Coverage Report

Created: 2024-06-28 06:39

/src/gmp-6.2.1/mpn/sqrmod_bnm1.c
Line
Count
Source (jump to first uncovered line)
1
/* sqrmod_bnm1.c -- squaring mod B^n-1.
2
3
   Contributed to the GNU project by Niels Möller, Torbjorn Granlund and
4
   Marco Bodrato.
5
6
   THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
7
   SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
8
   GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9
10
Copyright 2009, 2010, 2012 Free Software Foundation, Inc.
11
12
This file is part of the GNU MP Library.
13
14
The GNU MP Library is free software; you can redistribute it and/or modify
15
it under the terms of either:
16
17
  * the GNU Lesser General Public License as published by the Free
18
    Software Foundation; either version 3 of the License, or (at your
19
    option) any later version.
20
21
or
22
23
  * the GNU General Public License as published by the Free Software
24
    Foundation; either version 2 of the License, or (at your option) any
25
    later version.
26
27
or both in parallel, as here.
28
29
The GNU MP Library is distributed in the hope that it will be useful, but
30
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32
for more details.
33
34
You should have received copies of the GNU General Public License and the
35
GNU Lesser General Public License along with the GNU MP Library.  If not,
36
see https://www.gnu.org/licenses/.  */
37
38
39
#include "gmp-impl.h"
40
#include "longlong.h"
41
42
/* Input is {ap,rn}; output is {rp,rn}, computation is
43
   mod B^rn - 1, and values are semi-normalised; zero is represented
44
   as either 0 or B^n - 1.  Needs a scratch of 2rn limbs at tp.
45
   tp==rp is allowed. */
46
static void
47
mpn_bc_sqrmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp)
48
0
{
49
0
  mp_limb_t cy;
50
51
0
  ASSERT (0 < rn);
52
53
0
  mpn_sqr (tp, ap, rn);
54
0
  cy = mpn_add_n (rp, tp, tp + rn, rn);
55
  /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
56
   * be no overflow when adding in the carry. */
57
0
  MPN_INCR_U (rp, rn, cy);
58
0
}
59
60
61
/* Input is {ap,rn+1}; output is {rp,rn+1}, in
62
   semi-normalised representation, computation is mod B^rn + 1. Needs
63
   a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed.
64
   Output is normalised. */
65
static void
66
mpn_bc_sqrmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp)
67
0
{
68
0
  mp_limb_t cy;
69
70
0
  ASSERT (0 < rn);
71
72
0
  mpn_sqr (tp, ap, rn + 1);
73
0
  ASSERT (tp[2*rn+1] == 0);
74
0
  ASSERT (tp[2*rn] < GMP_NUMB_MAX);
75
0
  cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn);
76
0
  rp[rn] = 0;
77
0
  MPN_INCR_U (rp, rn+1, cy);
78
0
}
79
80
81
/* Computes {rp,MIN(rn,2an)} <- {ap,an}^2 Mod(B^rn-1)
82
 *
83
 * The result is expected to be ZERO if and only if the operand
84
 * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
85
 * B^rn-1.
86
 * It should not be a problem if sqrmod_bnm1 is used to
87
 * compute the full square with an <= 2*rn, because this condition
88
 * implies (B^an-1)^2 < (B^rn-1) .
89
 *
90
 * Requires rn/4 < an <= rn
91
 * Scratch need: rn/2 + (need for recursive call OR rn + 3). This gives
92
 *
93
 * S(n) <= rn/2 + MAX (rn + 4, S(n/2)) <= 3/2 rn + 4
94
 */
95
void
96
mpn_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_ptr tp)
97
0
{
98
0
  ASSERT (0 < an);
99
0
  ASSERT (an <= rn);
100
101
0
  if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, SQRMOD_BNM1_THRESHOLD))
102
0
    {
103
0
      if (UNLIKELY (an < rn))
104
0
  {
105
0
    if (UNLIKELY (2*an <= rn))
106
0
      {
107
0
        mpn_sqr (rp, ap, an);
108
0
      }
109
0
    else
110
0
      {
111
0
        mp_limb_t cy;
112
0
        mpn_sqr (tp, ap, an);
113
0
        cy = mpn_add (rp, tp, rn, tp + rn, 2*an - rn);
114
0
        MPN_INCR_U (rp, rn, cy);
115
0
      }
116
0
  }
117
0
      else
118
0
  mpn_bc_sqrmod_bnm1 (rp, ap, rn, tp);
119
0
    }
120
0
  else
121
0
    {
122
0
      mp_size_t n;
123
0
      mp_limb_t cy;
124
0
      mp_limb_t hi;
125
126
0
      n = rn >> 1;
127
128
0
      ASSERT (2*an > n);
129
130
      /* Compute xm = a^2 mod (B^n - 1), xp = a^2 mod (B^n + 1)
131
   and crt together as
132
133
   x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
134
      */
135
136
0
#define a0 ap
137
0
#define a1 (ap + n)
138
139
0
#define xp  tp  /* 2n + 2 */
140
      /* am1  maybe in {xp, n} */
141
0
#define sp1 (tp + 2*n + 2)
142
      /* ap1  maybe in {sp1, n + 1} */
143
144
0
      {
145
0
  mp_srcptr am1;
146
0
  mp_size_t anm;
147
0
  mp_ptr so;
148
149
0
  if (LIKELY (an > n))
150
0
    {
151
0
      so = xp + n;
152
0
      am1 = xp;
153
0
      cy = mpn_add (xp, a0, n, a1, an - n);
154
0
      MPN_INCR_U (xp, n, cy);
155
0
      anm = n;
156
0
    }
157
0
  else
158
0
    {
159
0
      so = xp;
160
0
      am1 = a0;
161
0
      anm = an;
162
0
    }
163
164
0
  mpn_sqrmod_bnm1 (rp, n, am1, anm, so);
165
0
      }
166
167
0
      {
168
0
  int       k;
169
0
  mp_srcptr ap1;
170
0
  mp_size_t anp;
171
172
0
  if (LIKELY (an > n)) {
173
0
    ap1 = sp1;
174
0
    cy = mpn_sub (sp1, a0, n, a1, an - n);
175
0
    sp1[n] = 0;
176
0
    MPN_INCR_U (sp1, n + 1, cy);
177
0
    anp = n + ap1[n];
178
0
  } else {
179
0
    ap1 = a0;
180
0
    anp = an;
181
0
  }
182
183
0
  if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
184
0
    k=0;
185
0
  else
186
0
    {
187
0
      int mask;
188
0
      k = mpn_fft_best_k (n, 1);
189
0
      mask = (1<<k) -1;
190
0
      while (n & mask) {k--; mask >>=1;};
191
0
    }
192
0
  if (k >= FFT_FIRST_K)
193
0
    xp[n] = mpn_mul_fft (xp, n, ap1, anp, ap1, anp, k);
194
0
  else if (UNLIKELY (ap1 == a0))
195
0
    {
196
0
      ASSERT (anp <= n);
197
0
      ASSERT (2*anp > n);
198
0
      mpn_sqr (xp, a0, an);
199
0
      anp = 2*an - n;
200
0
      cy = mpn_sub (xp, xp, n, xp + n, anp);
201
0
      xp[n] = 0;
202
0
      MPN_INCR_U (xp, n+1, cy);
203
0
    }
204
0
  else
205
0
    mpn_bc_sqrmod_bnp1 (xp, ap1, n, xp);
206
0
      }
207
208
      /* Here the CRT recomposition begins.
209
210
   xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
211
   Division by 2 is a bitwise rotation.
212
213
   Assumes xp normalised mod (B^n+1).
214
215
   The residue class [0] is represented by [B^n-1]; except when
216
   both input are ZERO.
217
      */
218
219
0
#if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
220
0
#if HAVE_NATIVE_mpn_rsh1add_nc
221
0
      cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
222
0
      hi = cy << (GMP_NUMB_BITS - 1);
223
0
      cy = 0;
224
      /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
225
   overflows, i.e. a further increment will not overflow again. */
226
#else /* ! _nc */
227
      cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
228
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
229
      cy >>= 1;
230
      /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
231
   the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
232
#endif
233
0
#if GMP_NAIL_BITS == 0
234
0
      add_ssaaaa(cy, rp[n-1], cy, rp[n-1], CNST_LIMB(0), hi);
235
#else
236
      cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
237
      rp[n-1] ^= hi;
238
#endif
239
#else /* ! HAVE_NATIVE_mpn_rsh1add_n */
240
#if HAVE_NATIVE_mpn_add_nc
241
      cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
242
#else /* ! _nc */
243
      cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
244
#endif
245
      cy += (rp[0]&1);
246
      mpn_rshift(rp, rp, n, 1);
247
      ASSERT (cy <= 2);
248
      hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
249
      cy >>= 1;
250
      /* We can have cy != 0 only if hi = 0... */
251
      ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
252
      rp[n-1] |= hi;
253
      /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
254
#endif
255
0
      ASSERT (cy <= 1);
256
      /* Next increment can not overflow, read the previous comments about cy. */
257
0
      ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
258
0
      MPN_INCR_U(rp, n, cy);
259
260
      /* Compute the highest half:
261
   ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
262
       */
263
0
      if (UNLIKELY (2*an < rn))
264
0
  {
265
    /* Note that in this case, the only way the result can equal
266
       zero mod B^{rn} - 1 is if the input is zero, and
267
       then the output of both the recursive calls and this CRT
268
       reconstruction is zero, not B^{rn} - 1. */
269
0
    cy = mpn_sub_n (rp + n, rp, xp, 2*an - n);
270
271
    /* FIXME: This subtraction of the high parts is not really
272
       necessary, we do it to get the carry out, and for sanity
273
       checking. */
274
0
    cy = xp[n] + mpn_sub_nc (xp + 2*an - n, rp + 2*an - n,
275
0
           xp + 2*an - n, rn - 2*an, cy);
276
0
    ASSERT (mpn_zero_p (xp + 2*an - n+1, rn - 1 - 2*an));
277
0
    cy = mpn_sub_1 (rp, rp, 2*an, cy);
278
0
    ASSERT (cy == (xp + 2*an - n)[0]);
279
0
  }
280
0
      else
281
0
  {
282
0
    cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
283
    /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
284
       DECR will affect _at most_ the lowest n limbs. */
285
0
    MPN_DECR_U (rp, 2*n, cy);
286
0
  }
287
0
#undef a0
288
0
#undef a1
289
0
#undef xp
290
0
#undef sp1
291
0
    }
292
0
}
293
294
mp_size_t
295
mpn_sqrmod_bnm1_next_size (mp_size_t n)
296
0
{
297
0
  mp_size_t nh;
298
299
0
  if (BELOW_THRESHOLD (n,     SQRMOD_BNM1_THRESHOLD))
300
0
    return n;
301
0
  if (BELOW_THRESHOLD (n, 4 * (SQRMOD_BNM1_THRESHOLD - 1) + 1))
302
0
    return (n + (2-1)) & (-2);
303
0
  if (BELOW_THRESHOLD (n, 8 * (SQRMOD_BNM1_THRESHOLD - 1) + 1))
304
0
    return (n + (4-1)) & (-4);
305
306
0
  nh = (n + 1) >> 1;
307
308
0
  if (BELOW_THRESHOLD (nh, SQR_FFT_MODF_THRESHOLD))
309
0
    return (n + (8-1)) & (-8);
310
311
0
  return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 1));
312
0
}