Coverage Report

Created: 2024-06-28 06:39

/src/nettle-with-libgmp/cast128.c
Line
Count
Source (jump to first uncovered line)
1
/* cast128.c
2
3
   The CAST-128 block cipher, described in RFC 2144.
4
5
   Copyright (C) 2001, 2014 Niels Möller
6
7
   This file is part of GNU Nettle.
8
9
   GNU Nettle is free software: you can redistribute it and/or
10
   modify it under the terms of either:
11
12
     * the GNU Lesser General Public License as published by the Free
13
       Software Foundation; either version 3 of the License, or (at your
14
       option) any later version.
15
16
   or
17
18
     * the GNU General Public License as published by the Free
19
       Software Foundation; either version 2 of the License, or (at your
20
       option) any later version.
21
22
   or both in parallel, as here.
23
24
   GNU Nettle is distributed in the hope that it will be useful,
25
   but WITHOUT ANY WARRANTY; without even the implied warranty of
26
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
   General Public License for more details.
28
29
   You should have received copies of the GNU General Public License and
30
   the GNU Lesser General Public License along with this program.  If
31
   not, see http://www.gnu.org/licenses/.
32
*/
33
34
/* Based on:
35
 *
36
 *  CAST-128 in C
37
 *  Written by Steve Reid <sreid@sea-to-sky.net>
38
 *  100% Public Domain - no warranty
39
 *  Released 1997.10.11
40
 */
41
42
#if HAVE_CONFIG_H
43
# include "config.h"
44
#endif
45
46
#include <assert.h>
47
#include <stdlib.h>
48
#include <string.h>
49
50
#include "cast128.h"
51
#include "cast128_sboxes.h"
52
53
#include "macros.h"
54
55
350
#define CAST_SMALL_KEY 10
56
57
81.3k
#define S1 cast_sbox1
58
81.3k
#define S2 cast_sbox2
59
81.3k
#define S3 cast_sbox3
60
81.3k
#define S4 cast_sbox4
61
14.0k
#define S5 cast_sbox5
62
14.0k
#define S6 cast_sbox6
63
14.0k
#define S7 cast_sbox7
64
14.0k
#define S8 cast_sbox8
65
66
/* Macros to access 8-bit bytes out of a 32-bit word */
67
95.3k
#define B0(x) ( (uint8_t) (x>>24) )
68
95.3k
#define B1(x) ( (uint8_t) ((x>>16)&0xff) )
69
95.3k
#define B2(x) ( (uint8_t) ((x>>8)&0xff) )
70
95.3k
#define B3(x) ( (uint8_t) ((x)&0xff) )
71
72
/* NOTE: Depends on ROTL32 supporting a zero shift count. */
73
74
/* CAST-128 uses three different round functions */
75
29.9k
#define F1(l, r, i) do {         \
76
29.9k
    t = ctx->Km[i] + r;           \
77
29.9k
    t = ROTL32(ctx->Kr[i], t);          \
78
29.9k
    l ^= ((S1[B0(t)] ^ S2[B1(t)]) - S3[B2(t)]) + S4[B3(t)]; \
79
29.9k
  } while (0)
80
25.6k
#define F2(l, r, i) do {         \
81
25.6k
    t = ctx->Km[i] ^ r;           \
82
25.6k
    t = ROTL32( ctx->Kr[i], t);         \
83
25.6k
    l ^= ((S1[B0(t)] - S2[B1(t)]) + S3[B2(t)]) ^ S4[B3(t)]; \
84
25.6k
  } while (0)
85
25.6k
#define F3(l, r, i) do {         \
86
25.6k
    t = ctx->Km[i] - r;           \
87
25.6k
    t = ROTL32(ctx->Kr[i], t);          \
88
25.6k
    l ^= ((S1[B0(t)] + S2[B1(t)]) ^ S3[B2(t)]) - S4[B3(t)]; \
89
25.6k
  } while (0)
90
91
92
/***** Encryption Function *****/
93
94
void
95
cast128_encrypt(const struct cast128_ctx *ctx,
96
    size_t length, uint8_t *dst,
97
    const uint8_t *src)
98
130
{
99
130
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
100
1.82k
    {
101
1.82k
      uint32_t t, l, r;
102
103
      /* Get inblock into l,r */
104
1.82k
      l = READ_UINT32(src);
105
1.82k
      r = READ_UINT32(src+4);
106
107
      /* Do the work */
108
1.82k
      F1(l, r,  0);
109
1.82k
      F2(r, l,  1);
110
1.82k
      F3(l, r,  2);
111
1.82k
      F1(r, l,  3);
112
1.82k
      F2(l, r,  4);
113
1.82k
      F3(r, l,  5);
114
1.82k
      F1(l, r,  6);
115
1.82k
      F2(r, l,  7);
116
1.82k
      F3(l, r,  8);
117
1.82k
      F1(r, l,  9);
118
1.82k
      F2(l, r, 10);
119
1.82k
      F3(r, l, 11);
120
      /* Only do full 16 rounds if key length > 80 bits */
121
1.82k
      if (ctx->rounds & 16) {
122
1.34k
  F1(l, r, 12);
123
1.34k
  F2(r, l, 13);
124
1.34k
  F3(l, r, 14);
125
1.34k
  F1(r, l, 15);
126
1.34k
      }
127
      /* Put l,r into outblock */
128
1.82k
      WRITE_UINT32(dst, r);
129
1.82k
      WRITE_UINT32(dst + 4, l);
130
1.82k
    }
131
130
}
132
133
134
/***** Decryption Function *****/
135
136
void
137
cast128_decrypt(const struct cast128_ctx *ctx,
138
    size_t length, uint8_t *dst,
139
    const uint8_t *src)
140
220
{
141
220
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
142
3.55k
    {
143
3.55k
      uint32_t t, l, r;
144
145
      /* Get inblock into l,r */
146
3.55k
      r = READ_UINT32(src);
147
3.55k
      l = READ_UINT32(src+4);
148
149
      /* Do the work */
150
      /* Only do full 16 rounds if key length > 80 bits */
151
3.55k
      if (ctx->rounds & 16) {
152
2.85k
  F1(r, l, 15);
153
2.85k
  F3(l, r, 14);
154
2.85k
  F2(r, l, 13);
155
2.85k
  F1(l, r, 12);
156
2.85k
      }
157
3.55k
      F3(r, l, 11);
158
3.55k
      F2(l, r, 10);
159
3.55k
      F1(r, l,  9);
160
3.55k
      F3(l, r,  8);
161
3.55k
      F2(r, l,  7);
162
3.55k
      F1(l, r,  6);
163
3.55k
      F3(r, l,  5);
164
3.55k
      F2(l, r,  4);
165
3.55k
      F1(r, l,  3);
166
3.55k
      F3(l, r,  2);
167
3.55k
      F2(r, l,  1);
168
3.55k
      F1(l, r,  0);
169
170
      /* Put l,r into outblock */
171
3.55k
      WRITE_UINT32(dst, l);
172
3.55k
      WRITE_UINT32(dst + 4, r);
173
3.55k
    }
174
220
}
175
176
/***** Key Schedule *****/
177
178
5.03k
#define SET_KM(i, k) ctx->Km[i] = (k)
179
5.03k
#define SET_KR(i, k) ctx->Kr[i] = (k) & 31
180
181
700
#define EXPAND(set, full) do {           \
182
700
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
183
700
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
184
700
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
185
700
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
186
700
                      \
187
700
    set(0, S5[B0(z2)] ^ S6[B1(z2)] ^ S7[B3(z1)] ^ S8[B2(z1)] ^ S5[B2(z0)]); \
188
700
    set(1, S5[B2(z2)] ^ S6[B3(z2)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S6[B2(z1)]); \
189
700
    set(2, S5[B0(z3)] ^ S6[B1(z3)] ^ S7[B3(z0)] ^ S8[B2(z0)] ^ S7[B1(z2)]); \
190
700
    set(3, S5[B2(z3)] ^ S6[B3(z3)] ^ S7[B1(z0)] ^ S8[B0(z0)] ^ S8[B0(z3)]); \
191
700
                      \
192
700
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
193
700
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
194
700
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
195
700
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
196
700
                      \
197
700
    set(4, S5[B3(x0)] ^ S6[B2(x0)] ^ S7[B0(x3)] ^ S8[B1(x3)] ^ S5[B0(x2)]); \
198
700
    set(5, S5[B1(x0)] ^ S6[B0(x0)] ^ S7[B2(x3)] ^ S8[B3(x3)] ^ S6[B1(x3)]); \
199
700
    set(6, S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B0(x2)] ^ S8[B1(x2)] ^ S7[B3(x0)]); \
200
700
    set(7, S5[B1(x1)] ^ S6[B0(x1)] ^ S7[B2(x2)] ^ S8[B3(x2)] ^ S8[B3(x1)]); \
201
700
                      \
202
700
    z0 = x0 ^ S5[B1(x3)] ^ S6[B3(x3)] ^ S7[B0(x3)] ^ S8[B2(x3)] ^ S7[B0(x2)]; \
203
700
    z1 = x2 ^ S5[B0(z0)] ^ S6[B2(z0)] ^ S7[B1(z0)] ^ S8[B3(z0)] ^ S8[B2(x2)]; \
204
700
    z2 = x3 ^ S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B1(z1)] ^ S8[B0(z1)] ^ S5[B1(x2)]; \
205
700
    z3 = x1 ^ S5[B2(z2)] ^ S6[B1(z2)] ^ S7[B3(z2)] ^ S8[B0(z2)] ^ S6[B3(x2)]; \
206
700
                      \
207
700
    set(8,  S5[B3(z0)] ^ S6[B2(z0)] ^ S7[B0(z3)] ^ S8[B1(z3)] ^ S5[B1(z2)]); \
208
700
    set(9,  S5[B1(z0)] ^ S6[B0(z0)] ^ S7[B2(z3)] ^ S8[B3(z3)] ^ S6[B0(z3)]); \
209
700
    set(10, S5[B3(z1)] ^ S6[B2(z1)] ^ S7[B0(z2)] ^ S8[B1(z2)] ^ S7[B2(z0)]); \
210
700
    set(11, S5[B1(z1)] ^ S6[B0(z1)] ^ S7[B2(z2)] ^ S8[B3(z2)] ^ S8[B2(z1)]); \
211
700
                  \
212
700
    x0 = z2 ^ S5[B1(z1)] ^ S6[B3(z1)] ^ S7[B0(z1)] ^ S8[B2(z1)] ^ S7[B0(z0)]; \
213
700
    x1 = z0 ^ S5[B0(x0)] ^ S6[B2(x0)] ^ S7[B1(x0)] ^ S8[B3(x0)] ^ S8[B2(z0)]; \
214
700
    x2 = z1 ^ S5[B3(x1)] ^ S6[B2(x1)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S5[B1(z0)]; \
215
700
    x3 = z3 ^ S5[B2(x2)] ^ S6[B1(x2)] ^ S7[B3(x2)] ^ S8[B0(x2)] ^ S6[B3(z0)]; \
216
700
    if (full)               \
217
700
      {                 \
218
416
  set(12, S5[B0(x2)] ^ S6[B1(x2)] ^ S7[B3(x1)] ^ S8[B2(x1)] ^ S5[B3(x0)]); \
219
416
  set(13, S5[B2(x2)] ^ S6[B3(x2)] ^ S7[B1(x1)] ^ S8[B0(x1)] ^ S6[B3(x1)]); \
220
416
  set(14, S5[B0(x3)] ^ S6[B1(x3)] ^ S7[B3(x0)] ^ S8[B2(x0)] ^ S7[B0(x2)]); \
221
416
  set(15, S5[B2(x3)] ^ S6[B3(x3)] ^ S7[B1(x0)] ^ S8[B0(x0)] ^ S8[B1(x3)]); \
222
416
      }                  \
223
700
} while (0)
224
225
void
226
cast5_set_key(struct cast128_ctx *ctx,
227
        size_t length, const uint8_t *key)
228
350
{
229
350
  uint32_t x0, x1, x2, x3, z0, z1, z2, z3;
230
350
  uint32_t w;
231
350
  int full;
232
233
350
  assert (length >= CAST5_MIN_KEY_SIZE);
234
350
  assert (length <= CAST5_MAX_KEY_SIZE);
235
236
350
  full = (length > CAST_SMALL_KEY);
237
238
350
  x0 = READ_UINT32 (key);
239
240
  /* Read final word, possibly zero-padded. */
241
350
  switch (length & 3)
242
350
    {
243
216
    case 0:
244
216
      w = READ_UINT32 (key + length - 4);
245
216
      break;
246
47
    case 3:
247
47
      w = READ_UINT24 (key + length - 3) << 8;
248
47
      break;
249
71
    case 2:
250
71
      w = READ_UINT16 (key + length - 2) << 16;
251
71
      break;
252
16
    case 1:
253
16
      w = (uint32_t) key[length - 1] << 24;
254
16
      break;
255
350
    }
256
257
350
  if (length <= 8)
258
74
    {
259
74
      x1 = w;
260
74
      x2 = x3 = 0;
261
74
    }
262
276
  else
263
276
    {
264
276
      x1 = READ_UINT32 (key + 4);
265
276
      if (length <= 12)
266
180
  {
267
180
    x2 = w;
268
180
    x3 = 0;
269
180
  }
270
96
      else
271
96
  {
272
96
    x2 = READ_UINT32 (key + 8);
273
96
    x3 = w;
274
96
  }
275
276
    }
276
277
5.03k
  EXPAND(SET_KM, full);
278
5.03k
  EXPAND(SET_KR, full);
279
280
350
  ctx->rounds = full ? 16 : 12;
281
350
}
282
283
void
284
cast128_set_key(struct cast128_ctx *ctx, const uint8_t *key)
285
0
{
286
0
  cast5_set_key (ctx, CAST128_KEY_SIZE, key);
287
0
}