/src/nettle-with-libgmp/ecc-secp256r1.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* ecc-secp256r1.c  | 
2  |  |  | 
3  |  |    Compile time constant (but machine dependent) tables.  | 
4  |  |  | 
5  |  |    Copyright (C) 2013, 2014 Niels Möller  | 
6  |  |  | 
7  |  |    This file is part of GNU Nettle.  | 
8  |  |  | 
9  |  |    GNU Nettle is free software: you can redistribute it and/or  | 
10  |  |    modify it under the terms of either:  | 
11  |  |  | 
12  |  |      * the GNU Lesser General Public License as published by the Free  | 
13  |  |        Software Foundation; either version 3 of the License, or (at your  | 
14  |  |        option) any later version.  | 
15  |  |  | 
16  |  |    or  | 
17  |  |  | 
18  |  |      * the GNU General Public License as published by the Free  | 
19  |  |        Software Foundation; either version 2 of the License, or (at your  | 
20  |  |        option) any later version.  | 
21  |  |  | 
22  |  |    or both in parallel, as here.  | 
23  |  |  | 
24  |  |    GNU Nettle is distributed in the hope that it will be useful,  | 
25  |  |    but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
26  |  |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  | 
27  |  |    General Public License for more details.  | 
28  |  |  | 
29  |  |    You should have received copies of the GNU General Public License and  | 
30  |  |    the GNU Lesser General Public License along with this program.  If  | 
31  |  |    not, see http://www.gnu.org/licenses/.  | 
32  |  | */  | 
33  |  |  | 
34  |  | /* Development of Nettle's ECC support was funded by the .SE Internet Fund. */  | 
35  |  |  | 
36  |  | #if HAVE_CONFIG_H  | 
37  |  | # include "config.h"  | 
38  |  | #endif  | 
39  |  |  | 
40  |  | #include <assert.h>  | 
41  |  |  | 
42  |  | #include "ecc-internal.h"  | 
43  |  |  | 
44  |  | #if HAVE_NATIVE_ecc_secp256r1_redc  | 
45  |  | # define USE_REDC 1  | 
46  |  | #else  | 
47  |  | # define USE_REDC (ECC_REDC_SIZE != 0)  | 
48  |  | #endif  | 
49  |  |  | 
50  |  | #include "ecc-secp256r1.h"  | 
51  |  |  | 
52  |  | #if HAVE_NATIVE_ecc_secp256r1_redc  | 
53  |  | # define ecc_secp256r1_redc _nettle_ecc_secp256r1_redc  | 
54  |  | void  | 
55  |  | ecc_secp256r1_redc (const struct ecc_modulo *p, mp_limb_t *rp, mp_limb_t *xp);  | 
56  |  | #else /* !HAVE_NATIVE_ecc_secp256r1_redc */  | 
57  |  | # if ECC_REDC_SIZE > 0  | 
58  |  | #   define ecc_secp256r1_redc ecc_pp1_redc  | 
59  |  | # elif ECC_REDC_SIZE == 0  | 
60  |  | #   define ecc_secp256r1_redc NULL  | 
61  |  | # else  | 
62  |  | #  error Configuration error  | 
63  |  | # endif  | 
64  |  | #endif /* !HAVE_NATIVE_ecc_secp256r1_redc */  | 
65  |  |  | 
66  |  | #if ECC_BMODP_SIZE < ECC_LIMB_SIZE  | 
67  |  | #define ecc_secp256r1_modp ecc_mod  | 
68  |  | #define ecc_secp256r1_modq ecc_mod  | 
69  |  | #elif GMP_NUMB_BITS == 64  | 
70  |  |  | 
71  |  | static void  | 
72  |  | ecc_secp256r1_modp (const struct ecc_modulo *p, mp_limb_t *rp, mp_limb_t *xp)  | 
73  | 622  | { | 
74  | 622  |   mp_limb_t d1, u1, cy;  | 
75  | 622  |   mp_size_t n;  | 
76  |  |  | 
77  |  |   /* Reduce to < B^4 p up front, to avoid first quotient overflowing a limb. */  | 
78  | 622  |   cy = mpn_sub_n (xp + 4, xp + 4, p->m, p->size);  | 
79  | 622  |   mpn_cnd_add_n (cy, xp + 4, xp + 4, p->m, p->size);  | 
80  |  |  | 
81  | 622  |   d1 = UINT64_C(0xffffffff00000001);  | 
82  | 1.86k  |   for (n = 2*p->size, u1 = xp[--n] ;; n--)  | 
83  | 2.48k  |     { | 
84  | 2.48k  |       mp_limb_t u0, q1, q0, qmax, r, t, mask;  | 
85  | 2.48k  |       u0 = xp[n-1];  | 
86  |  |  | 
87  |  |       /* Since d0 == 0, 2/1 division gives a good enough quotient  | 
88  |  |    approximation.  | 
89  |  |  | 
90  |  |    <q1, q0> = v * u1 + <u1,u0>, with v = 2^32 - 1:  | 
91  |  |  | 
92  |  |      +---+---+  | 
93  |  |      | u1| u0|  | 
94  |  |      +---+---+  | 
95  |  |          |-u1|  | 
96  |  |        +-+-+-+  | 
97  |  |        | u1|  | 
98  |  |            +-+-+-+-+  | 
99  |  |            | q1| q0|  | 
100  |  |            +---+---+  | 
101  |  |       */  | 
102  | 2.48k  |       q1 = u1 - (u1 > u0);  | 
103  | 2.48k  |       q0 = u0 - u1;  | 
104  | 2.48k  |       t = u1 << 32;  | 
105  | 2.48k  |       q0 += t;  | 
106  | 2.48k  |       q1 += (u1 >> 32) + (q0 < t) + 1;  | 
107  |  |  | 
108  |  |       /* Force q = B-1 when u1 == d1 */  | 
109  | 2.48k  |       qmax = - (mp_limb_t) (u1 >= d1);  | 
110  |  |  | 
111  |  |       /* Candidate remainder r = u0 - q d1 (mod B), and 2/1 division  | 
112  |  |    adjustments. */  | 
113  | 2.48k  |       r = u0 + (q1 << 32) - q1;  | 
114  | 2.48k  |       mask = - (mp_limb_t) (r > q0);  | 
115  | 2.48k  |       q1 += mask;  | 
116  | 2.48k  |       r += (mask & d1);  | 
117  | 2.48k  |       mask = - (mp_limb_t) (r >= d1);  | 
118  | 2.48k  |       q1 -= mask;  | 
119  | 2.48k  |       r -= (mask & d1);  | 
120  |  |  | 
121  |  |       /* In the case that u1 == d1, we get q1 == 0, r == 0 here (and  | 
122  |  |    correct 2/1 quotient would be B). Replace with q1 = B-1, r =  | 
123  |  |    d1. */  | 
124  | 2.48k  |       q1 |= qmax;  | 
125  | 2.48k  |       r += d1 & qmax;  | 
126  |  |  | 
127  | 2.48k  |       cy = mpn_submul_1 (xp + n - 4, p->m, 3, q1);  | 
128  | 2.48k  |       mask = - (mp_limb_t) (r < cy);  | 
129  | 2.48k  |       if (n == p->size)  | 
130  | 622  |   { | 
131  | 622  |     rp[3] = r - cy + (mask & d1) + mpn_cnd_add_n (mask, rp, xp, p->m, 3);  | 
132  | 622  |     return;  | 
133  | 622  |   }  | 
134  | 1.86k  |       u1 = r - cy + (mask & d1) + mpn_cnd_add_n (mask, xp + n - 4, xp + n- 4, p->m, 3);  | 
135  | 1.86k  |     }  | 
136  | 622  | }  | 
137  |  |  | 
138  |  | static void  | 
139  |  | ecc_secp256r1_modq (const struct ecc_modulo *q, mp_limb_t *rp, mp_limb_t *xp)  | 
140  | 1.14k  | { | 
141  | 1.14k  |   mp_limb_t d1, cy;  | 
142  | 1.14k  |   mp_size_t n;  | 
143  |  |  | 
144  |  |   /* Reduce to < B^4 p up front, to avoid first quotient overflowing a limb. */  | 
145  | 1.14k  |   cy = mpn_sub_n (xp + 4, xp + 4, q->m, q->size);  | 
146  | 1.14k  |   mpn_cnd_add_n (cy, xp + 4, xp + 4, q->m, q->size);  | 
147  |  |  | 
148  | 1.14k  |   d1 = UINT64_C(0xffffffff00000000);  | 
149  | 1.14k  |   n = 2*q->size;  | 
150  | 1.14k  |   for (;;)  | 
151  | 4.56k  |     { | 
152  | 4.56k  |       mp_limb_t u1, u0, q1, q0, r, t, qmax, mask;  | 
153  | 4.56k  |       u1 = xp[--n];  | 
154  | 4.56k  |       u0 = xp[n-1];  | 
155  |  |  | 
156  |  |       /* divappr2, specialized for d1 = 2^64 - 2^32, d0 = 2^64-1.  | 
157  |  |  | 
158  |  |    <q1, q0> = v * u1 + <u1,u0>, with v = 2^32 - 1:  | 
159  |  |  | 
160  |  |      +---+---+  | 
161  |  |      | u1| u0|  | 
162  |  |      +---+---+  | 
163  |  |          |-u1|  | 
164  |  |        +-+-+-+  | 
165  |  |        | u1|  | 
166  |  |            +-+-+-+-+  | 
167  |  |            | q1| q0|  | 
168  |  |            +---+---+  | 
169  |  |       */  | 
170  | 4.56k  |       q1 = u1 - (u1 > u0);  | 
171  | 4.56k  |       q0 = u0 - u1;  | 
172  | 4.56k  |       t = u1 << 32;  | 
173  | 4.56k  |       q0 += t;  | 
174  | 4.56k  |       q1 += (q0 < t);  | 
175  | 4.56k  |       t = u1 >> 32;  | 
176  |  |       /* The divappr2 algorithm handles only q < B - 1. If we check  | 
177  |  |    for u1 >= d1 = 2^{64}-2^{32}, we cover all cases where q = | 
178  |  |    2^64-1, and some when q = 2^64-2. The latter case is  | 
179  |  |    corrected by the final adjustment. */  | 
180  | 4.56k  |       qmax = - (mp_limb_t) (t == 0xffffffff);  | 
181  | 4.56k  |       q1 += t + 1;  | 
182  |  |  | 
183  |  |       /* Candidate remainder r = u0 - q (d1 + 1) (mod B), and divappr2  | 
184  |  |    adjustments.  | 
185  |  |  | 
186  |  |    For general divappr2, the expression is  | 
187  |  |  | 
188  |  |      r = u_0 - q1 d1 - floor(q1 d0 / B) - 1  | 
189  |  |  | 
190  |  |    but in our case floor(q1 d0 / B) simplifies to q1 - 1.  | 
191  |  |       */  | 
192  | 4.56k  |       r = u0 + (q1 << 32) - q1;  | 
193  | 4.56k  |       mask = - (mp_limb_t) (r >= q0);  | 
194  | 4.56k  |       q1 += mask;  | 
195  | 4.56k  |       r += (mask & (d1 + 1));  | 
196  | 4.56k  |       q1 += (r >= d1 - 1);  | 
197  |  |  | 
198  |  |       /* Replace by qmax, when that is needed */  | 
199  | 4.56k  |       q1 |= qmax;  | 
200  |  |  | 
201  |  |       /* Subtract, may underflow. */  | 
202  | 4.56k  |       cy = mpn_submul_1 (xp + n - 4, q->m, 4, q1);  | 
203  | 4.56k  |       if (n == q->size)  | 
204  | 1.14k  |   { | 
205  | 1.14k  |     mpn_cnd_add_n (cy > u1, rp, xp, q->m, 4);  | 
206  | 1.14k  |     return;  | 
207  | 1.14k  |   }  | 
208  | 3.42k  |       mpn_cnd_add_n (cy > u1, xp + n - 4, xp + n- 4, q->m, 4);  | 
209  | 3.42k  |     }  | 
210  | 1.14k  | }  | 
211  |  |  | 
212  |  | #else  | 
213  |  | #error Unsupported parameters  | 
214  |  | #endif  | 
215  |  |  | 
216  |  | #define ECC_SECP256R1_INV_ITCH (4*ECC_LIMB_SIZE)  | 
217  |  |  | 
218  |  | static void  | 
219  |  | ecc_secp256r1_inv (const struct ecc_modulo *p,  | 
220  |  |        mp_limb_t *rp, const mp_limb_t *ap,  | 
221  |  |        mp_limb_t *scratch)  | 
222  | 888  | { | 
223  | 4.44k  | #define a5m1 scratch  | 
224  | 4.44k  | #define t0 (scratch + ECC_LIMB_SIZE)  | 
225  | 3.55k  | #define a15m1 t0  | 
226  | 2.66k  | #define a32m1 a5m1  | 
227  | 11.5k  | #define tp (scratch + 2*ECC_LIMB_SIZE)  | 
228  |  | /*  | 
229  |  |    Addition chain for p - 2 = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 3 | 
230  |  |  | 
231  |  |     2^5 - 1 = 1 + 2 (2^4 - 1) = 1 + 2 (2^2+1)(2 + 1)    4 S + 3 M  | 
232  |  |     2^{15} - 1 = (2^5 - 1) (1 + 2^5 (1 + 2^5)          10 S + 2 M | 
233  |  |     2^{16} - 1 = 1 + 2 (2^{15} - 1)                       S +   M | 
234  |  |     2^{32} - 1 = (2^{16} + 1) (2^{16} - 1)             16 S +   M | 
235  |  |     2^{64} - 2^{32} + 1 = 2^{32} (2^{32} - 1) + 1      32 S +   M | 
236  |  |     2^{192} - 2^{160} + 2^{128} + 2^{32} - 1 | 
237  |  |         = 2^{128} (2^{64} - 2^{32} + 1) + 2^{32} - 1  128 S +   M | 
238  |  |     2^{224} - 2^{192} + 2^{160} + 2^{64} - 1 | 
239  |  |         = 2^{32} (...) + 2^{32} - 1                    32 S +   M | 
240  |  |     2^{239} - 2^{207} + 2^{175} + 2^{79} - 1 | 
241  |  |         = 2^{15} (...) + 2^{15} - 1                    15 S +   M | 
242  |  |     2^{254} - 2^{222} + 2^{190} + 2^{94} - 1 | 
243  |  |         = 2^{15} (...) + 2^{15} - 1                    15 S +   M | 
244  |  |     p - 2 = 2^2 (...) + 1                               2 S     M  | 
245  |  |                                                    ---------------  | 
246  |  |                   255 S + 13 M  | 
247  |  |  */  | 
248  | 888  |   ecc_mod_sqr (p, rp, ap, tp);      /* a^2 */  | 
249  | 888  |   ecc_mod_mul (p, rp, rp, ap, tp);    /* a^3 */  | 
250  | 888  |   ecc_mod_pow_2kp1 (p, t0, rp, 2, tp);    /* a^{2^4 - 1} */ | 
251  | 888  |   ecc_mod_sqr (p, rp, t0, tp);      /* a^{2^5 - 2} */ | 
252  | 888  |   ecc_mod_mul (p, a5m1, rp, ap, tp);    /* a^{2^5 - 1}, a5m1 */ | 
253  |  |  | 
254  | 888  |   ecc_mod_pow_2kp1 (p, rp, a5m1, 5, tp);  /* a^{2^{10} - 1, a5m1*/ | 
255  | 888  |   ecc_mod_pow_2k_mul (p, a15m1, rp, 5, a5m1, tp); /* a^{2^{15} - 1}, a5m1 a15m1 */ | 
256  | 888  |   ecc_mod_sqr (p, rp, a15m1, tp);    /* a^{2^{16} - 2}, a15m1 */ | 
257  | 888  |   ecc_mod_mul (p, rp, rp, ap, tp);    /* a^{2^{16} - 1}, a15m1 */ | 
258  | 888  |   ecc_mod_pow_2kp1 (p, a32m1, rp, 16, tp);  /* a^{2^{32} - 1}, a15m1, a32m1 */ | 
259  |  |  | 
260  | 888  |   ecc_mod_pow_2k_mul (p, rp, a32m1, 32, ap, tp);/* a^{2^{64} - 2^{32} + 1 */ | 
261  | 888  |   ecc_mod_pow_2k_mul (p, rp, rp, 128, a32m1, tp); /* a^{2^{192} - 2^{160} + 2^{128} + 2^{32} - 1} */ | 
262  | 888  |   ecc_mod_pow_2k_mul (p, rp, rp, 32, a32m1, tp);/* a^{2^{224} - 2^{192} + 2^{160} + 2^{64} - 1} */ | 
263  | 888  |   ecc_mod_pow_2k_mul (p, rp, rp, 15, a15m1, tp);/* a^{2^{239} - 2^{207} + 2^{175} + 2^{79} - 1} */ | 
264  | 888  |   ecc_mod_pow_2k_mul (p, rp, rp, 15, a15m1, tp);/* a^{2^{254} - 2^{222} + 2^{190} + 2^{94} - 1} */ | 
265  | 888  |   ecc_mod_pow_2k_mul (p, rp, rp, 2, ap, tp);  /* a^{2^{256} - 2^{224} + 2^{192} + 2^{96} - 3} */ | 
266  |  |  | 
267  | 888  | #undef a5m1  | 
268  | 888  | #undef t0  | 
269  | 888  | #undef a15m1  | 
270  | 888  | #undef a32m1  | 
271  | 888  | #undef tp  | 
272  | 888  | }  | 
273  |  |  | 
274  |  | /* To guarantee that inputs to ecc_mod_zero_p are in the required range. */  | 
275  |  | #if ECC_LIMB_SIZE * GMP_NUMB_BITS != 256  | 
276  |  | #error Unsupported limb size  | 
277  |  | #endif  | 
278  |  |  | 
279  |  | #define ECC_SECP256R1_SQRT_ITCH (3*ECC_LIMB_SIZE)  | 
280  |  |  | 
281  |  | static int  | 
282  |  | ecc_secp256r1_sqrt (const struct ecc_modulo *m,  | 
283  |  |         mp_limb_t *rp,  | 
284  |  |         const mp_limb_t *cp,  | 
285  |  |         mp_limb_t *scratch)  | 
286  | 0  | { | 
287  |  |   /* This computes the square root modulo p256 using the identity:  | 
288  |  |  | 
289  |  |      sqrt(c) = c^(2^254 − 2^222 + 2^190 + 2^94)  (mod P-256)  | 
290  |  |  | 
291  |  |      which can be seen as a special case of Tonelli-Shanks with e=1.  | 
292  |  |  | 
293  |  |      It would be nice to share part of the addition chain between inverse and sqrt.  | 
294  |  |  | 
295  |  |      We need  | 
296  |  |  | 
297  |  |        p-2 = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 3 (inverse) | 
298  |  |  | 
299  |  |      and  | 
300  |  |  | 
301  |  |        (p+1)/4 = 2^{254} − 2^{222} + 2^{190} + 2^{94} (sqrt) | 
302  |  |  | 
303  |  |      which we can both get conveniently from  | 
304  |  |  | 
305  |  |        (p-3)/4 = 2^{254} − 2^{222} + 2^{190} + 2^{94} - 1 | 
306  |  |  | 
307  |  |      But addition chain for 2^{94} - 1 appears to cost a few more mul | 
308  |  |      operations than the current, separate, chains. */  | 
309  |  | 
  | 
310  | 0  | #define t0 scratch  | 
311  | 0  | #define tp (scratch + ECC_LIMB_SIZE)  | 
312  |  | 
  | 
313  | 0  |   ecc_mod_sqr        (m, rp, cp, tp);    /* c^2 */  | 
314  | 0  |   ecc_mod_mul        (m, t0, rp, cp, tp);  /* c^3 */  | 
315  | 0  |   ecc_mod_pow_2kp1   (m, rp, t0, 2, tp);  /* c^(2^4 - 1) */  | 
316  | 0  |   ecc_mod_pow_2kp1   (m, t0, rp, 4, tp);  /* c^(2^8 - 1) */  | 
317  | 0  |   ecc_mod_pow_2kp1   (m, rp, t0, 8, tp);  /* c^(2^16 - 1) */  | 
318  | 0  |   ecc_mod_pow_2kp1   (m, t0, rp, 16, tp); /* c^(2^32 - 1) */  | 
319  | 0  |   ecc_mod_pow_2k_mul (m, rp, t0, 32, cp, tp);  /* c^(2^64 - 2^32 + 1) */  | 
320  | 0  |   ecc_mod_pow_2k_mul (m, t0, rp, 96, cp, tp);  /* c^(2^160 - 2^128 + 2^96 + 1) */  | 
321  | 0  |   ecc_mod_pow_2k     (m, rp, t0, 94,     tp);  /* c^(2^254 - 2^222 + 2^190 + 2^94) */  | 
322  |  | 
  | 
323  | 0  |   ecc_mod_sqr (m, t0, rp, tp);  | 
324  | 0  |   ecc_mod_sub (m, t0, t0, cp);  | 
325  |  | 
  | 
326  | 0  |   return ecc_mod_zero_p (m, t0);  | 
327  | 0  | #undef t0  | 
328  | 0  | #undef tp  | 
329  |  | 
  | 
330  | 0  | }  | 
331  |  |  | 
332  |  | const struct ecc_curve _nettle_secp_256r1 =  | 
333  |  | { | 
334  |  |   { | 
335  |  |     256,  | 
336  |  |     ECC_LIMB_SIZE,  | 
337  |  |     ECC_BMODP_SIZE,  | 
338  |  |     ECC_REDC_SIZE,  | 
339  |  |     ECC_SECP256R1_INV_ITCH,  | 
340  |  |     ECC_SECP256R1_SQRT_ITCH,  | 
341  |  |     0,  | 
342  |  |  | 
343  |  |     ecc_p,  | 
344  |  |     ecc_Bmodp,  | 
345  |  |     ecc_Bmodp_shifted,  | 
346  |  |     ecc_Bm2p,  | 
347  |  |     ecc_redc_ppm1,  | 
348  |  |     ecc_pp1h,  | 
349  |  |  | 
350  |  |     ecc_secp256r1_modp,  | 
351  |  |     USE_REDC ? ecc_secp256r1_redc : ecc_secp256r1_modp,  | 
352  |  |     ecc_secp256r1_inv,  | 
353  |  |     ecc_secp256r1_sqrt,  | 
354  |  |     NULL,  | 
355  |  |   },  | 
356  |  |   { | 
357  |  |     256,  | 
358  |  |     ECC_LIMB_SIZE,  | 
359  |  |     ECC_BMODQ_SIZE,  | 
360  |  |     0,  | 
361  |  |     ECC_MOD_INV_ITCH (ECC_LIMB_SIZE),  | 
362  |  |     0,  | 
363  |  |     0,  | 
364  |  |  | 
365  |  |     ecc_q,  | 
366  |  |     ecc_Bmodq,  | 
367  |  |     ecc_Bmodq_shifted,  | 
368  |  |     ecc_Bm2q,  | 
369  |  |     NULL,  | 
370  |  |     ecc_qp1h,  | 
371  |  |  | 
372  |  |     ecc_secp256r1_modq,  | 
373  |  |     ecc_secp256r1_modq,  | 
374  |  |     ecc_mod_inv,  | 
375  |  |     NULL,  | 
376  |  |     NULL,  | 
377  |  |   },  | 
378  |  |  | 
379  |  |   USE_REDC,  | 
380  |  |   ECC_PIPPENGER_K,  | 
381  |  |   ECC_PIPPENGER_C,  | 
382  |  |  | 
383  |  |   ECC_ADD_JJA_ITCH (ECC_LIMB_SIZE),  | 
384  |  |   ECC_ADD_JJJ_ITCH (ECC_LIMB_SIZE),  | 
385  |  |   ECC_DUP_JJ_ITCH (ECC_LIMB_SIZE),  | 
386  |  |   ECC_MUL_A_ITCH (ECC_LIMB_SIZE),  | 
387  |  |   ECC_MUL_G_ITCH (ECC_LIMB_SIZE),  | 
388  |  |   ECC_J_TO_A_ITCH(ECC_LIMB_SIZE, ECC_SECP256R1_INV_ITCH),  | 
389  |  |  | 
390  |  |   ecc_add_jja,  | 
391  |  |   ecc_add_jjj,  | 
392  |  |   ecc_dup_jj,  | 
393  |  |   ecc_mul_a,  | 
394  |  |   ecc_mul_g,  | 
395  |  |   ecc_j_to_a,  | 
396  |  |  | 
397  |  |   ecc_b,  | 
398  |  |   ecc_unit,  | 
399  |  |   ecc_table  | 
400  |  | };  | 
401  |  |  | 
402  |  | const struct ecc_curve *nettle_get_secp_256r1(void)  | 
403  | 779  | { | 
404  | 779  |   return &_nettle_secp_256r1;  | 
405  | 779  | }  |