m_RK[k + 3], m_SB);  | 
77  | 15.6k  |          TF_E(C1, D1, A1, B1, m_RK[k + 2], m_RK[k + 3], m_SB);  | 
78  | 15.6k  |       }  | 
79  |  |  | 
80  | 1.95k  |       C0 ^= m_RK[4];  | 
81  | 1.95k  |       C1 ^= m_RK[4];  | 
82  | 1.95k  |       D0 ^= m_RK[5];  | 
83  | 1.95k  |       D1 ^= m_RK[5];  | 
84  | 1.95k  |       A0 ^= m_RK[6];  | 
85  | 1.95k  |       A1 ^= m_RK[6];  | 
86  | 1.95k  |       B0 ^= m_RK[7];  | 
87  | 1.95k  |       B1 ^= m_RK[7];  | 
88  |  |  | 
89  | 1.95k  |       store_le(out, C0, D0, A0, B0, C1, D1, A1, B1);  | 
90  |  |  | 
91  | 1.95k  |       blocks -= 2;  | 
92  | 1.95k  |       out += 2 * BLOCK_SIZE;  | 
93  | 1.95k  |       in += 2 * BLOCK_SIZE;  | 
94  | 1.95k  |    }  | 
95  |  |  | 
96  | 3.14k  |    if(blocks) { | 
97  | 2.11k  |       uint32_t A, B, C, D;  | 
98  | 2.11k  |       load_le(in, A, B, C, D);  | 
99  |  |  | 
100  | 2.11k  |       A ^= m_RK[0];  | 
101  | 2.11k  |       B ^= m_RK[1];  | 
102  | 2.11k  |       C ^= m_RK[2];  | 
103  | 2.11k  |       D ^= m_RK[3];  | 
104  |  |  | 
105  | 19.0k  |       for(size_t k = 8; k != 40; k += 4) { | 
106  | 16.9k  |          TF_E(A, B, C, D, m_RK[k], m_RK[k + 1], m_SB);  | 
107  | 16.9k  |          TF_E(C, D, A, B, m_RK[k + 2], m_RK[k + 3], m_SB);  | 
108  | 16.9k  |       }  | 
109  |  |  | 
110  | 2.11k  |       C ^= m_RK[4];  | 
111  | 2.11k  |       D ^= m_RK[5];  | 
112  | 2.11k  |       A ^= m_RK[6];  | 
113  | 2.11k  |       B ^= m_RK[7];  | 
114  |  |  | 
115  | 2.11k  |       store_le(out, C, D, A, B);  | 
116  | 2.11k  |    }  | 
117  | 3.14k  | }  | 
118  |  |  | 
119  |  | /*  | 
120  |  | * Twofish Decryption  | 
121  |  | */  | 
122  | 1.39k  | void Twofish::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const { | 
123  | 1.39k  |    assert_key_material_set();  | 
124  |  |  | 
125  | 3.37k  |    while(blocks >= 2) { | 
126  | 1.97k  |       uint32_t A0, B0, C0, D0;  | 
127  | 1.97k  |       uint32_t A1, B1, C1, D1;  | 
128  | 1.97k  |       load_le(in, A0, B0, C0, D0, A1, B1, C1, D1);  | 
129  |  |  | 
130  | 1.97k  |       A0 ^= m_RK[4];  | 
131  | 1.97k  |       A1 ^= m_RK[4];  | 
132  | 1.97k  |       B0 ^= m_RK[5];  | 
133  | 1.97k  |       B1 ^= m_RK[5];  | 
134  | 1.97k  |       C0 ^= m_RK[6];  | 
135  | 1.97k  |       C1 ^= m_RK[6];  | 
136  | 1.97k  |       D0 ^= m_RK[7];  | 
137  | 1.97k  |       D1 ^= m_RK[7];  | 
138  |  |  | 
139  | 17.8k  |       for(size_t k = 40; k != 8; k -= 4) { | 
140  | 15.8k  |          TF_D(A0, B0, C0, D0, m_RK[k - 2], m_RK[k - 1], m_SB);  | 
141  | 15.8k  |          TF_D(A1, B1, C1, D1, m_RK[k - 2], m_RK[k - 1], m_SB);  | 
142  |  |  | 
143  | 15.8k  |          TF_D(C0, D0, A0, B0, m_RK[k - 4], m_RK[k - 3], m_SB);  | 
144  | 15.8k  |          TF_D(C1, D1, A1, B1, m_RK[k - 4], m_RK[k - 3], m_SB);  | 
145  | 15.8k  |       }  | 
146  |  |  | 
147  | 1.97k  |       C0 ^= m_RK[0];  | 
148  | 1.97k  |       C1 ^= m_RK[0];  | 
149  | 1.97k  |       D0 ^= m_RK[1];  | 
150  | 1.97k  |       D1 ^= m_RK[1];  | 
151  | 1.97k  |       A0 ^= m_RK[2];  | 
152  | 1.97k  |       A1 ^= m_RK[2];  | 
153  | 1.97k  |       B0 ^= m_RK[3];  | 
154  | 1.97k  |       B1 ^= m_RK[3];  | 
155  |  |  | 
156  | 1.97k  |       store_le(out, C0, D0, A0, B0, C1, D1, A1, B1);  | 
157  |  |  | 
158  | 1.97k  |       blocks -= 2;  | 
159  | 1.97k  |       out += 2 * BLOCK_SIZE;  | 
160  | 1.97k  |       in += 2 * BLOCK_SIZE;  | 
161  | 1.97k  |    }  | 
162  |  |  | 
163  | 1.39k  |    if(blocks) { | 
164  | 361  |       uint32_t A, B, C, D;  | 
165  | 361  |       load_le(in, A, B, C, D);  | 
166  |  |  | 
167  | 361  |       A ^= m_RK[4];  | 
168  | 361  |       B ^= m_RK[5];  | 
169  | 361  |       C ^= m_RK[6];  | 
170  | 361  |       D ^= m_RK[7];  | 
171  |  |  | 
172  | 3.24k  |       for(size_t k = 40; k != 8; k -= 4) { | 
173  | 2.88k  |          TF_D(A, B, C, D, m_RK[k - 2], m_RK[k - 1], m_SB);  | 
174  | 2.88k  |          TF_D(C, D, A, B, m_RK[k - 4], m_RK[k - 3], m_SB);  | 
175  | 2.88k  |       }  | 
176  |  |  | 
177  | 361  |       C ^= m_RK[0];  | 
178  | 361  |       D ^= m_RK[1];  | 
179  | 361  |       A ^= m_RK[2];  | 
180  | 361  |       B ^= m_RK[3];  | 
181  |  |  | 
182  | 361  |       store_le(out, C, D, A, B);  | 
183  | 361  |    }  | 
184  | 1.39k  | }  | 
185  |  |  | 
186  | 4.76k  | bool Twofish::has_keying_material() const { | 
187  | 4.76k  |    return !m_SB.empty();  | 
188  | 4.76k  | }  | 
189  |  |  | 
190  |  | /*  | 
191  |  | * Twofish Key Schedule  | 
192  |  | */  | 
193  | 932  | void Twofish::key_schedule(std::span<const uint8_t> key) { | 
194  | 932  |    m_SB.resize(1024);  | 
195  | 932  |    m_RK.resize(40);  | 
196  |  |  | 
197  | 932  |    secure_vector<uint8_t> S(16);  | 
198  |  |  | 
199  | 26.3k  |    for(size_t i = 0; i != key.size(); ++i) { | 
200  |  |       /*  | 
201  |  |       * Do one column of the RS matrix multiplcation  | 
202  |  |       */  | 
203  | 25.4k  |       if(key[i]) { | 
204  | 20.4k  |          uint8_t X = POLY_TO_EXP[key[i] - 1];  | 
205  |  |  | 
206  | 20.4k  |          uint8_t RS1 = RS[(4 * i) % 32];  | 
207  | 20.4k  |          uint8_t RS2 = RS[(4 * i + 1) % 32];  | 
208  | 20.4k  |          uint8_t RS3 = RS[(4 * i + 2) % 32];  | 
209  | 20.4k  |          uint8_t RS4 = RS[(4 * i + 3) % 32];  | 
210  |  |  | 
211  | 20.4k  |          S[4 * (i / 8)] ^= EXP_TO_POLY[(X + POLY_TO_EXP[RS1 - 1]) % 255];  | 
212  | 20.4k  |          S[4 * (i / 8) + 1] ^= EXP_TO_POLY[(X + POLY_TO_EXP[RS2 - 1]) % 255];  | 
213  | 20.4k  |          S[4 * (i / 8) + 2] ^= EXP_TO_POLY[(X + POLY_TO_EXP[RS3 - 1]) % 255];  | 
214  | 20.4k  |          S[4 * (i / 8) + 3] ^= EXP_TO_POLY[(X + POLY_TO_EXP[RS4 - 1]) % 255];  | 
215  | 20.4k  |       }  | 
216  | 25.4k  |    }  | 
217  |  |  | 
218  | 932  |    if(key.size() == 16) { | 
219  | 67.5k  |       for(size_t i = 0; i != 256; ++i) { | 
220  | 67.3k  |          m_SB[i] = MDS0[Q0[Q0[i] ^ S[0]] ^ S[4]];  | 
221  | 67.3k  |          m_SB[256 + i] = MDS1[Q0[Q1[i] ^ S[1]] ^ S[5]];  | 
222  | 67.3k  |          m_SB[512 + i] = MDS2[Q1[Q0[i] ^ S[2]] ^ S[6]];  | 
223  | 67.3k  |          m_SB[768 + i] = MDS3[Q1[Q1[i] ^ S[3]] ^ S[7]];  | 
224  | 67.3k  |       }  | 
225  |  |  | 
226  | 5.52k  |       for(size_t i = 0; i < 40; i += 2) { | 
227  | 5.26k  |          uint32_t X = MDS0[Q0[Q0[i] ^ key[8]] ^ key[0]] ^ MDS1[Q0[Q1[i] ^ key[9]] ^ key[1]] ^  | 
228  | 5.26k  |                       MDS2[Q1[Q0[i] ^ key[10]] ^ key[2]] ^ MDS3[Q1[Q1[i] ^ key[11]] ^ key[3]];  | 
229  | 5.26k  |          uint32_t Y = MDS0[Q0[Q0[i + 1] ^ key[12]] ^ key[4]] ^ MDS1[Q0[Q1[i + 1] ^ key[13]] ^ key[5]] ^  | 
230  | 5.26k  |                       MDS2[Q1[Q0[i + 1] ^ key[14]] ^ key[6]] ^ MDS3[Q1[Q1[i + 1] ^ key[15]] ^ key[7]];  | 
231  | 5.26k  |          Y = rotl<8>(Y);  | 
232  | 5.26k  |          X += Y;  | 
233  | 5.26k  |          Y += X;  | 
234  |  |  | 
235  | 5.26k  |          m_RK[i] = X;  | 
236  | 5.26k  |          m_RK[i + 1] = rotl<9>(Y);  | 
237  | 5.26k  |       }  | 
238  | 669  |    } else if(key.size() == 24) { | 
239  | 5.39k  |       for(size_t i = 0; i != 256; ++i) { | 
240  | 5.37k  |          m_SB[i] = MDS0[Q0[Q0[Q1[i] ^ S[0]] ^ S[4]] ^ S[8]];  | 
241  | 5.37k  |          m_SB[256 + i] = MDS1[Q0[Q1[Q1[i] ^ S[1]] ^ S[5]] ^ S[9]];  | 
242  | 5.37k  |          m_SB[512 + i] = MDS2[Q1[Q0[Q0[i] ^ S[2]] ^ S[6]] ^ S[10]];  | 
243  | 5.37k  |          m_SB[768 + i] = MDS3[Q1[Q1[Q0[i] ^ S[3]] ^ S[7]] ^ S[11]];  | 
244  | 5.37k  |       }  | 
245  |  |  | 
246  | 441  |       for(size_t i = 0; i < 40; i += 2) { | 
247  | 420  |          uint32_t X =  | 
248  | 420  |             MDS0[Q0[Q0[Q1[i] ^ key[16]] ^ key[8]] ^ key[0]] ^ MDS1[Q0[Q1[Q1[i] ^ key[17]] ^ key[9]] ^ key[1]] ^  | 
249  | 420  |             MDS2[Q1[Q0[Q0[i] ^ key[18]] ^ key[10]] ^ key[2]] ^ MDS3[Q1[Q1[Q0[i] ^ key[19]] ^ key[11]] ^ key[3]];  | 
250  | 420  |          uint32_t Y = MDS0[Q0[Q0[Q1[i + 1] ^ key[20]] ^ key[12]] ^ key[4]] ^  | 
251  | 420  |                       MDS1[Q0[Q1[Q1[i + 1] ^ key[21]] ^ key[13]] ^ key[5]] ^  | 
252  | 420  |                       MDS2[Q1[Q0[Q0[i + 1] ^ key[22]] ^ key[14]] ^ key[6]] ^  | 
253  | 420  |                       MDS3[Q1[Q1[Q0[i + 1] ^ key[23]] ^ key[15]] ^ key[7]];  | 
254  | 420  |          Y = rotl<8>(Y);  | 
255  | 420  |          X += Y;  | 
256  | 420  |          Y += X;  | 
257  |  |  | 
258  | 420  |          m_RK[i] = X;  | 
259  | 420  |          m_RK[i + 1] = rotl<9>(Y);  | 
260  | 420  |       }  | 
261  | 648  |    } else if(key.size() == 32) { | 
262  | 166k  |       for(size_t i = 0; i != 256; ++i) { | 
263  | 165k  |          m_SB[i] = MDS0[Q0[Q0[Q1[Q1[i] ^ S[0]] ^ S[4]] ^ S[8]] ^ S[12]];  | 
264  | 165k  |          m_SB[256 + i] = MDS1[Q0[Q1[Q1[Q0[i] ^ S[1]] ^ S[5]] ^ S[9]] ^ S[13]];  | 
265  | 165k  |          m_SB[512 + i] = MDS2[Q1[Q0[Q0[Q0[i] ^ S[2]] ^ S[6]] ^ S[10]] ^ S[14]];  | 
266  | 165k  |          m_SB[768 + i] = MDS3[Q1[Q1[Q0[Q1[i] ^ S[3]] ^ S[7]] ^ S[11]] ^ S[15]];  | 
267  | 165k  |       }  | 
268  |  |  | 
269  | 13.6k  |       for(size_t i = 0; i < 40; i += 2) { | 
270  | 12.9k  |          uint32_t X = MDS0[Q0[Q0[Q1[Q1[i] ^ key[24]] ^ key[16]] ^ key[8]] ^ key[0]] ^  | 
271  | 12.9k  |                       MDS1[Q0[Q1[Q1[Q0[i] ^ key[25]] ^ key[17]] ^ key[9]] ^ key[1]] ^  | 
272  | 12.9k  |                       MDS2[Q1[Q0[Q0[Q0[i] ^ key[26]] ^ key[18]] ^ key[10]] ^ key[2]] ^  | 
273  | 12.9k  |                       MDS3[Q1[Q1[Q0[Q1[i] ^ key[27]] ^ key[19]] ^ key[11]] ^ key[3]];  | 
274  | 12.9k  |          uint32_t Y = MDS0[Q0[Q0[Q1[Q1[i + 1] ^ key[28]] ^ key[20]] ^ key[12]] ^ key[4]] ^  | 
275  | 12.9k  |                       MDS1[Q0[Q1[Q1[Q0[i + 1] ^ key[29]] ^ key[21]] ^ key[13]] ^ key[5]] ^  | 
276  | 12.9k  |                       MDS2[Q1[Q0[Q0[Q0[i + 1] ^ key[30]] ^ key[22]] ^ key[14]] ^ key[6]] ^  | 
277  | 12.9k  |                       MDS3[Q1[Q1[Q0[Q1[i + 1] ^ key[31]] ^ key[23]] ^ key[15]] ^ key[7]];  | 
278  | 12.9k  |          Y = rotl<8>(Y);  | 
279  | 12.9k  |          X += Y;  | 
280  | 12.9k  |          Y += X;  | 
281  |  |  | 
282  | 12.9k  |          m_RK[i] = X;  | 
283  | 12.9k  |          m_RK[i + 1] = rotl<9>(Y);  | 
284  | 12.9k  |       }  | 
285  | 648  |    }  | 
286  | 932  | }  | 
287  |  |  | 
288  |  | /*  | 
289  |  | * Clear memory of sensitive data  | 
290  |  | */  | 
291  | 144  | void Twofish::clear() { | 
292  | 144  |    zap(m_SB);  | 
293  | 144  |    zap(m_RK);  | 
294  | 144  | }  | 
295  |  |  | 
296  |  | }  // namespace Botan  |